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Abstract: 

Prior to state estimation, an observability analysis must be performed to make sure the measurements (e.g. 

power injection and flow measurements) received can support the normal functioning of the state estimator. If 

the measurements cannot provide full observability of the network, the observability analysis function identifies 

the observable islands where state estimation can still be performed within the observable islands. In this thesis 

it is shown that the existing method may not correctly identify the observable islands in the so called 

pathological cases; the thesis proposes a new method for observability analysis that overcomes this problem. 

Furthermore the execution time of the proposed method is shorter than existing methods. To support the 

deployment of the SMT in state estimation, the thesis also proposes a new method for including the 

synchronised measurements in the observability analysis function. 

Key Word :  Measurements, Power system, State estimation, Recursive estimation, Weighted least square, 

observability, Jacobian. 

 

Introduction: 

State estimation is responsible for constantly monitoring the power system to help guarantee that it operates in a 

normal and secure state. It uses a redundant set of measurements to produce the optimal estimate of the 

system’s current operating state. The state estimator plays a key role in the Energy Management Systems 

(EMS), which are equipped with various other applications. Figure 2-1 shows an example of how the state 

estimator functions with various applications involved in the online static security assessment procedure. As 

detailed in the introduction, the function of the state estimator is supported by functions that include topology 

processor, observability analysis and bad data detection. Based on the estimate of the voltage angle and 

magnitudes of all the buses in the network, one of the three states is determined: emergency, restorative and 

normal. If the system is determined to be operating in emergency state or restorative state, the corresponding 
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emergency control or restorative control will be activated. If the system is found to be in a normal state, it is 

assessed using a contingency analysis application to further check the security of the system. In the case of 

insecurity state, while the system is at risk of some contingencies, the preventive actions need to be planned 

after running the security constrained optimal power flow.  

Although the DSEs have shown their advantages with the advent of SMT, the static state estimator (SSE) has 

formed the heart of nearly all modern network control systems since its establishment in the early 1970s. The 

SSE obtains the voltage phasors at a given point in time using the Weighted Least Square (WLS) method. The 

WLS method is derived under the Gaussian error assumption and the maximum likelihood estimation (MLE) 

theory. It guarantees that the estimate is the most likely state of the system based on the measurements received. 

Although it is suggested that some robust estimators, such as weighted least absolute value (WLAV) estimators 

and M-estimators, are less vulnerable to outliers (the measurements whose errors have large influence on the 

estimate of states) than the WLS method, they have not been adopted by the control centres because of their 

heavy computational burden. 

In the following sections, the algorithm of the WLS method for static state estimation, and the existing methods 

for observability analysis and bad data detection are presented. In the later chapters, new methods are proposed 

based on the basic theory presented here. 

 

Figure 2-1: Online Static Security Assessment: Functional Diagram 

List of Static State Estimation Methods:- 

2. Weighted Least Square Estimator 

In this subsection, a general introduction about stochastic process and random variables and detailed discussion 

about the weighted least square (WLS) state estimator, including the measurement functions, the WLS objective 
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function and its optimal solution, the measurement Jacobian matrix and the WLS state estimation algorithm, are 

presented. 

2.1.1   Stochastic Process and Random Variables 

In probability theory and related fields, a stochastic or random process is a mathematical object usually defined 

as a collection of random variables [94], and a random variable is defined as a variable whose possible values 

are numerical outcomes of a random phenomenon [95]. In power systems, the measurements received from the 

measurement devices installed across the network are affected by a series of random errors including device 

measurement errors, telecommunication errors, skew errors, loss of data. Thus, the process of measurement 

collection, transmission and reception is a stochastic process, and the measurements are random variables, 

which are commonly accepted in literature to follow the Gaussian distribution. The probability density function 

(p.d.f.) of the standard Gaussian distributed variable is illustrated in Figure 2-2. 

 

Figure 2-2: Probability Density Function of the Standard Gaussian Distribution 

Since the measurements contain a certain amount of errors, a redundant set of measurements are used to 

monitor the states of the system. For example, the air temperature in the room is 27 °C, and is simultaneously 

monitored by five thermometers. The readings of the five thermometers are 27.3 °C, 26.5 °C, 27.2 °C, 26.9 °C 

and 27.2 °C, respectively. Since all of the five thermometers are affected by random errors, the most likely 

temperature is the average of the five numbers, 27.02 °C, which is very close to the true temperature in the 

room. Here, the room is the system, the room temperature is the state of system, the average value of the 

readings of the five thermometers is the estimate of states, and the average function is the estimator. In general, 

an estimator can be defined as the function or application that provide the most likely estimate of the states 

based on observations / measurements that are affected by random errors. There are various types of estimators 

created for different purposes, such as weighted least square (WLS) estimator [1], least absolute value (LAV) 

estimator [1], M-estimator [1], Kalman filters [164]-[167] and so on. In static state estimation for power 

systems, the most widely used estimator is the WLS estimator. In the following subsections, a detailed 

discussion of the WLS estimator will be given, as well as the measurement functions (Section 2.1.2), the 
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objective function and the optimal solution (Section 2.1.3), the expressions of the elements of its measurement 

Jacobian matrix (Section 2.1.4), and the algorithm of the WLS estimator (Section 2.1.5). 

2.1.2 The Measurement Functions 

A generalized formulation of the static state estimator using the WLS method utilizes five different types of 

conventional measurements for estimating the state of the system. The structure of the measurement vector Z is 

given below: 

Z = 

[
 
 
 
 
 

Pinj

Qinj

Pflow

Qflow

Vmag ]
 
 
 
 
 

 (2.1) 

where  Pinj , Qinj , Pflow & Qflow are the vectors of active and reactive injection measurements and flow 

measurements, and V is the vector of voltage magnitude measurements. The conventional measurements are 

related to the states using a set of nonlinear functions as given in (2.2): 

Z = h(x) + e (2.2) 

where x is the state vector that consists of voltage angles and magnitudes of all buses in the network, h is the 

vector of nonlinear functions relating the measurements and the states, and e is the vector of Gaussian errors. 

Note that since the conventional measurements are not synchronised like the PMU measurements, the slack bus 

is set usually as the reference bus. The angle of the reference bus is set at 0, and it is excluded from the state 

vector. Assuming the network parameters are known, the measurement equations for the five types of 

conventional measurement are based on the network structure in Figure 2-3 and are expressed as follows: 

 Real and reactive power injection measurements  
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 Real and reactive power flow measurements 

 

 Voltage magnitude measurements  

Vi = Vi (2.9) 

where Gij and Bij are the real and imaginary parts of the ijth element of the network admittance matrix, 

respectively, gij and bij are the conductance and susceptance of the transmission line, respectively, gsi and bsi are 

the shunt conductance and shunt susceptance of the shunt branch, respectively, and aij is the tap ratio of the 

transformer connecting Bus i and Bus j. 

 

Figure 2-3: Transmission Line Represented in Pi Equivalent Model 

2.1.3 The WLS Objective Function and Its Optimal Solution 

According to the MLE theory, the optimal estimate of the state from the measurement equation (2.2) is achieved 

when the following WLS objective function is minimised: 

 

Where R is the covariance matrix of the error vector, e. The minimum of the objective function is found when 

its first derivative is zero: 

http://www.jetir.org/


© 2023 JETIR June 2023, Volume 10, Issue 6                                                                    www.jetir.org (ISSN-2349-5162) 

JETIR2306819 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org i160 
 

 

Where H is the Jacobian matrix of the measurement to state function, h. Since the derived objective function, 

m(x), is still nonlinear, it has to be iteratively solved using the Newton- Raphson method. The iteration steps are 

derived as given in (2.12) and (2.13). 

 

Where G(𝐗𝐤) is the Gain Matrix, Δ𝐗𝐤= 𝐗𝐤+𝟏- 𝐗𝐤is the difference of the state estimate between iterations, and 

(2.16) is referred to as the Normal Equations. The iteration terminates when Δxk+1 is below a pre-defined 

threshold. 

The gain matrix can be used for observability analysis of the network, and it is crucial for static state estimation 

as its inversion is the most computational demanding part. According to [4], the gain matrix has the following 

properties: 

 It is structurally and numerically symmetric.  

 It is sparse, yet less sparse compared to H.  

 In general it is a non-negative definite matrix, i.e. all of its eigenvalues are non-negative. It is positive 

definite for fully observable networks.  

The sparsity of the gain matrix can be exploited to improve the computational efficiency and reduce the 

memory requirement. Details of the technique are given in [4]. 
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2.1.4 The Measurement Jacobian Matrix 

The measurement Jacobian matrix, H, as defined after (2.11) has the following structure: 

 

Based on the transmission line model shown in Figure 2-3, the expressions for each partition are given below: 

1. Jacobian elements of the real power injection measurements:  
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2. Jacobian elements of the reactive power injection measurements:  

 

3. Jacobian elements of the active power flow measurements:  

 

4. Jacobian elements of the reactive power flow measurements:  
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5. Jacobian elements of the voltage magnitude measurements:  

 

2.1.5 The WLS State Estimation Algorithm 

Based on the network model and the mathematical models given in the previous sub-sections, the algorithm for 

WLS state estimation is outlined as follows [4]: 

1.  Start iterations, set the iteration index k = 0.  

2.  Initialize the state vector 𝐗𝐤 typically as a flat start (all voltage angles equal to 0, and all voltage 

magnitudes equal to 1).  

3.  Formulate the Jacobian matrix, H, according to (2.17) to (2.35).  

4.  Calculate the gain matrix, G( 𝐗𝐤), using (2.14).  

5.  Calculate the estimated measurements based on  𝐗𝐤,, h( 𝐗𝐤,), according to (2.1) to (2.9).  

6.  Calculate the right hand side  𝐭𝐤using (2.15).  

7.  Decompose G( 𝐗𝐤) and solve for Δ 𝐗𝐤using (2.13).  

8. Test for convergence, max (| Δ 𝐗𝐤|)≤ε ? 

9. If Step 8 is not satisfied, update  𝐗𝐤+𝟏=  𝐗𝐤+ Δ 𝐗𝐤,k = k + 1, and go to Step 3. Else stop and output the 

state estimate.  

2.2 Observability Analysis 

Prior to state estimation, it must be guaranteed that a unique solution can be found with measurements received. 

The observability analysis is established for this purpose. The observability of the network can be defined on 

two levels. The first level is topological observability. A network is said to be topologically observable as long 

as enough measurements are placed at the right locations for a given network topology. The second level is 

numerical observability. The numerical observabilityrequires the gain matrix as defined in (2.14) to be non-

singular, i.e. invertible. This not only requires the network to be topologically observable, but also free of 

outliers and gross measurement errors. As such cases are not likely to happen and could be easily prevented by 

checking the robustness of the state estimator and bad data analysis, only the topological observability is 

required and thus analysed for state estimation. In the following parts of the thesis, observability or network 

observability refers to topological observability for the sake of convenience. 
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In the case where the measurements available are not enough to support observability of the system, the 

network is divided into several Observable Islands separated by unobserved branches. Each of the observable 

islands has its individual reference angle, and the state estimation might still be performed within the observable 

islands. The observability analysis is also responsible for identifying the observable islands and finding 

measurements to restore the network observability. 

As detailed in the Introduction, (topological) observability analysis can be carried out directly with the 

topological method that is based on the graphical theory, or using the numerical method based on the decoupled 

DC state estimation model and the measurement Jacobian matrix / the gain matrix. 

The numerical observability analysis was first proposed in [26], where the theory behind observability analysis 

was presented, and the decoupled DC state estimation model was proposed for observability analysis. The 

observable islands and the unobserved branches are identified by partitioning the gain matrix and testing the 

observability of the sub-networks iteratively. The authors of [26] later improved the matrix partitioning process 

by using triangular factorisation [33]. Several methods based on the gain matrix have been proposed in [32], 

[34]-[35]. The other methods, which use alternative methods instead of analysing the gain matrix [36]-[37], 

include Hachtel’s augmented matrix method [38]-[40], the gram matrix method and binary arithmetic [41]. 

It is reported in [42] that the classical method for observability analysis as proposed in [33] might incorrectly 

integrate the buses that belong to different observable islands into the same observable island. The cases in 

which the particular network topology and measurement placement would lead to misidentification of the 

observable islands are termed as pathological cases. It is stated in [42] that the pathological cases can be 

avoided by using the inverse triangular factors of the gain matrix instead of using the gain matrix directly, and 

the observable islands can be identified without iteration using the new method. 

However, it is found that the method proposed in [42] still cannot prevent all pathological cases. In this section, 

a review of the classical method proposed in [33], and the improved method proposed in [42] is presented. A 

new method is proposed in this thesis, which is completely free of pathological cases and significantly faster 

than the existing methods, will be discussed in detail in Chapter 3. 

2.2.1 Decoupled DC Model for Numerical Observability Analysis 

The decoupled DC model was proposed in [96] as the simplified network model for observability analysis in 

state estimation. A linear relationship between the active power measurements and the states of voltage angle is 

assumed. As it is recognized that PV and Qθ are weakly coupled, while Pθ and QV are strongly coupled, only 

the equations related to active power measurements and voltage angle states are considered to further simplify 

the model. The decoupled DC model is helpful for numerical observability analysis because of its simplification 

in calculations without loss of topological information of the network. By neglecting the positions of the circuit 

breaker position, the observability of the network is not affected by the branch parameters and the values of the 

states. So, the decoupled DC model can be applied for simplifying observability analysis without introducing 

any error in terms of topological observability. 
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Using the decoupled DC model, the measurement equation as defined in (2.2) can be simplified as follows: 

Z = Hθ +e (2.36) 

Where Z is the measurement vector containing the power injection and flow measurements only, H denotes the 

DC measurement Jacobian, θ is the state vector of voltage angles, and e is the error vector. 

As the value of the state estimate does not affect the network topology and measurement locations, and thus the 

network observability, the measurement error covariance matrix (R) as defined after (2.10) can be assumed to 

be an identity matrix and this process does not introduce any errors. The gain matrix can then be simplified as 

follows: 

G = 𝐇𝐓𝐇 (2.37) 

With unity branch reactance, the derivative of the power flow measurement is 1 for element corresponding to 

the sending bus, -1 for the receiving bus, and 0 for the other buses. As the power injection is the sum of the 

power flows into that bus, the derivative of the power injection measurement is N for the incident bus, -1 for the 

other ends of connected branches, and 0 for the other buses, where N is the number of the connecting branches 

of the incident bus. Examples of a power flow measurement and a power injection measurement are shown in 

(2.38) and (2.39), respectively. 

 

2.2.2 Factorisation of the Gain Matrix 

In numerical observability analysis, a network can be seen as a combination of N observable islands (N=1 for 

fully observable case, N>1 for not fully observable case), each of the islands having their own reference angle. 

Thus, the gain matrix is always singular, and is required to be factorised in order to find information about the 

reference angles. In the classical method and the direct method presented in this section, Cholesky factorisation 

is used since the gain matrix is symmetrical. However, the prerequisite for Cholesky factorisation is that the 

matrix to be factorised must be positive definite. This problem is countered by skipping the zero pivot, and 

adding 0 into the corresponding diagonal element of the resulting diagonal matrix. For example, consider the 

case when the first zero pivot is encountered during factorisation as shown in (2.40). 
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Where D is the semi-factorised diagonal matrix whose first i elements have been factorised, di is the ith diagonal 

element, Gi is the sub-matrix to be factorised in the ith step, and Li is the Cholesky factor during the ith step, 

whose structure is given in (2.41): 

 

Where N is the number of buses in the system, I denotes identity matrix of arbitrary size, li is a nonzero sub-

vector under the element of 1 in the ith column (size of (N-i-1)*1). 

In this case, the factorisation process is continued by setting the i+1th element of the diagonal matrix to be zero 

and ith Cholesky factor to be an identity matrix (2.43)-(2.44). In such a way, the factorisation at the ith step is 

skipped, and the process may continue to factorise Gi+1. 

 

Using this method for every zero pivot encountered, the resulting diagonal matrix can be expressed as follows: 

 

Where D is the resulting singular diagonal matrix, and L is the resulting lower triangular Cholesky factor. For 

analysis purposes, the zero pivots can be moved to the bottom of the D after proper matrix permutations (2.46); 

correspondingly the structure of L is given by (2.47): 

 

Both D and L contain observability information of the network. How these matrices are used to identify the 

unobservable branches and the observable islands by the classical method and the direct method for 

observability analysis are described in detail in the following subsections. Details of each step of Cholesky 

factorisation are given in Appendix A. 
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2.2.3 The Classical Numerical Method for Observability Analysis 

The classical numerical method for observability analysis is based on analysing the gain matrix. The network is 

observable if all branches are identified to be observable, or the observable islands are identified after the 

unobservable branches have been removed. The derivation of the classical model is given as follows [4]: 

Consider the normal equation (2.16) expressed in the decouple DC model with all power flows set at 0: 

 

As the angle of the reference bus is also included in the state vector, the gain matrix, G, is still singular even for 

the fully observable case. Thus, it is possible to partition the gain matrix after permuting the rows and columns 

properly: 

 

Where G11 is the maximum size non-singular sub matrix within G. The sub state vector, θ2, is free to change its 

values as it is proved in [33] that its corresponding sub matrix of the gain matrix is always a zero matrix (2.50). 

Thus the value of θ1 can also be determined by assigning arbitrary but different values to θ2 as 𝜃2̅̅̅̅  

 

Then the power flows of all branches with the solution can be calculated: 

 

Where A is the branch to bus incident matrix. Since it is assumed that all power flows in the network are equal 

to 0, the corresponding branches of the zero elements in P branch are identified as the unobservable branches. 

As it is difficult to find G11, θ∗̂ can be solved using an alternative method, i.e. Cholesky factorisation of the 

gain matrix, G. The zero pivots in the resulting singular diagonal matrix, D, are replaced with 1’s so that the 

gain matrix becomes invertible, and the corresponding elements of t are assigned with arbitrary but distinct 

values. The estimate of the state can be found using (2.53), and the values of ta̅re typically set as 0 for elements 

corresponding to positive pivots, and natural numbers starting from 1, as is shown in (2.54):  
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Where Nzp is the number of zero pivots. 

The unobservable branches identified that follow the above procedure might not include all unobservable 

branches. This is because the identification might be affected by the irrelevant injection measurements, the 

injection measurements incident to the unobservable branches. Thus, it is necessary to repeatedly identify the 

unobservable branches, eliminating the irrelevant injection measurements at the end of each time, until no more 

irrelevant injection measurements are identified. 

Based on the methods introduced in this sub-section, the algorithm for classical numerical observability analysis 

is presented as follows: 

1.  Set the iteration number k = 1. 

2.  Form the gain matrix in decoupled DC model using (2.48). 

3.  Perform Cholesky factorisation on the gain matrix, substitute the zero pivots with 1, and assign natural 

numbers to the vector, t. If k = 1 and only one zero pivot is identified, stop the program, the network is 

fully observable. Else if k = 1 and more than one zero pivot is identified, go to Step 4, the network is not 

fully observable. 

4.  Identify the unobservable branches using (2.52) and (2.53), and the irrelevant injection measurements 

separated by the unobservable branches. 

5.  If no more unobservable branches are identified, then identify the observable islands separated by the 

unobservable branches. Else, k = k +1, go to Step 2. 

 

2.2.4 The Direct Numerical Method for Observability Analysis 

As suggested in [42], the classical method for observability analysis may incorrectly identify buses that belong 

to different observable islands in the same observable island. Consider a network with its gain matrix expressed 

by (2.55), the estimated angles can be derived as given in (2.56). 
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where mi is the sub-vector under the diagonal element of the ith column of the matrix, ,L−1, wi is the sub-vector 

of mi corresponding to the zero pivots, and uiis the sub-vector of wi that consists of the remaining elements, 

and nkis a vector of natural numbers as given by (2.57). 

 

It can be seen from (2.56) that, although the values of the wi’s  can be different, the results of the product might 

be the same. As will be proved in the next chapter, one of the properties of the wi is that its sum of elements is 

always 1. Thus, it can be easily proved that for k> 2, such pathological cases might happen as multiple solutions 

can be found for wi because its elements are only constrained by two equations. 

 

Where C is any real constant. 

The above derivation also reveals that the sub-vectors, wi’s, might be the very key factors that contain 

information about observable islands. In [42], these sub-vectors and the bottom identity matrix are grouped 

together as the Test Matrix (2.60), and it is defined as the sub-matrix of the inverse of the Cholesky factor 

corresponding to the zero pivots. Note that, generally, the zero pivots might appear at any place on the diagonal 

matrix, D, and the columns of Ik might appear in any column in the test matrix. 
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According to [42], the test matrix has the following two properties: 

Property 1: The columns of W corresponding to buses that belong to the same observable island will have the 

same numerical values. 

Property 2: The columns of W corresponding to buses that belong to different observable islands will have 

different numerical values, as long as these buses are connected by a common branch. If the buses are 

topologically separated, then their corresponding column vectors might be the same even though they belong to 

different observable islands. 

Property 2 suggests that the observable islands might not be correctly identified even by directly comparing the 

column vectors of the test matrix. However, the identification of the unobservable branches can be directly 

identified using (2.61): the branches corresponding to non-zero row vectors are unobservable branches. 

 

Where A is the branch to bus incident matrix. 

Based on the two properties as proved in [42], the algorithm for the direct numerical observability analysis is 

presented as follows: 

1.  Form the gain matrix in decoupled DC model using (2.48).  

2.  Perform Cholesky factorisation on the gain matrix. If there is only one zero pivot, stop the program, the 

network is fully observable. Else, calculate the inverse matrix of the Cholesky factor and obtain the test 

matrix, W.  

3.  Calculate C using (2.61), find the non-zero row vectors of C, their corresponding branches are 

unobservable branches.  

4.  Identify the observable island separated by the unobservable branches.  

2.2.5 Measurement Replacement 

After the observable islands are identified, additional measurements should be replaced in order to restore the 

observability of the network. The candidate measurements include the power injection measurements incident 

to the border buses of the observable islands, and the power flow measurements that connect two observable 

islands. These candidate measurements can be expressed in a single matrix, Hc. 

Now consider the new gain matrix after all candidate measurements have been added into the network as 

expressed in (2.62). 
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where �̅� is the maximum non-singular submatrix of the singular diagonal matrix, D, L is the Cholesky factor, 

W is the test matrix, and U is the remaining part of 𝐋−𝟏except for the test matrix.  

 

As �̅� and L are positive definite and rank(A) = rank(𝐀𝐓A), the new gain matrix will be observable, or it is 1 

rank less than its dimension, as long as the matrix B as defined in (2.65) is observable. Since it is always more 

than enough to include all candidate measurements to restore network observability, only parts of them are 

required to be replaced. The selection of the necessary measurements can be done by computing the reduced 

echelon form Be of B. The measurements corresponding to the linearly independent rows of Be are the 

necessary measurements to be replaced. 

 

Assuming the identification of observable islands have been done before the measurement replacement process, 

the algorithm for measurement replacement can be summarised as follows: 

1.  Find a list of candidate measurements, including the power flow and injection measurements incident to 

the observable islands that have been identified in the previous steps of observability analysis.  

2.  Form the candidate measurement Jacobian matrix, Hc.  

3.  Assuming the test matrix W has already been calculated while identifying the observable islands, 

calculate B using (2.65), and its reduced echelon, Be. The measurements corresponding to the linearly 

independent rows of Be are the minimum number of measurements that can restore the network 

observability.  
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2.2.6 Redundancy analysis. 

After observability analysis a unique solution can be guaranteed with the measurements available. However, it 

is possible that some of the measurements might be lost due to telecommunication errors or failure of the 

measurement device. If a state is observed by only one measurement, then the loss of this measurement would 

make the system unobservable. In redundancy analysis, these measurements are termed as critical 

measurements, and the other type of measurements are termed as redundant measurements which can be 

removed without affecting the observability of the network [98]. 

Measurement redundancy is important for state estimation because it not only improves the reliability of state 

estimation, but also allows one of the essential functions of bad data detection. As will be discussed in detail in 

the next section, bad data detection uses measurement residuals to evaluate the magnitude of measurement 

errors. However, the residual of the critical measurement is always 0, making it impossible to detect any error in 

the critical measurements even if in the presence of large errors. 

The redundant measurements can also be classified into different redundancy levels, including critical pairs, 

critical trios, and critical k-tuples, k = 4, 5, 6 … They are respectively defined as a set of two, three, and k 

measurements whose simultaneous removal from the measurement set would make the system unobservable. 

After the critical measurements are eliminated, the measurement redundancy level of the network could be 

enhanced by reducing the number of critical pairs, critical trios and critical k-tuples. 

Assuming the network is fully observable after observability analysis, the reduced measurement Jacobian 

matrix, Hr, with the column corresponding to the reference angle removed can be decomposed as expressed in 

(2.66) [98]. 

 

Where IN-1 is the identity matrix of size N-1, and Kred is the matrix of redundant measurements [99]. 

After the decomposition, the columns of Hd still correspond to the buses, and the rows of Hd still correspond to 

the measurements. The measurements corresponding to the identity matrix IN-1 are the selected set of basic of 

measurements that can make the system fully observable. If the elements of a column of Kred are all zeros, the 

corresponding state is a critical state, and the only measurement observing it, as indicated in the identity matrix, 

is a critical measurement. If a column of Kred contains k-1 nonzero elements, then the corresponding state of 

this column is a redundant state, and the basic measurement and the associated k-1 measurement form a critical 

k-tuple. 

Extra measurements can be placed to eliminate the critical measurements and improve the measurement 

redundancy level. Similar to measurement replacement for network observability, the first step of redundancy 

improvement is to find a list of candidate measurements and form a reduced measurement Jacobian matrix Hcr 
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excluding the reference angle. Hcr is combined to the bottom of Hr, and the same triangular decomposition is 

performed for the augmented matrix as shown in (2.67): 

 

Where Had is the decomposed augmented measurement Jacobian matrix, and Kc is the matrix of candidate 

redundant measurements . 

From IN-1, Kred and Kc, a critical state to candidate measurement incident matrix R can be formed. The optimal 

placement of the measurements that eliminates the critical measurements can be found using integer linear 

programming (ILP) as stated below: 

 

Where C is a vector of costs for installing the measurements, 1 denotes a vector whose elements are all equal to 

1, X is the vector consisting of binary decision variables xi that is defined as: 

 

 

Similar methods can be developed for improving the measurement redundancy to higher levels so as to 

eliminate the critical pairs, critical trios and so on by forming different incident matrices according to the 

redundancy level required. 

2.3 Bad Data Detection and Identification 

Measurements used in state estimation are constantly exposed to errors caused by different reasons, including 

the finite accuracy capability of the meters and the telecommunication medium. One of the most important 

functions of state estimation is to detect, identify and eliminate these errors. It is expected that a state estimator 

can filter out large errors, or bad data, as long as sufficient measurement redundancy is guaranteed. 

The detection of the presence of data can be carried out using the statistical method of chi-squared distribution 

test, which will be discussed in Section 2.3.1. The following step of identification of the data that contains large 

errors using the normalised residual method is described further in Section 2.3.2. 

Gross measurement errors can also be caused by meter wrong connections, telecommunication system failure, 

or topology and line parameter errors. Such errors are more complex, and must be handled by means of 
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topology estimation. Details of topology estimation will not be given in this work; readers can find them in [4], 

[100]. 

2.3.1 Bad Data Detection Using Chi-squared Distribution 

Consider a vector x consisting of M random independent variables, in which every element xi follows the 

standard normal distribution [4], [101]: 

 

Then, a new random variable y following the chi-squared distribution of N degrees of freedom can be defined 

as: 

 

The degree of freedom M is decided by the number of independent random variables. Thus, if these variables 

are constrained by N independent equations, the degree of freedom would be reduced to M-N. 

To illustrate the characteristics of chi-squared distribution, the chi-squared probability density function (p.d.f.) 

with 10 degrees of freedom is shown in Figure 2-4. The area under the p.d.f. is the probability of y having the 

value within the corresponding range. Since the tail of the curve is decaying, a threshold yt can be set so that 

there is only a slight chance that the value of y will be greater than yt. For example, in Figure 2-4 the threshold 

that divides the curve into the 95% region and 5% region is found at 18.3 for chi-squared distribution with 10 

degrees of freedom. If the value of y is greater than this threshold, it is suspected that bad data exists in x. 

 

Figure 2-4: Chi-Squared Probability Density Function 

Based on the assumption that measurement errors follow a Gaussian distribution, it can be found that the 

objective function as defined in (2.10) follows the chi-squared distribution with the degree of M-N: 
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Where M is the number of measurements, N is the number of states, r is defined as the residual vector 

consisting of ri’s, i= 1, 2, … M, and the covariance matrix R is assumed to be diagonal and Rii is its ithdiagonal 

element. 

The degree of freedom of J(x) is M-N because the measurement equations must follow the N power balance 

equations. Thus, a threshold can be set according to the degree of freedom and the confidence level. The 

confidence level is usually set to be 95%, or it can be set to any number as required. The measurements are 

determined to be free of errors if J(x) is smaller than the threshold, or the existence of at least one set of bad 

data is detected. 

2.3.2 Bad Data Identification with Largest Normalised Residual Test 

The direct use of the objective function for chi-squared test might be inaccurate since the measurement error 

covariance matrix, R, is used to approximate the covariance of the measurement residuals, Ω. Consider the line 

arised measurement equation as given in (2.74). Using the WLS method, the estimate of Δx can be expressed as 

given in (2.75), and the estimate of Δz can be calculated as given in (2.76). The measurement residual can then 

be expressed as given in (2.77), and the exact expression of Ω is derived as given in (2.78). 

 

 

Where I is the identity matrix, Δ�̂� and Δ�̂� denote the estimate of Δx and Δz, respectively, and the matrix S=I-K 

is defined as the Residual Sensitivity Matrix [4]. 
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Given the expression of Ω, the normalised residuals are defined as follows: 

 

Where 𝛀𝐢𝐢 is the diagonal element of Ω and𝐫𝐢
𝐍 is the normalised residual of the ithelement, which follows the 

Standard Normal Distribution: 

 

One of the most important properties of the normalised residuals is that the largest normalised residual will 

always correspond to the bad data. Consider the case where a large error is introduced in Measurement i: ei≠ 0, 

while the errors existing in all of the other measurements are negligible: ej=0, j ≠ i. It is shown in (2.81) that the 

normalised residual of the bad data, which is Measurement k in this case, is always the largest among the 

normalised residuals of all measurements [4]. 

 

This property can be used to identify bad data for any other types of redundant measurements except for critical 

measurements and critical pairs [102]. This is because, for the critical measurements, the normalised residual 

will always be 0, while for the critical pairs, the corresponding columns of Ω will be linearly dependant. The 

linear dependency can be expressed as given in (2.82), and it can be straightforwardly derived that the 

inequality in (2.81) becomes strict equality. 

 

Based on the properties of the normalised residuals described above, the algorithm for bad data identification 

can be summarised in the following steps: 

1.  Calculate the measurement residuals using (2.73).  
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2.  Calculate the normalised residuals using (2.79).  

3.  Find the largest normalised residual rmax
N  

4.  If  rmax
N > C , then the corresponding measurement is identified as bad data, else stop the program, no bad 

data is detected, where C is the threshold usually set to 3. 

5.  Eliminate or replace the erroneous measurement identified, and go back to Step1. 

2.4  Conclusion 

This chapter has given an overview of the classical state estimator that is realised by the WLS method, 

observability analysis and bad data detection and identification. In the following chapters, the network model, 

power flow equations as well as the WLS method will also be applied for constructing hybrid state estimators 

and dynamic state estimators. Based on the existing methods described in this chapter, new methods for 

numerical observability analysis are developed, and a new scheme for bad data detection and identification for 

dynamic state estimation is established. 
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