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Abstract 

The aim of the present paper is to study the effect of MHD flows due to second grade fluid 

over a rotating porous disk .The nonlinear problem is solved analytically using Laplace 

transform technique and inverse Laplace transform techniques. The effects of all the 

parameters on the flow are carefully examined. The graphical result are found using 

MATLAB. It is observed that increase of second grade parameter causes an increase in the 

boundary layer thickness and it is clearly examined that an increase of the magnetic parameter 

results the decrease in the boundary layer thickness. It is also found that real and imaginary 

part of velocity profiles first decreased and then increased by increasing the second grade 

parameter. 

Keywords: Second grade parameter, Magnetic parameter, Porosity parameter. 

INTRODUCTION   

The theoretical study of the flow near a rotating disk of infinite extent can be traced back to Von Karma’s 

similarity analysis. That is why the flow is widely known as Von karman’s flow. He assumed that the flow 

possessed axial symmetry, and introduced a similarity transformation which reduced the Navier − Stokes 

equation into a system of coupled nonlinear ordinary differential equations. These equations have been used as 

a test problem for numerical methods and in the study of matched asymptotic expansions. This problem has 
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received considerable attention over the years and different extensions of Von Karman’s swirling flow problem 

have been made to address various applications, for instance Benton (1966); Kuiken (1971); Riley (1964); 

Sahoo (2009); Ariel (2003); 

The viscous laminar flow between porous disks has recently been studied by several authors. Elkouh (1969) 

have obtained the solutions of laminar flow between non-rotating and rotating porous disks with equal 

suction/injection through porous discs. Gaur (1972) has discussed the viscous incompressible fluid flow 

between two infinite porous rotating discs. Narayana (1972) has considered the steady flow of a Newtonian 

fluid between two infinite parallel discs when one disc (upper) is rotating and other disc (lower) is at rest with 

uniform suction at the stationary disc.    Rudraiah et. al. (1974) has studied a singular perturbation problem of 

non – Newtonian fluid flow between porous discs. Rudraiah et. al. (1974) obtained the solutions for both small 

and large values of cross-flow Reynolds number by regular perturbation and matched asymptotic expansions 

technique, respectively. Sacheti and Bhatt (1975) have discussed the steady laminar flow of a non Newtonian 

fluid with suction / injection through disks and heat transfer through parallel disks. 

However, the possibility of an exact solution for the flow due to a rotating disk in a fluid which is at infinity 

and its rotating disk in a fluid which is at infinity and is rotating rigidly has been implied by Berker (1982). 

Parter and Rajagopal (1984) have established the existence solutions which do not possess axial symmetry, to 

the Navier−Stokes equations for the problem governing the flow of infinite disks rotating about a common 

axis. Based on that work, Huilgol & Rajagopal (1987) have shown that in the case of certain non-Newtonian 

fluid models, solutions that lack axisymmetry are possible. Recently, Turkyilmazoglu (2009) has obtained 

exact solutions to the Navier − Stokes for the swirling flow problem in such a way that the physical quantities 

are allowed to develop non-axisymmetrically over a rotating disk. 

It is a well-known fact that the Navier – Stokes equations seem to be a weak model for a class of real fluids, 

called non- Newtonian fluid. During the last few decades, considerable efforts have been developed to the 

study of flow on non – Newtonian fluids because of their technological applications. A vast amount of 

literature is now available for the flow problems associated with non Newtonian fluids in a variety of 

situations. One important and simple model of non-Newtonian fluids for which one can reasonably hope to 

obtain analytical solutions is the second grade fluid. The study of fluid flowing between parallel porous / non – 

porous disks is of practical importance in the design of thrust bearings, radial diffusers, etc. 

Magnetohydrodynamics (MHD) is an academic discipline, which studies the dynamic behaviours of the 

interaction between magnetic fields and electrically conducting fluids. Examples of such fluids are numerous 

including plasmas, liquid metals, and salt water or electrolytes. The MHD flow is encountered in a variety of 

applications such as MHD power generators, MHD pumps, MHD accelerators, and MHD flow meters and it 

can also be expanded into various industrial uses. 
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During the past decades, a great deal of papers in literatures used a combination of Navier – Stokes equations 

and Maxwell’s equations to describe the MHD flow of the Newtonian and electrically conducting fluid. Sayed-

Ahmed and Attia (1998) studied the unsteady Couette flow and heat transfer of a dusty conducting fluid 

between two parallel plates with variable viscosity and electrical conductivity. Osalusi et. al. (2007) solved 

unsteady MHD and slip over a porous rotating disk in the presence of Hall and ion- slip currents a shooting 

method.  

However, the Newtonian fluid is the simplest to be solved and its application is very limited. In practice, many 

complex fluids such as blood, suspension fluids, certain oils, greases, and polymer solutions, elastomers, and 

many emulsions have been treated as non –Newtonian fluids. 

From the literature, the non – Newtonian fluids principally classified on the basis of their behaviour in shear. A 

fluid with a linear relationship between the shear stress and the shear rate, giving rise a constant viscosity, is 

always characterized to be a Newtonian fluid. Based on the knowledge of solutions to Newtonian fluid, the 

different fluids can be extended, such as Maxwell fluids, Voigt fluids, Oldroyd  − B fluid, Rivlin − Ericsen 

fluids, and power-law fluids. 

Based upon  the previous studies, this chapter is extended for the flow characteristics of the MHD flow of 

second grade fluid. MHD flow due to eccentric rotations of a porous disk and an oscillating second grade fluid 

at infinity is studied when the disk and the fluid at infinity rotate with same angular velocity. The effects of 

material parameter of second grade fluid on the velocity profiles are discussed. The effects of all the 

parameters on the flow are carefully examined. The results which have found are reported for conclusion.  

 MATHEMATICAL FORMULATION 

The flow of an incompressible second grade fluid, neglecting thermal effects and body forces is given by  

div v = 0          

ρ
dv

dt
= divT          

 Where the Cauchy stress tensor T in an incompressible and Rivlin – Ericsen fluid of second grade is related to 

the fluid motion in the following manner (Rivlin and Ericksen  

𝑇 = −𝑝𝐼 + 𝜇𝐴1 + 𝛼1𝐴2 + 𝛼2𝐴1
2 
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A1 = (gradV) + (gradV)T        

A2 =  
d

dt
A1 − A1(gradV) + (gradV)TA1      

Here V  is the velocity vector field, p  is the fluid pressure, 𝜌  the constant fluid density, 𝜇  the constant 

coefficient of viscosity, 
𝑑

𝑑𝑡
 the material time derivative and 𝛼1 and 𝛼2 the normal stress moduli. 

According to Dunn and Fosdick the second grade fluid model is compatible with thermodynamics when the 

Helmholtz free energy of the fluid is minimum for the fluid in equilibrium. The fluid model then has general 

and pleasant roundedness and stability properties. The Clausius – Duhem inequality and the assumption that 

the Helmholtz free energy is minimum in equilibrium provided the following restrictions 

μ ≥ 0, α1 ≥ 0, α1 + α2 = 0 

Here the flow is dealt with second grade fluid flow, the strict inequality holds true. 

Fosdick and Rajagopal (1979) have shown that when α1 < 0, the fluid exhibits anomalous behaviour that is 

incompatible with any fluid of rheological interest, and so results in a fluid that is unstable. 

Here, an electrically conducting second grade fluid occupying a space z   >   0 in contact with an infinite 

porous disk at z = 0 is considered. The axis of rotation of the disk and that of the fluid at infinity are assumed 

to be in the plane x   = 0. The distance between the axes is being considered as l. The porous disk and the fluid 

at infinity are initially rotating about the z1 – axis with the same angular velocity . At time      t = 0, suddenly 

the disk and the fluid at infinity starts rotation about the z – axis with angular velocity . Additionally it is 

assumed that the fluid at infinity oscillates with frequency k. The fluid is electrically conducting by a magnetic 

field B0 applied transversely to the flow.  

Since the derivation of equation for the flow of an incompressible fluid when porous boundary and fluid 

exhibit a state of non-coaxial rotation, the velocity field for such a motion is defined by Erdogan (1997) as  

                                          u =  −Ωy + f(z, t), v = Ωx + g(z, t)           

along with  the initial and boundary conditions are of the form  

u = −Ωy,                           v = Ωx, as z = 0, t > 0,     

u = −Ωy + Ωlcoskt,      v = Ωx, as z → ∞, t > 0     

u = −Ωy + Ωl,                v = Ωx,     at    z > 0,   𝑡 = 0            (5.5) 

which along with equation   ∇. V = 0  yields for uniform porosity that  

           w = −w0               where w0 >
0𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑠𝑢𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 w0 < 0 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑏𝑙𝑜𝑤𝑖𝑛𝑔.  
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Making use of equation (5.4) in (5.2) and eliminating   the pressure from the resulting equations give  

                
α1

ρ

∂3F

∂z2 ∂t
+ (ν − i

α1

ρ
)

∂2F

∂z2 −
α1

ρ
w0

∂3F

∂z3 − (N1 + i )F −
∂F

∂t
+ w0

∂F

∂z
= (i +

N1


) coskt + ksinkt  

                                                                                          

With the following boundary and initial conditions  

f(0, t)  = 0, g(0, t) = 0         

f(∞, t) =  Ωl coskt, g(∞, t) = 0       

f(z, 0)  = Ωl, g(z, 0) = 0     

     𝐹(𝑧, 𝑡) =
f

Ωl
+ i

g

Ωl
  .                                                   

introducing   

                  ξ = √
Ω

2ν
z,     τ = Ωt,     c =

k

Ω
, n =

N1

Ω
,    ∈=

w0

√2νΩ
,               

  α =
α1


ν
  , v =

μ

ρ
,  

Equation (5.7) and conditions (5.8) become 

α
∂3F

∂ξ2 ∂τ
− αϵ

∂3F

∂ξ3
+ (1 − iα)

∂2F

∂ξ2
− 2

∂F

∂τ
+ 2ϵ

∂F

∂ξ
− (n + i)F = −2(i + n)coscτ + 2csincτ 

                                                        (5.10)                  

  F(0, τ) = 0, F(∞, t) = coscτ, F(ξ, 0) = 1                         

writing 

F(0, τ) = H(ξ, τ)e−iτ               (5.12) 

The problem containing   equations (5.10) and   (5.11) become  

α
∂3H

∂ξ2 ∂τ
− αϵ

∂3H

∂ξ3
+ (1 − 2iα)

∂2H

∂ξ2
− 2

∂H

∂τ
+ 2ϵ

∂H

∂ξ
− 2nH = −(i + n) X [ei(1+c)τ + ei(1−c)τ] 

  

−(i + n) X [ei(1+c)τ + ei(1−c)τ] 

                                                    −ic[ei(1+c)τ − ei(1−c)τ]                                                        (5.13) 

                                                     H(0, τ) = 0,  

                                                     H(∞, τ) =
1

2
[ei(1+c)τ + ei(1−c)τ],                               (5.14) 
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                                                      H(𝜉, 0) = 1, 

In order to find the solution of equations (5.13) and (5.14), the Laplace transform pair can be written as  

H̅ = ∫ H(z, t)
∞

0

e−stdt,     s > 0, 

           H =
1

2πi
∫ H̅

∞

0
 (z, s)estds                                                      (5.15) 

In transformed s- plane, the problem becomes  

𝛼 ∈
d3H̅

dξ3
− (1 − 2iα + αs)

d2H̅

∂ξ2
− 2ϵ

dH

d
− 2(s + n)H̅ 

                                                       = 2 + 2 (i + n) 

                                              X  [
1

s−i(1+c)
+

1

s−i(1−c)
] +ic [

1

s−i(1+c)
−

1

s−i(1−c)
]      (5.16) 

                                  H(0, s) = 0    

                                 H̅(∞, s) =
1

2
 [

1

s−i(1+c)
+

1

s−i(1−c)
]                                                         (5.17)               

Since the equation of (5.16) is of third order, perturbation solution can be obtained by assuming the non – 

Newtonian fluid parameter to be very small by Beard and walters (  )                           

Therefore, H̅  can be written as  

                                          H ̅  =    H̅1+αH̅2 + O(α2)                                    (5.18) using equation (5.18) 

into equations (5.16) and (5.17) and then equating the terms of like powers of 𝛼,  the following systems can be 

obtained. 

System of order zero 

d2H̅1

dξ2 + 2 ∈
dH̅1

dξ
− 2(s + n)H̅1 = −2 − (i + n) [

1

 s−i(1+c)
 +  

1

 s−i(1−c)
] 

                                                                     −ic [
1

 s−i(1+c)
−

1

 s−i(1−c)
]                   (5.19) 

H̅1(0, s)    =   0 

 H̅1(∞, s)   =     [
1

s−i(1+c)
+

1

s−i(1−c)
]            

                                                                                                                                                          (5.20)       

 System of order one             

 

∈  
d3H̅1

dξ3  − 
d2 H̅2

dξ2 − (s − 2i)
d2H̅1

∂ξ2 − 2ϵ
dH̅2

dξ
+ 2(s + n)H̅2 = 0,                                (5.21) 
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        H̅2(0, s)  =   0,   

                                  H̅1(∞, s)  =  0            (5.22) 

Zeroth order solution 

The solution of Equations (5.42) that satisfies the boundary conditions (5.45) is  

H̅1 =   
1

2
  [ 

1

s−i (1+c)
+

1

s−i (1−c)
 ] + e−[∈+√∈2+2(s+n)]ξ

+ 
1

 2
[

1

s−i (1+c)
+

1

s−i (1−c)
]     (5.23) 

Taking Laplace inversion for the above solution H̅1 becomes 

H1(ξ, t) = −
1

4

(

 
 
 
 
 
 

e−(∈+x1
∗)ξ+i(1+c)τErfc [

ξ

√2τ
− X1

∗√
τ

2
]

+e−(∈−x1
∗ )ξ+i(1+c)τErfc [

ξ

√2τ
+ X1

∗√
τ

2
]

+e−(∈+x1
∗ )ξ+i(1−c)τErfc [

ξ

√2τ
− X1

∗√
τ

2
]

+e−(∈+x1
∗ )ξ+i(1−c)τErfc [

ξ

√2τ
+ X1

∗√
τ

2
]
)

 
 
 
 
 
 

          

        + 
1

2
(ei(1+c)τ + ei(1−c)τ)                                                               (5.24) 

First order solution  

Using the zeroth order solution (5.46) into equations (5.44), the solution can be written as  

    
d2H̅1

dξ2    + 2 ∈
dH̅2

dξ
− 2(s + n)H̅2     =    −[∈ G3 + (s − 2i)G2]Ae−Gξ,                   (5.25) 

 where  

A =
1

2
[

1

s−i(1+c)
+

1

s−i(1+c)
−

1

s−i(1−c)
−

1

s−i(1−c)
]                                                         (5.26) 

G =∈ +√∈2+ 2(s + n)                                      (5.27) 

 The solution of the first order system is  

 H̅2 = A(∈ G3 + (s − i)G2)
ξe

−(∈+√∈2+2(s+n))ξ

√∈2+2(s+n)
                                                 (5.28) 

Taking inverse Laplace transform of above equation, 
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        H2(ξ, t)=    
𝜉

4

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
1

X1
∗ (A1 + A2i(1 + c) + (1 + c)2) − A3 − A4i(1 + c)}

X e−(∈+X1
∗)ξ+icτErfc [

ξ

√2τ
+ X1

∗√
τ

2
]

− {
1

X1
∗ (A1 + A2i(1 + c) + (1 + c)2) − A3 − A4i(1 + c)}

X e−(∈−X1
∗)ξ+icτErfc [

ξ

√2τ
− X1

∗√
τ

2
]

− {
1

X2
∗ (A1 + A2i(1 − c) + (1 − c)2) + A3 + A4i(1 − c)}

X e−(∈+X1
∗)ξ+icτErfc [

ξ

√2τ
− X1

∗√
τ

2
]

{
1

X2
∗ (A1 + A2i(1 − c) + (1 − c)2) − A3 − A4i(1 − c)}

X e−(∈−X2
∗)ξ+icτErfc [

ξ

√2τ
+ X2

∗√
τ

2
]

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                               −
ξ

2
[
2A2+∈2+2n

√2πτ
+

2ξA4−ξ2

√2πτ3
+

1−2i

√2πτ5
] e−∈ξ−(∈2+2n)

τ

2
−

ξ2

2τ            (5.29) 

The analytical solution of the problem up to the order 𝛼 can be written as 

H(ξ, t)=  −
1

4
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{1 + αξ (
1

X1
∗ (A1 + A2i(1 + c) + (1 + c)2) − (A3 + iA4i(1 + c)))}

 X e−(∈+X1
∗)ξ+i(1+c)τErfc [

ξ

√2τ
− X1

∗√
τ

2
]  

+ {1 − αξ
1

X1
∗ ((A1 + A2i(1 + c) + (1 + c)2) − A3 − A4i(1 + c))}

X e−(∈−X1
∗ )ξ+i(1+c)τErfc [

ξ

√2τ
+ X1

∗√
τ

2
]

+ {1 + αξ(
1

X1
∗ (A1 + A2i(1 − c) + (1 − c)2) + A3 + A4i(1 + c))}

X e−(∈+X1
∗)ξ+i(1−c)τErfc [

ξ

√2τ
− X2

∗√
τ

2
]

+ {1 − αξ(
1

X1
∗ (A1 + A2i(1 − c) + (1 − c)2) − A3 − A4i(1 − c))}

X e−(∈−X1
∗ )ξ+i(1+b)τErfc [

ξ

√2τ
+ X2

∗√
τ

2
]

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

−αξ [
2A2 +∈2+ 2n

√2πτ
+

2ξA4 − ξ2

√2πτ3
+

1 − 2i

√2πτ5
] e−∈ξ−(∈2+2n)

τ
2−

ξ2

2τ + 

                             
1

2
(ei(1+c)τ + ei(1−c)τ)                                                                   (5.30)    where 

               A1= 2 ∈4+ (3n − 2i) ∈2− 2in,  A2  =  4 ∈2+ n − 2i,                            (5.31) 

                A3= 4 ∈3 +∈ n − 2i ∈,       A4= 2∈, 

Using the equation (5.18) and (5.9) into equation (5.30), the following suction solution is obtained. 
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for  0  <  c   <  1   

f

 l
+ i

g

 l
= −

1

4
         

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{1 + αξ (
1

X1
∗ (A1 + A2i(1 + c) + (1 + c)2) − (A3 + iA4i(1 + c)))}

X e−(∈+X1
∗ )ξ+i(1+c)τErfc [

ξ

√2τ
− X1

∗√
τ

2
]

+ {1 − αξ
1

X1
∗ ((A1 + A2i(1 + c) + (1 + c)2) − A3 − A4i(1 + c))}

X e−(∈−X1
∗ )ξ+i(1+c)τErfc [

ξ

√2τ
+ X1

∗√
τ

2
]

+ {1 + αξ (
1

X1
∗ (A1 + A2i(1 − c) + (1 − c)2) + A3 + A4i(1 + c))}

X e−(∈+X1
∗ )ξ+i(1−c)τErfc [

ξ

√2τ
− X2

∗√
τ

2
]

+ {1 − αξ (
1

X1
∗ (A1 + A2i(1 − c) + (1 − c)2) − A3 − A4i(1 − c))}

X e−(∈−X1
∗)ξ+i(1+b)τErfc [

ξ

√2τ
+ X2

∗√
τ

2
]

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

−αξ [
2A2+∈2+2n

√2πτ
+

2ξA4−ξ2

√2πτ3
+

1−2i

√2πτ5
] e−∈ξ−(∈2+2n)

τ

2 −
ξ2

2τ
− iτ                          

                       +
1

2
(eicτ + e−icτ),                                   (5.32) 

for c > 1; the suction solution is of the following form 

f

 l
+ i

g

 l
= −

1

4
 

    

(

 
 
 
 
 
 
 
 
 
 
 
 
 

{1 + βξ(
1

X1
∗ (A1 + A2i(1 + c) + (1 + c)2) − (A3 + iA4i(1 + c)))}

X e−(∈+X1
∗ )ξ+i(1+c)τErfc [

ξ

√2τ
− X1

∗√
τ

2
]

+ {1 − βξ
1

X1
∗ ((A1 + A2i(1 + c) + (1 + c)2) − A3 − A4i(1 + c))}

X e−(∈−X1
∗ )ξ+i(1+c)τErfc [

ξ

√2τ
+ X1

∗√
τ

2
]

+ {1 + βξ(
1

Y1
∗ (A1 − A2i(1 − c) + (1 − c)2) + A3 + A4i(1 + c))}

X e−(∈+Y1
∗ )ξ+i(1−c)τErfc [

ξ

√2τ
− Y1

∗√
τ

2
]

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

                             −βξ [
2A2+∈2+2n

√2πτ
+

2ξA4−ξ2

√2πτ3
+

1−2i

√2πτ5
] e−∈ξ−(∈2+2n)

τ

2 −
ξ2

2τ
− iτ                               

                              +
1

2
(eicτ + e−icτ)                                                                     (5.33) 
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For the resonant case i.e c = 1, we have   

f

    l
+

g

 l
 =     

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

{1 + αξ (
1

Z1
(A1 + 2iA2 + 4 ) − A3 − 2iA4)}

X e−(∈+Z1)ξ+iτErfc [
ξ

√2τ
− Z1√

τ

2
]

+ {1 − αξ
1

Z1
((A1 + A22i + 4) − A3 − A4i2)}

X e−(∈+Z1)ξ+iτErfc [
ξ

√2τ
+ Z1√

τ

2
]

+ {1 + αξ (
A1

Z2
+ A3)}

X e−(∈−Z2)ξ−i(1+c)τErfc [
ξ

√2τ
− Z2√

τ

2
]

+ {1 − αξ (
A2

Z2
+ A3)}

X e−(∈+Z2)ξ−iτErfc [
ξ

√2τ
+ Z2√

τ

2
]

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

−βξ [
2A2+∈2+2n

√2πτ
+

2ξA4−ξ2

√2πτ3
+

1−2i

√2πτ5
] e−∈ξ−(∈2+2n)

τ

2 −
ξ2

2τ
− iτ  

                +
1

2
(eicτ + e−icτ),                                                        (5.34) 

The blowing solution can be obtained by replacing ∈ by −∈ in equations (5.32), (5.33) and (5.34). 

 

5.3   RESULTS AND DISCUSSION 

 The effects of various parameters on the velocity profiles are drawn through graphs.  

The variation of second grade parameter 𝛼, magnetic parameter n, porosity parameter ∈, frequency a and time 

𝜏 are shown by graphs. 

 The real and imaginary parts of the velocity for various values of second grade parameter 𝛼 =

0.0,1.0,2.0 are presented in figures.5.3.1 to 5.3.6.  

 Figures 5.3.1 and 5.3.2 indicates that 
f

Ωl
 and 

g

Ωl
   first decrease and then increases by increasing 𝛼. 

However in figures 5.3.3 and 5.3.4, 
f

Ωl
 first decreases then increases  and  

g

Ωl
  increases. 

 In Figures 5.3.5 and 5.3.6  
f

Ωl
 decreases and  

g

Ωl
  first decreases and then increases by increasing 𝛼 

causes an increase in the boundary layer thickness.  

 The effects of magnetic parameter n = 0, 1, 2 are shown in figures 5.3.7 to 5.3.12. It is noted from the 

graphs that 
f

Ωl
  increase and 

g

Ωl
 decreases by increasing n. Further it is evident from these figures that 

increase in n, shows the decrease in boundary layer thickness.  
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 The variation of porosity parameter ∈= −1,0,1 can be observed from figures 5.3.13 to 5.3.18. These 

Figures show that large values of ∈ causes an increase in 
f

Ωl
 and decrease in  

g

Ωl
. The boundary layer 

thickness decreases by increasing suction and increases for large values of blowing velocity.  

 Figures 5.3.19 to 5.3.24 indicates the influence of 𝜏 = 0.25,0.5,0.75 on the velocity profiles. Obviously 

f

Ωl
 decreases and 

g

Ωl
 increases when large values of 𝜏 are taken into account. 

 

The variation of the velocity field with distance from the disk for various values of second grade parameter 𝜶 

when c = 1.5, ∈= 𝟎, n=0, and 1  
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The variation of the velocity field with distance from the disk for various values of second grade 

parameter 𝜶 when c = 0.4,  ∈= 𝟎,  n=0,   and 1  
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The variation of the velocity field with distance from the disk for various values of second grade 

parameter 𝜶 when c = 1,  ∈= 𝟎. 𝟒,  n=0,   and 1  
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The variation of the velocity field with distance from the disk for various values of magnetic parameter 

n when c = 1.4, 0 , 𝜶 = 𝟎. 𝟎𝟖  and  𝝉=1 
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The variation of the velocity field with distance from the disk for various values of magnetic parameter 

n when c = 0.4, 0 , 𝜶 = 𝟎. 𝟎𝟖  and 𝝉 = 1 
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The variation of the velocity field with distance from the disk for various values of magnetic parameter 

n when c =1, 0 , 𝜶 = 𝟎. 𝟎𝟖  and  𝝉=1 
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The variation of the velocity field with distance from the disk for various values of blowing/suction 

parameter ∈ when c   = 1.4, 0 ,    𝜶 = 𝟎. 𝟎𝟖  and    𝝉 = 1 
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The variation of the velocity field with distance from the disk for various values of blowing/suction 

parameter ∈ when c   = 0.4, 0 ,    𝜶 = 𝟎. 𝟎𝟖   and    𝝉=1 
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The variation of the velocity field with distance from the disk for various values of blowing/suction 

parameter ∈ when c   = 1, 0 ,    𝜶 = 𝟎. 𝟎𝟖  and    𝝉=1  
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The variation of the velocity field with distance from the disk for various values of time 𝝉 when c = 1.5, 

n=0, 𝜶 = 𝟎. 𝟎𝟖, ∈ = 𝟎 
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The variation of the velocity field with distance from the disk for various values of time 𝝉 when   c = 0.4,   n 

= 0,  𝜶 = 𝟎. 𝟎𝟖 , ∈ = 𝟎 
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The variation of the velocity field with distance from the disk for various values of time 𝝉 when   c = 1,   

n = 0,  𝜶 = 𝟎. 𝟎𝟖, ∈ = 𝟎. 𝟒 
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5.4   EFFECT OF MHD FLOW DUE TO ECCENTRIC ROTATIONS OF A POROUS DISK AND AN 

OSCILLATING   SECOND GRADE FLUID   AT   INFINITY WITH DIFFERENT FREQUENCIES 

The flow description is the same as that of the description given in section 5.3 except the viscous fluid is 

replaced by the second grade fluid. 

Therefore,   the resulting second grade fluid problem can be written as   

α1

ρ

∂3F

∂z2 ∂t
+ (ν − i

α1

ρ
)
∂2F

∂z2
−

α1

ρ
w0

∂3F

∂z3
− (N1 + i )F −

∂F

∂t
+ w0

∂F

∂z
 

          = − (i +
N1


) cosk1t + ksink2t,               (5.35) 

with the boundary and initial condition 

F(0, t) = cosk1t,   F(∞, t) = cosk2t,       F(Z, 0) = 1,           (5.36) 

The above problem in non-dimensional variables can be written as   

α
∂3F

∂ξ2 ∂τ
− αϵ

∂3F

∂ξ3 + (1 − iα)
∂2F

∂ξ2 − 2
∂F

∂τ
+2∈

∂F

∂ξ
− 2(i + n)F = 

                                      −2(i + n)cosbτ + 2bsinbτ                                                     (5.37) 

With the boundary and initial conditions 

  F(0, τ) = cosat,   F(∞, t) = cosbτ,   F(ξ, 0) = 1,                                                         (5.38) 
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using the  equations F(ξ, t) = H(ξ, τ)e−iτ into (5.36) to (5.37)  the following equations can be obtained  

α
∂3H

∂ξ
2 ∂τ

− αϵ
∂3H

∂ξ
3 + (1 − 2iα)

∂2H

∂ξ
2 − 2

∂H

∂τ
+2∈

∂H

∂ξ
− 2nH =  

−2(i + n) X [ei(1+b)τ + ei(1−b)τ] 

                                                    −ib[ei(1+b)τ − ei(1−b)τ],                                            (5.39) 

H(0, τ) =
1

2
[ei(1+a)τ + ei(1−a)τ], 

                                                     H(∞, τ) =
1

2
[ei(1+b)τ + ei(1−b)τ], 

                                                     H(ξ, 0) = 1,                                                                               (5.40) 

 

Taking Laplace transform into (5.39) and (5.40) the following equation is obtained  

α ∈
d3H̅̅

dξ3 − (1 − 2iα + αs)
d2H̅̅

∂ξ2 − 2ϵ
dH

d
− 2(s + n)H̅  

= 2 + 2 (i + n) 

  [
1

s−i(1+b)
+

1

s−i(1−b)
] + ib [

1

s−i(1+b)
−

1

s−i(1−b)
]                                                         (5.41) 

                                         H̅  (0, s) =  
1

2
 [ 

1

s−i(1+a)
+

1

s−i(1−a)
]   

                                          H̅(∞,s) =     
1

2
 [

1

s−i(1+b)
+

1

s−i(1−b)
]                                     (5.42)      

Using perturbation method in equation (5.75), the following systems can be obtained                  

System of order zero   

d2H̅1

dξ2
+ 2 ∈

H̅1

dξ
− 2(s + n)H̅1 = 

         −2 − (i + n) [ 
1

s−i(1+b)
+

1

s−i(1−b)
] − ib [

1

s−i(1+b)
−

1

s−1(1−b)
]                    (5.43) 

                                             H̅  (0, s)  =  
1

2
 [ 

1

s−i(1+a)
+

1

s−i(1−a)
] 

                                              H̅(∞, s)  =
1

2
 [

1

s−i(1+b)
+

1

s−i(1−b)
]                                (5.44) 

System of order one  

d2H̅1

dξ3 − 2 ∈
dH̅2

dξ2 − (s − 2i)
d2H̅1

dξ2 − 2 ∈
dH̅2

dξ
+ 2(s + n)H̅2 = 0,                                          (5.45) 

H̅2(0, s) = 0, 
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                                             H̅2(∞, s) = 0                                                        (5.46) 

Taking inverse Laplace transform into (5.45) and (5.46) and then solving the resulting integrals, the system 

become 

 

 

 

H1(ξ, t) =
1

4

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e−(∈+X1)ξ+i(1+a)τErfc [
ξ

√2τ
− X1√

τ

2
]

+e−(∈−X1)ξ+i(1+a)τErfc [
ξ

√2τ
+ X1√

τ

2
]

+e−(∈+X2)ξ+i(1−a)τErfc [
ξ

√2τ
− X2√

τ

2
]   

+e−(∈−X2)ξ+i(1−a)τErfc [
ξ

√2τ
+ X2√

τ

2
]

−e−(∈+X3)ξ+i(1+b)τErfc [
ξ

√2τ
− X3√

τ

2
]

−e−(∈−X3)ξ+i(1+b)τErfc [
ξ

√2τ
+ X3√

τ

2
]

−e−(∈+X4)ξ+i(1−b)τErfc [
ξ

√2τ
− X4√

τ

2
]

−e−(∈−X4)ξ+i(1−b)τErfc [
ξ

√2τ
+ X4√

τ

2
]
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

                                                            + 
1

2
(ei(1+b)τ + ei(1−b)τ),                                       (5.47) 
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H2(ξ, t) =
1

4

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 {

1

X1

(A1 + A2i (1 + α) + (1 + α)2) + A3 + A4i(1 + α)}

Xe−(∈+X1)ξ+iaτErfc [
ξ

√2τ
− X1√

τ

2
]

+ {
1

X1
(−A1 − A2i(1 + α) − (1 + α)2) + A3 + A4i(1 + α)}

Xe−(∈−X1)ξ+iaτErfc [
ξ

√2τ
+ X1√

τ

2
]

+ {
1

X2
(A1 + A2i(1 − α) + (1 − α)2) + A3 + A4i(1 − α)}

e−(∈+X2)ξ+iaτErfc [
ξ

√2τ
− X2√

τ

2
]

{
1

X2
(−A1 − A2i(1 − α) − (1 − α)2) + A3 + A4i(1 − α)}

Xe−(∈−X1)ξ+i(1+a)τErfc [
ξ

√2τ
+ X2√

τ

2
]

+ {
1

X3
(−A1 − A2i(1 + b) − (1 + b)2) − A3 − A4i(1 + b)}

Xe−(∈+X3)ξ+iaτErfc [
ξ

√2τ
− X3√

τ

2
]

+ {
1

X3
(A1 + A2i(1 + b) ) − (1 + b)2 − A3 − A4i(1 + b)}

+e−(∈−X3)ξ+iaτErfc [
ξ

√2τ
+ X3√

τ

2
]

+ {
1

X3
(−A1 − A2i(1 − b) − (1 − b)2) − A3 − A4i(1 − b)}

Xe−(∈+X3)ξ+iaτErfc [
ξ

√2τ
− X4√

τ

2
]

+ {
1

X4
(A1 + A2i(1 − b) + (1 − b)2) − A3 − A4i(1 − b)}

Xe−(∈−X4)ξ+iaτErfc [
ξ

√2τ
+ X4√

τ

2
]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                 (5.48) 

 

 

 

From equations (5.18), (5.47) and (5.48), the suction solution for a < 1, b < 1 can be written as 

f

Ωl
+ i

g

Ωl
= 
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1

4

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 {1 + αξ (

1

X1
((A1 + A2i(1 + α) ) + (1 + α)2) + A3 + A4i(1 + α))}

Xe−(∈+X1)ξ+iaτErfc [
ξ

√2τ
− X1√

τ

2
]

+ {1 − αξ (
1

X1
((A1 − A2i(1 + α) ) + (1 + α)2) − A3 − A4i(1 + α))}

Xe−(∈−X1)ξ+iaτErfc [
ξ

√2τ
+ X1√

τ

2
]

+ {1 + αξ (
1

X2
(A1 + A2i(1 − α) ) + (1 − α)2) + A3 + A4i(1 − α)}

Xe−(∈+X2)ξ−iaτErfc [
ξ

√2τ
− X2√

τ

2
]

+ {1 − αξ((
1

X2
(A1 + A2i(1 − α) ) + (1 − α)2) − A3 − A4i(1 + α))}

Xe−(∈−X1)ξ−iaτErfc [
ξ

√2τ
+ X2√

τ

2
]

−{1 + αξ ((
1

X3
((A1 + A2i(1 + b) ) + (1 + b)2)) + A3 + A4i(1 + b))}

Xe−(∈+X3)ξ+ibτErfc [
ξ

√2τ
− X3√

τ

2
]

− {1 − αξ (
1

X3
(A1 + A2i(1 + b) ) + (1 + b)2 − A3 − A4i(1 + b))}

+e−(∈−X3)ξ+ibτErfc [
ξ

√2τ
+ X3√

τ

2
]

− {1 + αξ(
1

X4
(A1 − A2i(1 − b) − (1 − b)2) + A3 + A4i(1 − b))}

Xe−(∈+X4)ξ+ibτErfc [
ξ

√2τ
− X4√

τ

2
]

− {1 − αξ(
1

X4
(A1 + A2i(1 − b) + (1 − b)2) − A3 − A4i(1 − b))}

Xe−(∈−X4)ξ+ibτErfc [
ξ

√2τ
+ X4√

τ

2
]

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                    +   
1

2
(eibτ + e−ibτ)                                                    (5.49)                                                         

For a   > 1, b > 1 , the system becomes  

      
f

Ωl
+ i

g

Ωl
= 
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1

4

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 {1 + αξ(

1

X1
((A1 + iA2(1 + a) +) + (1 + α)2) + A3 + iA4(1 + a))}

Xe−(∈+X1)ξ+iaτErfc [
ξ

√2τ
− X1√

τ

2
]

+{1 − αξ(
1

X1
(A1 + A2i(1 + a) + (1 + α)2 ) − A3 − A4i(1 + a))}

Xe−(∈−X1)ξ+iaτErfc [
ξ

√2τ
+ X1√

τ

2
]

+{1 + αξ(
1

Y1
(A1 − A2(a − 1) + (1 − a)2) + A3 − iA4(a − 1))}

Xe−(∈+Y1)ξ−iτErfc [
ξ

√2τ
− Y1√

τ

2
]

+{1 − αξ(
1

Y1
(A1 − A22i(a − 1) + (1 − a)2) − A3 + A4i(a − 1))}

Xe−(∈−Y1)ξ−iaτErfc [
ξ

√2τ
+ Y1√

τ

2
]

−{1 + αξ(
1

X1
((A1 + iA2(1 + b) +) + (1 + b)2) + A3 + iA4(1 + b))}

Xe−(∈+X3)ξ+iaτErfc [
ξ

√2τ
− X3√

τ

2
]

−{1 − αξ(
1

X1
((A1 + iA2(1 + b) +) + (1 + b)2) − A3 − iA4(1 + b))}

Xe−(∈−X3)ξ+ibτErfc [
ξ

√2τ
+ X3√

τ

2
]

−{1 + αξ(
1

Y1
(A1 − A2(b − 1) + (1 − b)2) + A3 − iA4(b − 1))}

Xe−(∈+Y2)ξ−ibτErfc [
ξ

√2τ
− Y2√

τ

2
]

−{1 − αξ(
1

Y2
(A1 − A2i(b − 1) + (1 − b)2) − A3 + A4i(b − 1))}

Xe−(∈−Y2)ξ−ibτErfc [
ξ

√2τ
+ Y2√

τ

2
]

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                              + 
1

2
(eibτ + e−ibτ)                                                    (5.50) 

For a   = b = 1, 
f

Ωl
+ i

g

Ωl
= 
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1

4

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 {1 + αξ (

1

Z1
((A1 + A22i + 4) + (1 + α)2) + A3 + A42i)}

Xe−(∈+Z1)ξ+iτErfc [
−ξ

√2τ
− Z1√

τ

2
]

+ {1 − αξ (
1

Z1
((A1 + A22i + 4 )) − A3 − A42i)}

Xe−(∈−Z1)ξ+iτErfc [
ξ

√2τ
+ Z1√

τ

2
]

+ {1 + αξ (
1

Z2
(A1) + A3)}

Xe−(∈+Z2)ξ−iτErfc [
ξ

√2τ
− Z2√

τ

2
]

{1 − αξ (
1

Z2
(A1) − A3)}

Xe−(∈−Z2)ξ−iτErfc [
ξ

√2τ
+ Z2√

τ

2
]

− {1 + αξ (
1

Z1
(A1 + A22i + 4) + A3 + A4i2)}

Xe−(∈+Z1)ξ−iτErfc [
ξ

√2τ
− Z1√

τ

2
]

− {1 − αξ (
1

Z1
(A1 + A2i2 + 4) + A3 + A4i2)}

Xe−(∈−Z1)ξ+iτErfc [
ξ

√2τ
+ Z1√

τ

2
]

− {1 + αξ (
1

Z2
(A1) + A3)}

Xe−(∈+Z2)ξ−iτErfc [
ξ

√2τ
− Z2√

τ

2
]

− {1 − αξ (
1

Z2
(A1) − A3)}

Xe−(∈−Z2)ξ+iτErfc [
ξ

√2τ
+ Z2√

τ

2
]

 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                              
1

2
(eiτ + e−iτ)                                                                          (5.85) 

Replacing ∈ =  −∈ in the suction solution, blowing solution can be obtained. 

5.5   RESULTS AND DISCUSSION 

 Figures 5.5.1 to 5.5.6 show the effects of second grade parameter 𝛼 (= 0.0,0.5,1.0) on the velocity 

profiles 
f

Ωl
 and  

g

Ωl
. It is examined in figures 5.5.1 and 5.5.2 that 

f

Ωl
 first increases then decreases and  

g

 Ωl
  

increases. In figures 5.5.3 and 5.5.4 both  
f

Ωl
 and  

g

Ωl
 increases with increasing 𝛼. However in Figures 

5.5.5 and 5.5.6 no variation occurs by increasing α in 
f

Ωl
 but in 

g

Ωl
 variation occurs. The layer thickness 

increases with the increase 𝛼 in except in figures 5.5.5 and 5.5.6. 

 To describe the variations of n (= 0.0, 1.0, 2.0) the figures 5.5.7 to 5.5.12. It is evident from figures 

5.5.7 to 5.5.10 that there is an increase in 
f

Ωl
 and decreases in 

g

Ωl
 for large values of n. But no change has 
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been observed in figure 5.5.11 and changes observed in 5.5.12. Further it is deduced from these figures 

that except in figures 5.5.11 and 5.5.12 there is a reduction in layer thickness for large values of 

magnetic parameter n.  

 Figures 5.5.13 to 5.5.18 depict the influence of porosity parameter ∈ ( =  −1.0,0.0,1.0). From these 

Figures, it is found   that by increasing ∈, 
f

Ωl
 increases and 

g

Ωl
 decreases. But there is no effect on the 

velocity profiles in figures 5.5.17 and there is a small effects have been observed in   5.5.18. The layer 

thickness in suction shows the similar behaviour as of magnetic parameter. But in case of blowing the 

effects are reverse.  

 The behaviour of velocity profiles 
f

Ωl
 and 

g

Ωl
 for various values of 𝜏( = 0.25,0.5,0.75)  are given in 

figures 5.5.19 to 5.5.24. It is apparent from these Figures that an increase in 𝜏 leads to decrease in 
f

Ωl
. 

But for large 𝜏 
g

Ωl
 increases except in Fig.5.5.24. 

 

 

 

 

The variation of the velocity filed with distance from the disk for various values of magnetic parameter , 

a = 1.75, b = 1.35, 𝝐 = 𝟎, 𝒏 = 𝟎, 𝒂𝒏𝒅 𝝉 = 𝟐                                                 
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The variation of the velocity filed with distance from the disk for various values of magnetic parameter
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The variation of the velocity filed with distance from the disk for various values of magnetic parameter

 , a = 1, b = 1, 𝝐 = 𝟎, 𝒏 = 𝟎, 𝒂𝒏𝒅 𝝉 = 𝟐   
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The variation of the velocity field with distance from the disk for various values of magnetic parameter 

n when a = 1.75, b= 1.25, 𝝐 = 𝟎, 𝜶 = 𝟎. 𝟎𝟖, 𝒂𝒏𝒅 𝝉 = 𝟐 
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The variation of the velocity field with distance from the disk for various values of magnetic parameter 
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The variation of the velocity filed with distance from the disk for various values of magnetic parameter

, a = 1.75, b   = 1.25,  𝝐 = 𝟎. 𝟓, 𝒏 = 𝟎, 𝒂𝒏𝒅 𝝉 = 𝟐                                                 
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The variation of the velocity filed with distance from the disk for various values of magnetic parameter

, a = 1, b   = 1,  𝝐 = 𝟎. 𝟓, 𝒏 = 𝟎, 𝒂𝒏𝒅 𝝉 = 𝟐 
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The variation of the velocity filed with distance from the disk for various values time 𝝉 when a = 1, b   = 
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The variation of the velocity field with distance from the disk for various values of time when a = 1.75, b 

= 1.35, n = 0,   𝜶 = 𝟎. 𝟎𝟖 and ∈ = 𝟎 
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5.6  CONCLUSION  

Coding are developed to get the graphical results which are in well agreement with the results given in the 

reference.  

The following conclusions can be extracted from the   analysis. 

 
f

Ωl
  and  

g

Ωl
  are first decreased and then increased by increasing the second grade parameter 𝛼 

 It is observed that increase of 𝛼  causes an increase in the boundary layer thickness 

 It is clearly examined that an increase of the magnetic parameter n results the decrease in the boundary 

layer thickness. 

 It is found that the boundary layer thicknesses are decreased   by the increment of the suction 

parameter. But in the case of blowing the effects are reverse. Frome these the well known fact that 

suction and blowing has opposite characteristics on the boundary layer flows have been proved. 

 It is further observed that the boundary layer thickness in suction shows the similar behaviour as in the 

case of magnetic parameter 

 It is found that the increased time 𝜏 leads to decrement in 
𝑓

Ω𝑙
 but for large 𝜏 

𝑔

Ω𝑙
 is increased 

 The effect of magnetic field on any flow is an important problem related many practical application as 

in the case of boundary layer flow control. Since the blowing causes an increment in the boundary layer 

thickness, it is deduced that the boundary layer can be controlled by magnetic field. 
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