ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

ANALYSIS OF FIBER AND FLY ASH **CONCRETE IN RIGID PAVEMET**

¹Sayid Arslaan Khursheed, ²Vijay Kumar

¹M. tech Scholar, ²Assistant Professor Department of Civil Engineering, ¹Amrtisar Group Colleges, Amritsar, India

Abstract: Fly ash is one of the by-products produced from the process of coal burning. Electricity generation using coal as the energy source is the main industry, which produces fly ash as its major solid waste. There are still other types of solid wastes produced from the coal generating plants like bottom ash and gypsum but their volumes are generally far less than that of the fly ash. There are difficulties around the world to achieve effective utilization of fly ash or even to get rid of it. This works particularly existing of analysis of fibre and fly ash concrete in rigit payment. Experimental work was done with 50% replacement of cement by fly ash and fibre use in different percentage 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 and check the strength properties of fiber reinforced high volume fly ash concrete such as compressive strength, tensile strength, flexural strength and impact strength required for rigid pavements and analysis the resistance of fiber reinforced high volume fly ash concrete and to study the behaviour of fiber reinforced high volume fly ash concrete under central loading, edge loading and comer loading condition. To determine the above properties Concrete cubes of size 150mm x 150mm x 150mm are used to prepare the specimens for determination of compressive strength of FRHV. Compressive strength of FRHVFAC shows an increasing trend up to 1.4% addition of steel fibers. Thereafter compressive strength shows a decreasing trend. The percentage increase of 7 days, 28 days and 90 days compressive strength for 1.4% addition of steel fibers are found to be 17%, 18% and 17% respectively. Tensile strength of FRHVFAC shows an increasing trend up to 1.4% addition of steel fibers. Thereafter tensile strength shows a decreasing trend. The percentage increase of 7 days, 28 days and 90 days tensile strength for 1.4% addition of steel fibers are found to be 38%, 41% and 19% respectively. Flexural strength of FRHVFAC shows an increasing trend up to 1.4% addition of steel fibers. Thereafter flexural strength shows a decreasing trend.

Key words:- Fly ash, fiber reinforced high volume fly ash concrete, flexural strength, compressive strength,

I. Introduction

Fly ash is one of the by-products produced from the process of coal burning. Electricity generation using coal as the energy source is the main industry, which produces fly ash as its major solid waste. There are still other types of solid wastes produced from the coal generating plants like bottom ash and gypsum but their volumes are generally far less than that of the fly ash. There are difficulties around the world to achieve effective utilization of fly ash or even to get rid of it. Majority of the fly ash is dumped or used in low-valued methods such as using as a land-fill material, soil improvement, road base, land reclamation, raw material for producing cement etc.

Types of Pavements

Based on mode of supporting and distributing wheel loads, pavements are generally classified under the following categories. 1. flexible pavements 2. rigid pavements

Flexible pavements The flexible pavements consist of a relatively thin wearing surface course built over a base course and sub-base course and the rest on compacted sub-grade. The design of the flexible pavement is based on the principle that the surface load is transferred through successive layers of granular material over sub-grade. The component layers of the flexible pavement.

Rigid pavements

Rigid pavements are made up of Portland cement concrete (PCC) as surface course and may or may not have the base/sub-base course between the surface course and sub-grade. The components of the rigid pavement. The main function of rigid pavement in the surface course is to take appreciable tensile stresses and to reduce impact (over stresses) on sub-grade layer. These are used for heavier loads and for relatively poor sub-grades such as black-cotton soils, peaty-organic, compressible soils.

OBJECTIVES

The main objective of this proposed research work is to develop the fiber reinforced high volume fly ash concrete (FRHVFAC) as a material for construction of rigid pavements.

- To achieve the above objective the following experimental works are planned.
- To find out the strength properties of fiber reinforced high volume fly ash concrete such as compressive strength, tensile strength, flexural strength and impact strength required for rigid pavements.
- To find out the resistance of fiber reinforced high volume fly ash concrete

- To study the behaviour of fiber reinforced high volume fly ash concrete under central loading, edge loading and comer loading condition.
- 50% replacement of cement by fly ash and fibre use in different percentage 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 % by volume fraction.

2 MATERIAL AND TESTS.

Cement: Ordinary Portland cement of 43 grade confirming to IS 8112 - 1989 with specific gravity of 3.15 is used.

- Fly ash: In the present investigation class F fly ash from RTPS, Raichur is used. Its specific gravity is 2.5 and fineness is 469 kg/m².
- Fine aggregate: The river sand, which is available in Tungabhadra River bank, near Harihar, is used as fine aggregate. It is confirmed to zone II of IS 383 - 1970 with specific gravity of 2.66 and finess modulus of 2.65.
- Coarse aggregate: Locally available granite aggregates of 20 mm and 12 mm down are blended as per the requirement and used. The specific gravity is 2.72, the combined finesse modulus is found to be 6.53 and water absorption is 0.94%.
- Superplasticizer: CONPLAST SP430, marketed by Mis Fosroc Chemicals, Bangaluru, is used in the present investigation as superplasticizer with a dosage of 1.1% by weight of binder content (cement + fly ash).
- Fiber: Crimped steel fiber of 38 mm length and average equivalent diameter of 0.75 mm thickness with aspect ratio of 50 is used.

Tests:-

Test for compressive strength (IS:516 - 1959) Concrete cubes of size 150mm x 150mm x 150mm are used to prepare the specimens for determination of compressive strength of FRHVFAC. All specimens are prepared in accordance with Indian Standard Specifications IS: 516 - 1959.

Test for split tensile strength (IS:5816 - 1999) Concrete cylindrical specimen of diameter 150mm and height 300mm are cast for split tensile strength of FRHVFAC. All specimens are prepared in accordance with Indian Standard Specifications IS: 5816-1999.

Test for flexural strength (IS:516 - 1959) Concrete beam specimen of dimension 100mm x 100 mm x 500 mm are cast for flexural strength of FRHVFAC. All specimens are prepared in accordance with Indian standard specifications, IS: 516-1959.

Experimental results.

Compressive strength test results Following tables give the compressive strength test results of FRHVFAC for different percentages of fibers and for different days of curing.

Table:-1 Compressive strength test results for 7 days curing

Percentage of fiber	Specimen identification	Failure load (kN)	7 days compressive strength (MPa)	Average compressive strength (MPa)
	A	4 <mark>37.50</mark>	19.44	
0.00	A	440.00	19.56	19.56
	A	442.50	19.67	
	В	452.50	20.11	
0.20	В	450.00	20.00	20.00
	В	447.50	19.89	
	С	465.00	20.67	
0.40	С	467.50	20.78	20.78
	С	470.00	20.89	
	D	477.50	21.22	
0.60	D	480.00	21.33	21.33
	D	482.50	21.44	
0.80	Е	505.00	22.44	
	E	497.50	22.11	22.26
	E	500.00	22.22	
	F	515.00	22.89	
1.00	F	510.00	22.67	22.74
	F	510.00	22.67	
	G	515.00	22.89	
1.20	G	515.00	22.89	22.89
	G	515.00	22.89	

	Н	515.00	22.89	
1.40	Н	520.00	23.11	22.96
	Н	515.00	22.89	
	J	505.00	22.44	
1.60	J	510.00	22.67	22.67
	J	515.00	22.89	
	K	510.00	22.67	
1.80	K	505.00	22.44	22.59
	K	510.00	22.67	

Table-2 Compressive strength test results for 28 days curing

Percentage of fiber	Specimen identification	Failure load (kN)	28 days compressive strength(MPa)	Average compressive strength (MPa)
	A	970.00	43.11	
0.00	A	975.00	43.33	43.33
	A	980 .00	43.56	
	В	1010.00	44.89	
0.20	В	1000.00	44.44	44.74
	В	1010.00	44.89	
	С	1030.00	45.78	
0.40	c /	1040.00	46.22	46.07
	С	1040.00	46.22	
	D	1060.00	47.11	
0.60	D	1070.00	47.56	47.41
	D	1070.00	47.56	
	E	1110.00	49.33	
0.80	E ,	1100.00	48.89	49.19
	E	1110.00	49.33	
	F	1140.00	50.67	
1.00	F	1130.00	50.22	50.37
	F	1 130 .00	50.22	
	G	1130.00	50.22	
1.20	G	1130.00	50.22	50.37
	G	11 40.00	50.67	1
	Н	1140.00	50.67	
1.40	Н	1150.00	51.11	50.96
	Н	1150.00	51.11	1
	J	1130.00	50.22	
1.60	J	1130.00	50.22	50.37
	J	11 40.00	50.67]
	K	1130 .00	50.22	
1.80	K	11 20.00	49.78	50.22
	K	11 40.00	50.67]

Table3 Compressive strength test results for 90 days curing

Percentage of fiber	fSpecimen identification	Failure load (kN)	90 days compressive strength (MPa)	Average compressive strength (MPa)
	A	1150.00	51.11	
0.00	A	1140.00	50.67	51.11
	A	1160.00	51.56	
	В	1190.00	52.89	
0.20	В	1180.00	52.44	52.74
	В	1190 .00	52.89	
	С	1220.00	54.22	
0.40	C	1220.00	54.22	54.37
	С	1230.00	54.67	
	D	1250.00	55.56	
0.60	D	1260.00	56.00	56.00
	D	1270.00	56.44	
	Е	1320.00	58.67	
0.80	E	1310.00	58.22	58.22
	E	1300.00	57.78	
	F	1340.00	59.56	
1.00	F	1340.00	59.56	59.41

	F	1330.00	59.11	
	G	1340 .00	59.56	
1.20	G	1340.00	59.56	59.70
	G	1350.00	60.00	
	Н	1350 .00	60.00	
1.40	Н	1350.00	60.00	60.00
	Н	1350.00	60.00	
	J	1340.00	59.56	
1.60	J	1330.00	59.11	59.41
	J	1340.00	59.56	
	K	1330.00	59.11	
1.80	K	1330.00	59.11	59.26
	K	1340.00	59.56	

Overall results of compressive strength

Following table 4 gives the overall results of compressive strength of FRHVFAC. Also, it gives the percentage increase or decrease of compressive strength with respect to reference mix. Variation in the compressive strength can be depicted in the form of graph as shown in Table. 5.4.

 Table 4 Variation in the compressive strength

Percentage of fiber		increase or	compressive strength (MPa)		compressive strength (MPa)	Percentage increase or decrease of 90 days compressive strength with respect to reference mix.
0.00 (Reference mix)	19.56		43.33	-	51.11	-
0.20	20.00	2	44. <mark>74</mark>	3	52.74	3
0.40	20.78	6	46. <mark>07</mark>	6	54.37	6
0.60	21.33	9	47.41	9	56.00	10
0.80	22.26	14	49.19	14	58.22	14
1.00	22.74	16	50.37	16	59.41	16
1.20	22.89	17	50.37	16	59.70	17
1.40	22.96	17	50.96	18	60.00	17
1.60	22.67	16	50.37	16	59.41	16
1.80	22.59	16	50.22	16	59.26	16

Tensile strength test results

Following tables give the split tensile strength test results of FRHVFAC for different percentages of fibers and for different days of curing.

Table 5 Tensile strength test results for 7 days curing

Percentage offiber	Specimen identification	Failure load(kN)	7 days tensile strengt (MPa)	hAverage tensile strength (MPa)
	\mathbf{A}	127.50	1.80	
0.00	\mathbf{A}	120.00	1.70	1.74
	\mathbf{A}	122.50	1.73	
	В	137.50	1.95	
0.20	В	122.50	1.73	1.86
	В	135.00	1.91	
	С	137.50	1.95	
0.40	С	130.00	1.84	1.91
	С	137.50	1.95	
	D	145.00	2.05	
0.60	D	140.00	1.98	2.02
	D	142.50	2.02	
	E	147.50	2.09	
0.80	E	150.00	2.12	2.09
	E	145.00	2.05	
	F	152.50	2.16	
1.00	F	157.50	2.23	2.22
	F	160.00	2.26	
	G	167.50	2.37	
1.20	G	160.00	2.26	2.32
	G	165.00	2.33	
	Н	172.50	2.44	
1.40	Н	170.00	2.41	2.41
	Н	167.50	2.37	
	J	167.50	2.37	
1.60	J	167.50	2.37	2.38
	J	170.00	2.41	
1.80	K	165.00	2.33	
	K	162.50	2.30	2.31
	K	162.50	2.30	

© 2023 JETIR June 2023, Volume 10, Issue 6
Table 6 Tensile strength test results for 28 days curing

Percentage of fiber	ofSpecimen identification	Failure load (kN)	28 days tensile strength (MPa)	Average tensile strength(MPa)
	A	160.00	2.26	
0.00	A	180.00	2.55	2.35
	A	157 .50	2.23	
	В	192.50	2.72	
0.20	В	190.00	2.69	2.65
	В	180.00	2.55	
	С	195.00	2.76	
0.40	С	192.50	2.72	2.74
	С	192.50	2.72	
	D	200.00	2.83	
0.60	D	202.50	2.86	2.83
	D	197.50	2.79	
	E	215.00	3.04	/
0.80	E	217.50	3.08	3.02
	E	207.50	2.94	
	F	220.00	3.11	
1.00	F	225.00	3.18	3.17
	F	227.50	3.22	
	G	227.50	3.22	
1.20	G	230.00	3.25	3.27
	G	235.00	3.32	
	Н	235.00	3.32	/
1.40	Н	230.00	3.25	3.30
	Н	235.00	3.32	
	J	227.50	3.22	
1.60	J	230.00	3.25	3.28
	J	237.50	3.36	
	K	227.50	3.22	
1.80	K	225.00	3.18	3.21

K	227.50	3.22	
IX.	221.30	3.22	

Table 7 Tensile strength test results for 90 days curing

Percentage of fiber	fSpecimen identification	Failure load(kN)	90 days tensilestrength (MPa)	Averagetensile strength(MPa)
	A	270.00	3.82	
0.00	A	210.00	2.97	3.30
	A	220.00	3.11	
	В	230.00	3.25	
0.20	В	240.00	3.40	3.30
	В	230.00	3.25	
	С	240.00	3.40	
0.40	C	235.00	3.32	3.37
	C	240.00	3.40	
	D	240.00	3.40	
0.60	D	250.00	3.54	3.54
	D	260.00	3.68	
	Е	255.00	3.61	
0.80	E	247.50	3.50	3.57
	E	255.00	3.61	
	F	252.50	3.57	
1.00	F	250.00	3.54	3.62
	F	265.00	3.75	
	G	272.50	3.86	
1.20	G	270.00	3.82	3.86
	G	275.00	3.89	
	Н	280.00	3.96	
1.40	Н	275.00	3.89	3.94
	Н	280.00	3.96	
	J	275.00	3.89	
1.60	J	270.00	3.82	3.87
	J	275.00	3.89	
	K	267.50	3.78	
1.80	K	270.00	3.82	3.82
	K	272.50	3.86	

Overall results of tensile strength

Following table .8 gives the overall results of tensile strength of FRHVFAC.

Table 8 Overall results of tensile strength for FRHVFAC

	f7 day	s tensile	Percentag	ge	28 days	tensile	Percentag	e	90 daystensile	Percentag	e	
fiber	streng	th (MPa)	increase			(MPa)	increase		strength(MPa)			or
			decrease	-			decrease			decrease		
			tensile	strength	L		days	tensile	;	days		nsile
			with				strength v	vith		strength v	vith	
			respect reference	mix.			respect reference	mi x.		respect reference	mix.	to
0.00												
(Reference	1.74		-		2.35		-		3.30	-		
mi x)												
0.20	1.86		7		2.65		13		3.30	0		
0.40	1.91		9		2.74		17		3.37	2		
0.60	2.02		16		2.83		21		3.54	7		
0.80	2.09		20		3.02		29		3.57	8		
1.00	2.22		27		3.17		35		3.62	10		
1.20	2.32		33		3.27		39		3.86	17		
1.40	2.41		38		3.30		41		3.94	19		
1.60	2.38		36		3.28		40		3.87	17		
1.80	2.31		32		3.21		37		3.82	16		

Flexural strength test results

Following tables gives the flexural strength test results of FRHVFAC for different percentages of fibers and for different days of curing.

Table 5.9 Flexural strength test results for 7 days curing

Percentage (ofSpecimen identification	Failure load(kN)	7 days flexural strength (MPa)	Averageflexural strength(MPa)
	Α	4.90	1.96	7
0.00	A	5.80	2.32	2.21
	A	5.90	2.36	
	В	6.90	2.76	
0.20	В	6.80	2.72	2.77
	В	7.10	2.84	
	С	7.90	3.16	
	С	7.60	3.04	3.07
0.40	С	7.50	3.00	
	D	8.30	3.32	
0.60	D	7.40	2.96	3.15
	D	7.90	3.16	
	E	8.40	3.36	
0.80	E	8.50	3.40	3.43
	E	8.80	3.52	
	F	9.50	3.80	
1.00	F	9.60	3.84	3.81
	F	9.50	3.80	
	G	9.40	3.76	
1.20	G	9.60	3.84	3.84

	G	9.80	3.92	
1.40	Н	10.10	4.04	3.97
	Н	9.80	3.92	
	Н	9.90	3.96	
1.60	J	9.70	3.88	3.93
	J	9.90	3.96	
	J	9.90	3.96	
1.80	K	9.70	3.88	3.87
	K	9.50	3.80	
	K	9.80	3.92	

Table 10 Flexural strength test results for 28 days curing

Percentage o	fSpecimen identification	Failure load(kN)	28 days flexuralstrength (MPa)	Average flexural strength(MPa)	
	A	7.50	3.00		
0.00	Α	8.90	3.49	3.37	
	A	9.20	3.61		
	В	10.70	4.20		
0.20	В	10.50	4.12	4.20	
	В	10.90	4.28		
	C	12.20	4.79		
0.40	C	11.70	4.59	4.63	
	C	11 .50	4.51		
	D	12.80	5.02		
0.60	D	13.00	5.10	4.96	
1				_	
	D	12.10	4.75		
	E	12.90	5.06		
0.80	E	13.20	5.18	5.18	
	E	13.50	5.30		
	F	14.60	5.73		
1.00	F	14.80	5.81	5.77	
	F	14.70	5.77		
1.20	G	14.50	5.69	5.87	
	G	14.80	5.81		
	G	15.60	6.12		
1.40	Н	15.50	6.08	5.99	
	Н	15.00	5.89		
	Н	15.30	6.00		
	J	15.00	5.89		
1.60	J	15.20	5.96	5.94	

	J	15.20	5.96	
	K	15.00	5.89	
1.80	K	15.20	5.96	5.91
	K	15.00	5.89	

Table 11 Flexural strength test results for 90 days curing

Percentage of fiber	Specimen identification	Failure load(kN)	90 days flexural strength (MPa)	Averageflexural strength(MPa)	
0.00	A	14.20	5.68		
	A	14.50	5.80	5.77	
	A	14.60	5.84		
	В	15.30	6.12		
0.20	В	16.10 6.44		6.29	
	В	15.80	6.32		
	С	16.40	6.56	,	
0.40	C	16.60	6.64	6.64	
	C	16.80	6.72		
	D	17.50	7.00		
0.60	D	17.60	7.04	7.05	
	D	17.80	7.12		
	E	17.80	7.12		
0.80	E	17.60	7.04	7.11	
	E	17.90	7.16		
	F	18.00	7.20		
1.00	F	17.70	7.08	7.13	
	F	17.80	7.12		
	G	18.40	7.36		
1.20	G	18.30	7.32	7.32	
	G	18.20	7.28		
	Н	18.30	7.32		
1.40	Н	18.90	7.56	7.44	
	Н	18.60	7.44		
1.60	J	18.50	7.40		
	J	18.60	7.44	7.40	
	J	18.40	7.36		
	K	18.40	7.36		
1.80	K	18.60	7.44	7.37	
	K	18.30	7.32		

Overall results of flexural strength

Following table 12 gives the overall results of flexural strength of FRHVFAC.

Table 12 Overall results of flexural strength for FRHVFAC

fiber	7 days flexural strength (MPa)		flexural stre ngth(MPa)	miv	90 days flexura l strength	Percentage increase or decrease of 90 days flexural strength with respect to reference mix.
0.00						
(Referen ce	2.21	_	3.37	-	5.77	-
mix)						
0.20	2.77	25	4.20	25	6.29	9
0.40	3.07	39	4.63	38	6.64	15
0.60	3.15	42	4.96	47	7.05	22
0.80	3.43	55	5.18	54	7.11	23
1.00	3.81	72	5.77	71	7.13	24
1.20	3.84	73	5.87	74	7.32	27
1.40	3.97	80	5.99	78	7.44	29
1.60	3.93	78	5.94	76	7.40	28
1.80	3.87	75	5.91	76	7.37	28

OBSERVATIONS AND DISCUSSIONS

Following observations were made based on the studies conducted on FRHVFAC.

It is observed that the compressive strength of FRHVFAC increases as the percentage of steel fibers in it increases up to 1.4%. Thereafter the compressive strength shows a decreasing trend. Thus, the higher ':'value of compressive strength may be obtained by using 1.4% steel fibers. This is true for 7 days, 28 days and 90 days compressive strength.

At 1.4% addition of steel fibers the percentage increase of 7 days, 28 days and 90 days compressive strength are found to be 17%, 18% and 17% respectively. It is also observedthat a small percentage addition of fibers has improved the compressive strength of high- volume fly ash concrete.

It is observed that the tensile strength of FRHVFAC increases as the percentage of steel fibers in it increases up to 1.4%. Thereafter the tensile strength shows a decreasing trend. Thus, the higher value of tensile strength may be obtained by using 1.4% steel fibers. This is true for 7 days, 28 days and 90 days tensile strength. At 1.4% addition of steel fibers the percentage increase of 7 days, 28 days and 90 days tensile strength are found to be 38%, 41% and 19% respectively. Also, it is observed that a small percentage addition of fibers has improved the tensile strength of high-volume fly ash concrete.

It is observed that the flexural strength of FRHVFAC increases as the percentage of steel fibers in it increases up to 1.4%. Thereafter the flexural strength shows a decreasing trend. Thus, the higher value of flexural strength may be obtained by using 1.4% steel fibers. This is true for 7 days, 28 days and 90 days flexural strength. At 1.4% addition of steel fibers the percentage increase of 7 days, 28 days and 90 days flexural strength are found to be 80%, 78% and 29% respectively. Also, it is observed that a small percentage addition of fibers has improved the flexural strength of high-volume fly ash concrete.

CONCLUSIONS

Following conclusions can be drawn based on the study conducted Compressive strength of FRHVFAC shows an increasing trend up to 1.4% addition of steel fibers. Thereafter compressive strength shows a decreasing trend. The percentage increase of 7 days, 28 days and 90 days compressive strength for 1.4% addition of steel fibers are found to be 17%, 18% and 17% respectively. Tensile strength of FRHVFAC shows an increasing trend up to 1.4% addition of steel fibers. Thereafter tensile strength shows a decreasing trend. The percentage increase of 7 days, 28 days and 90 days tensile strength for 1.4% addition of steel fibers are found to be 38%, 41% and 19% respectively. Flexural strength of FRHVFAC shows an increasing trend up to 1.4% addition of steel fibers. Thereafter flexural strength shows a decreasing trend. The percentage increase of 7 days, 28 days and 90 days flexural strength for 1.4% addition of steel fibers are found to be 80%, 78% and 29% respectively.

REFERENCES

1. Dale P. Bentz and Chiara F. Ferraris, "Rheology and setting of high-volume fly ashmixtures", Cement and Concrete Composites, Elsevier Ltd., 32, pp 265-270, 2010.

2. Falah M. Wegian, Anwar A Alanki, Hana M. AlSaeid, "Influence of fly ash on behavior of fibers reinforced concrete structures",

Journal of Applied Science, Vol. 11, Issue 17, pp 3185-3191, 2011.

- 3. Sarvan Raja Mohan K. and Parthiban K., " Strength and behavior of fly ash-based steel fiber reinforced concrete composite", International Journal of Civil and Structural Engineering, Vol. 2, No 1, pp 318-329, 2011.
- 4.Bentz D. P., Peltz M.A., Duran-Herrera A., Valdez P. and Juarez C. A., "Thermal properties of high-volume fly ash mortars and concretes", Journal of Building Physics, 34(3) 263-275, 2011.
- 5. Binod Kumar, Tike G. K., Nanda P. K., "Evaluation of properties of high-volume fly-ash concrete for pavements", Journal of Materials in Civil Engineering, Vol.19(10), pp 906-911, 2007.
- 6.Cengiz Duran Atis., "Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition", Cement and Concrete Research, Elsevier science Ltd., 35, pp 1112-1121, 2005.
- 7. Malhotra V. M., "High-performance HVFA concrete: A solution to the infrastructural needs of India", Indian Concrete Journal, Vol. 76(2), pp 103-107, Feb 2002.
- 8. Singh T. P., "Field performance of high-volume fly ash concrete- the Indian experience",
- 9th CANMET/ ACI International conference, Poland, 2007.
- 9. Chetan Hazaree and Halil Ceylan (2006)., "High volume fly ash concrete for pavement applications with gap graded aggregates: Marginal and fine sands", proceedings of the 2006 Airfield and Highway Pavement Specialty Conference, Atlanta, Georgia.p.528-2., http://worldcat.org/isbn/0784408386, 2006
- Cindy K. Estakhri and Salee D. Mohidekar, "Reducing greenhouse gas emissions inTexas with high-volume fly ash concrete", Texas Transportation Institute, Transportation research record No. 1941, Research report 167709-1, 2004 IS: 8112-1989, "43 Grade ordinary Portland Cement-Specifications" (First revision), Bureau of Indian Standards, New Delhi, 1990.
- 11. IS: 3812-2003, "Pulvarized fuel ash - specification" (First revision), Bureau of Indian Standards, 2003.
- 12. IS: 383-1970, "Specification for Coarse aggregate and Fine aggregate from NaturalSources for Concrete", Bureau of Indian Standard, New Delhi, 1970.
- 13. CIDA, NRCAN, CII, "High-volume fly ash concrete technology: Best practice guidelines",

Confederation of Indian Industry (CII), New Delhi, 2005.

- 14. IS 516: 1959, "Indian standard method of test for strength of concrete", Bureau of Indian Standard, New Delhi, 1999.
- 15. IS 5816: 1999, "Splitting tensile strength of concrete method of test", Bureau of Indian Standard, New Delhi, 2004.
- 16. ACI Committee 544, "Measurement of Properties of Fiber Reinforced Concrete", ACI 544.2R-89, 1999.
- 17. IS 3346 - 1980, "Method for determination of thermal conductivity of thermal insulation materials (Two slab, Guarded hot plate method)" Bureau of Indian Standard, New Delhi, 2004
- 18. Yunus A. Cengel, "Heat and Mass Tranfer a Practical Approach" McGraw-Hill, Inc, Thirdedition, New York, Special Indian edition 2007.
- 19. Suryani, F. M., Rizal, S., & Isya, M. (2021). Fly Ash Utilization in Rigid Pavement Construction. In Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering (pp. 471-479). Springer,
- 11. Tarun R. Naik Shiw S. Singh and Mohammad M. Hossain, "Permeability of concrete containing large amounts of fly ash" Cement and Concrete Research, Vol.24, pp 913-922, 1994.
- 12.McCarthy M. J. and Dhir R. K., "Towards maximizing the use of fly ash as a binder", Fueal 78 (1999), Elsevier Science Ltd., pp 121-132, 1998.
- 13. Siddique and Karanbir Singh., "Effect of san fiber on the impact strength of highfly ash concrete", NBM & CW, pp13-20,
- 14. Cengiz Duran Atis., "Abrasion resistance of high volume fly ash concrete",

Teknik Dergi, Vol. 11, No 4, pp 2217-2230, 2000.

15. Jiang L. H. and Malothra V. M., "Reduction in water demand of non-air- entrained concrete incorporating large volumes of fly ash", Cement and Concrete Reasearch, Elsevier science Ltd., pp 1785-1789, 2000.