License Plate Recognition Based Application For Parking Systems

M. P. Borawake ${ }^{1}$, Yashika Dhanwani ${ }^{2}$, Rajashri Kunale ${ }^{3}$, Namrata Vyavahare ${ }^{4}$, Priyanka Vyavahare ${ }^{5}$
Computer Engineering Department, PDEA'S College of Engineering Manjari (BK), Pune-412307, India

Abstract

This paper deals with the image processing techniques that are appliedat different stages which are pre-processing, filtering, feature extraction, segmentation and recognition in such way to removethe noise of the image, to enhance the image quality and to expedite the computing process by converting the characters in the image into respective text. The image of the vehicle license plate is captured and processed to produce a textual output for further processing. License plate recognition can be better solved by solutions with settings oriented for different applications. Numerous techniques have been developed for LPR in still images or video sequences, and the purpose of this projectis to assess and implement them as a real-world solution. This Project aims at making the databases obtained available for usage in an application for a parking system where the detected License plate number is matched with the pre-existing user information. LPR technology for vehicles fits any sector where safety and efficiency in license plate recognition is required.

Keywords - Optical character recognition (OCR), image processing, License plate recognition (LPR), Segmentation, pre-processing, filtering, feature extraction.

I.

INTRODUCTION

In the current innovative technology era, the significant tool for traffic law enforcement, access control, automated tolls and automated parking is needed. The License Plate Recognition (LPR) considerably can be used for those reasons. As an intelligent tool, (LPR) has the ability to detect and recognize the vehicle's number plate and provide the information regarding the vehicle properties. The LPR is an image processing technique to extract the image of license plate on vehicle taken by camera or taken by either a color, a grayscale camera or an infrared camera and identified the vehicles by their number plate through optical character recognition (OCR). License plate recognition (LPR) algorithms in images orvideos are generally composed of the following three processing steps:

1) extraction of a license plate region
2) segmentation of the plate characters
3) recognition of each character.

License plate recognition (LPR) algorithms inimages or videos are generally composed of the same processing steps as well. Edge clustering is formulated forsolving plate detection for the first time. License plate recognition can be better solved by solutions with settingsoriented for different applications. Numerous techniques have been developed for LPR in still images or video sequences, and the purpose of this project is to assess and implement them as a real-world solution. It takes image of the car and searches for the number plate in the image.

Due to the mass integration of information technology in all aspects of modern life, there is a demand for information systems for data processing in respect of vehicles. These systems require data to be archived or by a human or by a special team which can recognize vehicles by their license plates in real-time environment and reflect the facts of reality in the information system. Therefore, several techniques have been developed recognition and recognition systems are license plates used today in many applications Once the probable number plate area is located it is given to OCR. If OCR doesn't recognize the characters from the image number plate area is searched again from the image. OIf characters are recognized then number plate search is terminated.

Also known as Automatic Number Plate Recognition (ANPR), LPR is a widely used technology for vehicle management operations such as Ticketless Parking (off-street and on-street), Tolling, ITS, stolen vehicles detection, smart billing and many other applications in Europe and becoming a trend in the Americas.

By bringing the license plate digital information (among other data such as vehicle's direction and speed) to the mix, License Plate Recognition allows operators to immediately gather and associate more data about every vehiclepassing a control point:

1. The action itself: time, place, direction and speed of the vehicle
2. The vehicle: origin, Restrictions or security alerts.
3. The driver: License number, personal public or contact information about the driver
LPR calculations are commonly made out of the accompanying three handling steps: 1) area of the tag (LP)locale; 2) division of the plate characters; and 3) recognition of each character. The initial two stages join image handling methods on still pictures or edge groupings(recordings), whose assessment depends on the genuine acknowledgment rate and the blunder acknowledgment rate.

II. METHODOLOGY

The entire process of ANPR can be seen. All the stages in the following are explained in detail as follows.

A. Image From Camera (Image Acquisition)

The first stage is picture capture, or acquiring an image using the computer-connected digital camera. These obtained images can be further processed for Number Plate Extraction because they are in RGB format.

The database system houses the private data of thecar owners.

Capture image by using Camera
B. Pre-Processing

1) Gray Scale Conversion

The first and most crucial stage in image pre- processing is grey scale conversion. Numerous factors, such as optical system distortion, picture noise, motion blur, etc., have an impact on the acquired image. Instead of working directly on colourful images, the software is trained on grayscale images primarily because RGB (colour)has a 3dimensional property (24-bit size), which requires a greater size each time.

As it is challenging for the programme to pre- process the image, colour information is noise in image processing. Grayscale, on the other hand, takes up less space and is suitable for most algorithms.
2) Binarization

The Binarization Method changes the image into a black-and-white one in which each pixel can only have one of two values- 0 or 1 . Binarizationhas a major impact on the OCR (optical character recognition) outcome. As the original image contains noise, character recognition is more accurate when using a high-quality binarized image.

A popular technique for picture detection is the Otsu Binarization Method, which uses an automatic binarization level decision and a globalthreshold technique based on the histogram's form.
For low light/bright circumstances, where Otsu's method fails, we have suggested a different approach.
By dividing or multiplying integers between 1.1 and 2.5 with increments of 0.1 each time, we canraise or lower the Otsu's threshold up to 2.5 timesits initial value, until the desired threshold is reached. Until it reaches the requisite number of characters in the final stage, our system will evaluate a range of specified threshold values. We'll choose the cutoff that ultimately offers us the most characters possible.
C.

Number Plate Localization

1) Connected Component Analysis (CCA)

The algorithm of the component attached to the binary filter is first used to remove the undesired image space. To identify the characters in the image, the related component is parsed. The fundamental suggestion is to scan the image and locate any related pixels. Every element (dot) is identified and removed. The goal of platelocalization is to isolate the number plate area from the surrounding area of the image. Finding the plate size is the first step in recognising a vehicle number plate. CCA takes the image's pixelated appearance into consideration.

MH O1 AE 5654
Number plate localization

Since the image is binarized at this point, it can be said to be made up of the 2-pixel values 0 and 1 , which stand for the image's white and black parts, respectively. In order to reveal related regions, it will aggregate regions with comparable pixel intensity levels (by default, pixels with a value of 0) together. We were able to create rectangles that represented the "connected regions" as identified by CCA by using Python's bounding box function. The region will separate from the input image after labelling the related components. Thelocation of the licence plate is shown in the illustration. The next step is to eliminate the redundantly related sections.
D. Noise Reduction

Doing noise reduction at only the number plate will reduce the processing time. The techniques help in removing dust, water and other noise which can oftenappear on our number plates.
E. Character Segmentation

Each character needs to be broken apart after the licence plate has been extracted. The most important thing to keep in mind when a region has grown is oneor more criteria that meet the standards of the desired region. After determining the requirements, the image is searched for any pixels that meet them. When such a pixel is encountered, its neighbours are examined. If

Horizontal segment of the number plate
any of the neighbours also meet the criteria, both pixels are considered to be located in the same region. We use a vertical and horizontal scanning technique toobtain individual character and number images

F. Character Recognition

The ANPR system's most crucial and fundamental stage is this one. The segmented characters in the licencing panel must match the existing templates in order to be recognised as characters. The licence number is returned by the recognition procedure and is saved in an excel document in ASCII format. Thereare two tracks in this recognition procedure.

The initial pass involved making an effort to recogniseeach word individually. Each acceptable word is sent as training data to the adaptive workbook. The adaptive workbook is given the chance to more precisely understand the content. It demonstrates the methods needed to arrange and then interpret the various characters. The extracted features form the basis for the classification. The statistical, syntactic, or lexical methods are then used to arrange these features. Character recognition, letters, and characters in the paper all required different approaches. Calculating the similarity of features will complete the identification. Use the highlight point matchingapproach to identify the second character for the similar characters. Another way is to use the line separation procedure, which is currently connected segment savvy so that individual characters can be isolated, once the lines in an extracted vehicle number plate have been separated. Afterward, the separated individual characters are kept in different variables. The characters that were extracted from the number plate and the characters that we have already saved inthe database are currently synchronised.

Template matching is the next stage. An effective algorithm for character recognition is template matching. The character's image is compared to our database, and the one with the closest resemblance is chosen.

Optical character recognition (OCR), which compareseach character to the entire alphanumeric database, is another method for character recognition. In order to match each character, the OCR really employs a relationship method. Once the number is detected, it isthen recorded in a variable in string format. The database for vehicle authorisation is then contrasted with the character. The resulting signals are provided in accordance with the comparison's outcome. Every character, including AZ, $0-9$, and other symbols, will have a template.

G. Fusion Of Above Techniques

One method to increase your dataset accuracy is to use ensembles. Here, a voting approach that combines various techniques and their predictions to provide superior outcomes is being applied. Here, an ensembleimplementation of SVM (linear classifier) with KNN and a combination of logistic regression with Random Forest is used to overcome the limitations of each individual technique.

H. Identification

Identification After the successful detection of the vehicle number plate we can design the system for identification of the owner details. We can check the various databases. The identification of the vehicle owner is the part of identification model. The project is work in 3 models like recognition, identification anddatabase registry.

Fig. Block diagram of a typical OCR scanner system
techniques. Research for improving degraded plates has lately been directed to super resolutionmethods for video sequences or to blurred plate images with promising results. LPR, as a means of vehicle identification, may be further exploited in various ways such as vehicle model identification, under vehicle surveillance, speed estimation, and intelligent traffic management. For the vehicle model identification task, the position of thr LP could play an important role in segmenting a distinctive reference area of the frontal view of the vehicle.
 been archived into a database in advance. Based on the incoming vehicle LP, the respective template image is retrieved from the database and then compared to the one acquired during real-time under- vehicle inspection.

Using the methodologies mentioned in references and making different applications out of it is step forward for the scientific community to utilize the findings of others. In addition, assuming that LP regions are detectable even in very low resolution, an open topic for future research is the readability improvement of LP text using image processing

IV. OCR ALGORITHM

[2] C. Arth, F. Limberger, and H. Bischof, "Real-time license plate recognition on an embedded DSP- platform," in Proc. IEEE Conf. CVPR, Jun. 17-22, 2007, pp. 1-8.

Optical character recognition (OCR) is sometimes referred to as text recognition. An OCR program extracts and repurposes data from scanned documents, camera images and image-only pdfs. OCR software singles out letters on the image, puts them into words and then puts the words into sentences, thus enabling access to and editing of the original content. OCR systems use a combination of hardware and software to convert physical, printed documents into machinereadable text. Hardware - such as an optical scanner or specialized circuit board - copies or reads text; then, software typically handles the advanced processing.

V. ACKNOWLEDGMENT

We take this opportunity to thank the teachers and seniorauthorities whose constant encouragement made it possible for us to take up a challenge of doing this project. We express our deepest sense of gratitude towards our Hon'bleHead of department Dr. R. V. Patil for giving permission to use the college resources and his constant encouragement for this work.

We are grateful to Dr. Prof. M. P. Borawake for her technical support, valuable guidance, encouragement and consistent help without which it would have been difficultfor us to complete this project work. She is a constant source of information to us. We consider ourselves fortunate to work under the guidance of such an eminent personality.

Last but not the least; we are thankful to our entire staff of COMPUTER ENGINEERING DEPARTMENT for their timely help and guidance at various stages of theprogress of the project work.

VI. RESULT

This is a very easy, efficient, and low-cost method for license plate recognition and optical characters recognition in general. In the future, this application/system will be modified and improved to have more accuracy. LPR, as a means of vehicle identification, may be further exploited invarious ways such as vehicle model identification, under- vehicle surveillance, speed estimation, and intelligent.

VII. REFERENCES

[1] S. Wang and H. Lee, "Detection and recognition of license plate characters with different appearances," in Proc. Conf. Intel. Transp. Syst., 2003, vol. 2, pp. 979-984.
[3] V. Shapiro, G. Gluhchev, and D. Dimov, "Towardsa multinational car license plate recognition system," Mach. Vis. Appl., vol. 17, no. 3, pp. 173-183, Aug. 2006.
[4] P. Zhang and L. H. Chen, "A novel feature extraction method and hybrid tree classification for handwritten numeral recognition.
[5] "Pansare, J.R. and Ingle, M., 2016, August. Visionbased approach for American sign language recognition using edge orientation histogram. In 2016 International Conference on Image, Vision and Computing (ICIVC) (pp. 86-90). IEEE.
[6] F. Martin, M. Garcia, and J. L. Alba, "New methodsfor automatic reading of VLP's (Vehicle License Plates)," in Proc. IASTED Int. Conf. SPPRA, 2002.
[7] B. Hongliang and L. Changping, "A hybrid licenseplate extraction method based on edge statistics and morphology," in Proc. ICPR, 2004, pp. 831-834.
[8] D. Zheng, Y. Zhao, and J. Wang, "An efficient method of license plate location," Pattern Recognition.Lett., vol. 26, no. 15, pp. 2431-2438, Nov. 2005.
[9] M.H. ter Brugge, J. H. Stevens, J. A. G. Nijhuis, and L. Spaanenburg, "License plate recognition using DTCNNs," in Proc. IEEE Int. Work- shop Cellular NNs Using AdaBoost Appl., 1998, pp . 212-217. 17.
[10] K. K. Kim, K. I. Kim, J. B. Kim, and H. J. Kim, "Learning-based approach, for license plate recognition," in Proc. IEEE Signal Process. Soc. Workshop, NNs Signal Process., 2000, vol. 2, pp. 614-623. 18.
[11] T. Naito, T. Tsukada, K. Yamada, K. Kozuka, and S. Yamamoto, "Robust license-plate recognition method for passing vehicles under outside. environment," IEEE Trans. Veh. Technol., vol. 49, no. 6, pp. 2309-2319, Nov. 2000. 19.
[12] A. Broumandnia and M. Fathy, "Application of pattern recognition for Farsi license plate recognition," in Proc. Int. Conf. GVIP, Cairo, Egypt, 2005.20.
[12] P. Comelli, P. Ferragina, M. N. Granieri, and F. Stabile, "Optical recognition of motor vehicle license plates," IEEE Trans. Veh. Technol., vol. 44, no. 4, pp.790799, Nov. 1995. 21.[8] K. I. Kim, , K. Jung, and J.
[17] C. Wu, L. C. On, C. H. Weng, T. S. Kuan, and K. Ng , "A Macao license plate recognition system," in Proc. 4th Int. Conf. Mach. Learn. Cybern., Guangzhou, China, Aug. 18-21, 2005, pp. 4506-4510. 25. [78] N.

