
© 2023 JETIR May 2023, Volume 10, Issue 5                                                                      www.jetir.org (ISSN-2349-5162) 

JETIR2305G68 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org p486 
 

COUNTING AND BINOMIAL COEFFICIENTS IN 

GRAPH THEORY 
 

DR Mukesh YADAV 

Department of Mathematics, Govt College Satnali, Mahendragarh , Haryana,India 

 

ABSTRACT 

 

This paper summarizes aspects of language and mathematics that are not directly part of graph 

theory provide useful background for learning of graph theory in mathematics . this article 

explains counting and binomials coefficients in graph theory A discussion of counting quickly 

leads to summations and products.  These can be written concisely using appropriate 

notation.We express summation using ∑    
 , the uppercase Greek letter “sigma”. Vfhen 𝑎 and 𝑏 

are integers, the value of ∑ 𝑓𝑏
𝑎  (i) is the sum of the numbers 𝑓(𝑖) over the integers 𝑖 satisfying 

𝑎 ≤ 𝑖 ≤ 𝑏. Here 𝑖 is the index of summation, and the formula 𝑓 (i) is the summand .We write 

∑ 𝑓 
𝑗 𝜖𝑆 (𝑗) to sum a real‐valued function 𝑓 over the elements of a set 𝑆 in its domain. When no 

subset is specified, as in ∑ 𝑥𝑗
 
𝑗 , we sum over the entire domain. When the summand has only 

one symbol that can vary, we may omit the subscript on the summation symbol, as in ∑ 𝑥𝑗
 
 . 

Similar comments apply to indexed products using ∏   , which is the upper‐case Greek letter 

pi′′.Two simple rules help organizing the counting of finite sets by breaking problems into 

subproblems. These rules follow from the definition of size and properties of bijections. 
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INTRODUCTION 

Definition. The rule of sum states that if 𝐴 is afinite set and 𝐵1, 𝐵𝑚 is a partition of 𝐴, then |𝐴| =

∑ |𝑚
𝑖=1 𝐵𝑖|: 
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     Let 𝑇 be aset whose elements can be described using a procedure involving steps 𝑆1……. 𝑆𝑘  

such that step 𝑆𝑗 can be performed in 𝑟𝑗  ways, regardless of how steps 𝑆1, 𝑆𝑗−1 are performed. 

The rule of product states that   ∏ 𝑟𝑗
𝑘
𝑗=1  

 

For example, there are 𝑞𝑘 lists oflength 𝑘 from a set of size 𝑞. There are 𝑞 choices for each 

position, regardless of the choices in other positions. By the product rule, there are 𝑞𝑘 ways to 

form the 𝑘‐tuple. 

 

Definition. A permutation of a finite set 𝑆 is a bijection from 𝑆 to 𝑆. The word form of a 

permutation 𝑓 of [𝑛] is the list 𝑓(1) ……..  𝑓(𝑛) in that order. An arrangement of elements from 

a set 𝑆 is a list of elements of  𝑆 (in order). We write 𝑛! (read as 𝑛 factorial”) to mean   ∏  𝑛
𝑖=1 𝑖, 

with the convention that 0! = 1. 

 

The word form of a permutation of [𝑛] includes the full descnption of the permutation. For 

counting purposes we refer to the word form 𝑎𝑠 the permutation; thus 614325 is a permutation 

of [6]. With this viewpoint, a permutation of [𝑛] is an arrangement of  all the elements of [𝑛]. 

 

Theorem. An 𝑛‐element set has 𝑛! permutations (arrangements without repetition). In general, 

the number of arrangements of 𝑘 distinct elements from a set of size 𝑛 is 𝑛(𝑛 − 1) … (𝑛 − 𝑘 +

1) . 

Proof: We count the lists of 𝑘 distinct elements from a set 𝑆 of size 𝑛. There is no such list when 

𝑘 > 𝑛, which agrees with the formula. We construct the lists one element at a time, speci𝛹ṁg 

the element in position 𝑖 + 1 after specifying the , elements in earlier positions. 

There are 𝑛 ways to choose the image of 1. For each way we do this, there are 𝑛 − 1 ways to 

choose the image of 2. In general, after we have chosen the first 𝑖 images, avoiding them leaves 

𝑛 − 𝑖 ways to choose the next image, no matter how we made the first 𝑖 choices. The rule of 

product yields      ∏ (𝑛 − 𝑖)𝑘−1
𝑖=0    for the number of arrangements. 

   

      Often the order of elements in a list is unimportant. 
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Definition. A selection of 𝑘 elements from [𝑛] is a 𝑘‐element subset of [𝑛]. The number of such 

selections is 𝑛 choose 𝑘 written as (
𝑛
𝑘

). 

 

If 𝑘 < 0 or 𝑘 > 𝑛, then (′𝑛
𝑘

) = 0; in these cases there are no selections of 𝑘 elements from [𝑛]. 

When 0 ≤ 𝑘 ≤ 𝑛, we obtain a simple formula.  

 

Theorem. For integers 𝑛, 𝑘 with 0 ≤ 𝑘 ≤ 𝑛, (
𝑛
𝑘

) =
1

𝑘!
   ∏ (𝑛 − 𝑖)𝑘−1

𝑖=0 . 

Proof: We relate selections to arrangements. We count the arrangements of 𝑘 elements from 

[𝑛] in two ways. Picking elements for positions as in aboue discussed Theorem  yields 𝑛(𝑛 − 1) ⋅

(𝑛 − 𝑘 + 1) as the number of arrangements. 

 

Alternatively, we can select the 𝑘‐element subset first and then write it in some order. Since by 

definition there are (
𝑛
𝑘

) selections, the product rule yields (
𝑛
𝑘

) 𝑘! for the number of 

arrangements. 

In each case, we are counting the set of arrangements, so we conclude that 

𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1) = (
𝑛
𝑘

) 𝑘!. Dividing by 𝑘! completes the proof. of Theorem  

  The numbers   (
𝑛
𝑘

)    are called the binomial coefficients due to their appearance as coefficients 

in the nth power of a sum of two terms. 

 

Theorem. (Binomial Theorem) For 𝑛 ∈ N, (𝑥 + 𝑦)𝑛 = ∑  𝑛
𝑘=0  (

𝑛
𝑘

) 𝑥𝑘𝑦𝑛−𝑘. 

Proof. The proof interprets the process of multiplying out the factors in the product 

(𝑥 + 𝑦)(𝑥 + 𝑦) … (𝑥 + 𝑦) . To form a term in the product, we must choose 𝑥 or 𝑦 from each 

factor. The number offactors that contribute 𝑥 is some integer 𝑘 in {0, , 𝑛}, and the remaining 

𝑛 − 𝑘 factors contribute 𝑦. The number of terms of the fom 𝑥𝑘𝑦𝑛−𝑘  is the number of ways to 

choose 𝑘 of the factors to contnbute 𝑥. Summing over 𝑘 accounts for all the terms. 

 

Using the definition of size and the composition of bijections, it follows that finite sets 𝐴 and 𝐵 

have the same size if and only if there is a bijection from 𝐴 to 𝐵. Thus we can compute the size 

of a set by establishing a bijection from it to a set of known size. 
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Simple examples include the statements that a complete graph has (
𝑛
2

) edges and that therefore 

there are    2(2
𝑛)   simple graphs with vertex set [𝑛]. Proposition  uses a bijection to count 6‐cycles 

in the Petersen graph. Exercise  uses a bijection to count graphs with vertex set [𝑛] and even 

vertex degrees.  

 

Lemma. For 𝑛 ∈ N, the number of subsets of [𝑛] with even size equals 

the number of subsets of [𝑛] with odd size. 

.Proof. Proof 1 (bijection). For each subset with even size, delete the element 𝑛 if it appears, and 

add 𝑛 if it does not appear. This always changes the size by 1 and produces a subset with odd 

size. The map is a bijection, since each odd subset containing 𝑛 anses only from one even subset 

omitting 𝑛, and each odd subset omitting 𝑛 arises on! y from one even subset containing 𝑛. 

Proof 2 (binomial theorem). Setting 𝑥 = −1 and 𝑦 = 1 in  above Theorem .yields ∑  𝑛
𝑘=0  (

𝑛
𝑘

) 

(−1)𝑘 = (−1 + 1)𝑛 = 0. (Note that we proved Theorem  using∙ bijections.) 

We prove a few identities involving binomial coefficients to illustrate combinatorial arguments 

involving bijections and the idea of counting a set in two ways. We can prove an equality by 

showing that both sides count the same set. 

 

Lemma. (
𝑛
𝑘

) = (
𝑛

𝑛 − 𝑘
). 

Proof: Proof 1 (counting two ways). By definition, [𝑛] has (
𝑛
𝑘

) subsets of size 𝑘. Another way to 

count selections of 𝑘 elements is to count selections of 𝑛 − 𝑘 elements to omit, and there are   

(
𝑛

𝑛 − 𝑘
) of these. 

Proof 2 (bijections). The left side counts the 𝑘‐element subsets of [𝑛], the ńght side counts the 

𝑛 − 𝑘‐element subsets, and the operation of complementation” establishes a bijection between 

the two collections. 

Often, “counting two ways” means grouping the elements in two ways. 

Sometimes one of the counts only gives a bound on the size of the set. In this case the counting 

argument proves an inequality;. Here we stick to equalities. 
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Lemma. (The Chairperson Identity) 𝑘 (
𝑛
𝑘

) = 𝑛 (
𝑛 − l
𝑘 − 1

). 

Proof: Each side counts the 𝑘‐person committees with a designated chairperson that can be 

formed from a set of 𝑛 people. On the left, we select the committee and then select the chair 

from it; on the right, we select the chair first and then fill out the𝑙est ofthe committee. 

 

Many students see the next formula as the first application of induction, but it also is easily 

proved by counting a set in two ways. 

 

Lemma. ∑ 𝑖𝑛
𝑖=1 =

𝑛(𝑛+1〉

2
. 

Proof: The right side is (
𝑛 + l

2
); we can view this as counting the nontrivial intervals with 

endpoints in the set {1, , 𝑛 + 1}. On the other hand, we can group the intervals by length; there 

is one interval with length 𝑛, two with length 𝑛 − 1, and so on up to 𝑛 intervals with length 1. 

Lemma generalizes to ∑  𝑛
𝑖=𝑘  (

𝑗
𝐽
) = (

𝑛 + 1
𝑘 + l

). To prove this by counting in two ways, partition the 

set of 𝑘 + 1‐element subsets of  [𝑛 + 1] into groups so that the size of the ith. group will be (
𝑖
𝑘

). 

Finally, a recursive computation foṙ the binomial coefficients. 

 

Lemma. (Pascal’s Formula〉 If 𝑛 ≥ 1, then (
𝑛
𝑘

) = (
𝑛 − l

𝑘
) + (

𝑛 − l
𝑘 − 1

). 

Proof: We count the 𝑘‐sets in [𝑛]. There are (
𝑛 − l

𝑘
) such sets not contaimng 𝑛 and (

𝑛 − l
𝑘 − 1

) such 

sets containing 𝑛.  

Given the initial conditions for 𝑛 = 0, which are (
0
o

) = 1 and (
o
𝑘

) = 0 for 

𝑘 ≠ 0, Pascal’s Formula can be used to give inductive proofs of many statements about binomial 

coefficients, including above Theorems . 
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