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Abstract 

The process of software testing is crucial in the development of software. Usually, errors committed by developers are 

corrected during the latter phases of the software development procedure., resulting in a greater impact from the defects. To 

avoid this, it is essential to anticipate defects early on during the software development phase. This proactive approach allows 

for the efficient allocation of testing resources. The process of defect prediction entails categorizing software modules into 

those likely to have defects and those not likely to have defects. The main goal of this study is to reduce the negative effects 

caused by two major issues faced in defect prediction, namely, the unequal distribution of data and the extensive number of 

factors in defect datasets. This research paper involves assessing multiple software metrics using feature selection methods like 

PCA, along with several machine learning classifiers including Adaboost, MLP, NB, J48, and Random Forest. The objective is 

to classify software modules as either prone to defects or not prone to defects. The suggested model utilizes a blend of 

Adaboost and random forest classifiers, incorporating PCA for dimension reduction. The experimental analysis relies on the 

publicly available NASA dataset. The findings indicate that the combination of Adaboost and random forest algorithms, 

coupled with PCA for the MC1 dataset, produced the most favourable outcomes compared to other datasets. The defect 

prediction accuracy reached an impressive 98.52% in contrast to the algorithms employed in the study. 
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1. Introduction 

Machine learning is altering how we deal with our day-to-day tasks. It permits us to generate self-functioning types of 

equipment, controls the intellectual assistants that are used in our day-to-day life, and assists to make sure the cloud runs 

perfectly. Artificial intelligence cannot function without machine learning. Machine learning is also used in the field of real 

applications in software testing. Now a days machine learning provides us with a superior way to do software testing. Software 

testing is the process of evaluating and verifying that what the software is supposed to do. Therefore, software testing is an 

essential part of the SDLC (Software Development Life Cycle). Originally, software testing was a manual process. After the 

development of AI &amp; automation testing, it becomes more efficient, accurate, and faster. Now, Artificial intelligence (AI) 

is variously making over software testing. Due to these reasons, it simplifies test creation, reduces the need for test 

maintenance, and makes new ways to consider the result. The main advantages of testing include preventing bugs, minimizing 

development costs, and improving the rate of performance. Machine learning is a specific domain within the broader field of 

artificial intelligence, which encompasses the ability of machines to mimic human behaviour. Artificial intelligence 

encompasses systems that can execute intricate tasks, much like humans do when they tackle problems. ML in software testing 

is the best gadget for quality assurance (QA) since test automation is developed & implemented. Testing is a crucial aspect of 

the software development life cycle (SDLC). In the past, testing used to be a manual process that was monotonous, tiring, 

repetitive, and consumed a significant amount of time. It also caused delays in releasing and implementing software 

modifications. However, the advent of automation in testing has revolutionized this practice. Automation in testing involves 

the utilization of tools powered by machine learning to carry out testing tasks, manage test data, and produce reports for future 

analysis. Presently, numerous organizations employ artificial intelligence and machine learning in test automation to expedite 

their SDLC procedures. 

2. Literature Review 

 

Balaram et al. proposed a model that combines ensemble random forest with an adaptive synthetic sampling algorithm, 

achieving an accuracy of 0.85 [1]. Pravin Chandra et al. provide an overview of machine learning techniques for software fault 

prediction, including conventional methods. Their aim is to describe the issue of fault proneness [2]. Deepak Sharma et al. 

suggested a model that analyzes various machine learning techniques, highlighting important characteristics and presenting a 

vertical chevron list of decision tree techniques. They assess the efficiency of each technique [3]. Osama et al. proposed a 

model that employs ensemble random forests and deep learning for software fault prediction. They develop an algorithm that 

outperforms the CNN algorithm [4]. C. Laksmi Prabha et al. suggest that neural networks have the lowest failure rate 

compared to random forests in their study. However, dimensional classification achieves the highest detection rate. In cases of 

equal accuracy predictions, the failure rate parameter can be utilized to determine the correct outcome [5]. M. Farida Begam et 

al. utilize historical data to predict future software faults. They employ ensemble classifiers, specifically random forest, and 
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validate their models using K-Fold cross-validation technique. The results indicate that their models effectively work in all 

scenarios [6]. 

Awni Hammouri et al. suggested the evaluation process has been showed that ML algorithms like Naïve Bayes (NB), Artificial 

Neural Network (ANN) and Decision Tree (DT) can be used effectively with high accuracy rate[7]. Aimen Khalid et al. used 

K-means clustering techniques for software defect prediction and used the SVM and optimized SVM models which performed 

with the highest achieved accuracy 95% and 95.80% respectively [8]. Praman Deep Singh et al. has suggested a model in 

which PC1 data set with Linear Classifier algorithm produced an accuracy of 93.59% [9]. M. Farida Begam et.al. proposed a 

model by using SPSS tools with 10-fold cross validation extreme learning machine produced an accuracy of 87.5% [10]. 

 

3. Purposed Methodology 

 

 
Fig.1. block diagram for planned system 

 

 

 

 

 

3.1 Machine learning classifier 

 

The goal of a machine learning classifier is to build a predictive model that can generalize from the training data to make 

accurate predictions or classifications on new, unseen data. The classifier learns from the features or attributes of the training 

data and their corresponding class labels. It then uses this knowledge to classify new instances based on their feature values. 

 

3.1.1. Random forest 

 

A potent machine learning technique known as Random Forest falls under the category of ensemble learning. By leveraging 

multiple decision trees, it achieves precise and resilient predictions. Its widespread adoption stems from its capacity to handle 

intricate datasets and address overfitting concerns. Essentially, Random Forest constructs a group of decision trees and 

amalgamates their predictions to yield the outcome, making it an ensemble learning approach. By aggregating the predictions 

of multiple trees, it can achieve better generalization and reduce the impact of individual decision trees' errors. To make 

predictions with Random Forest, each decision tree in the ensemble independently predicts the class label (for classification) or 

target value (for regression) of a new instance. The ultimate forecast is derived by combining the individual tree predictions 

using either majority voting (for classification) or averaging (for regression). Advantages and Limitations: It offers several 

advantages, including its robustness against over fitting, ability to handle high-dimensional data, and capability to capture 

complex relationships in the data. It is less sensitive to noise and outliers compared to individual decision trees. However, 's 

main limitations include its potential for increased computational complexity due to the construction and combination of 

multiple decision trees, as well as its reduced interpretability compared to a single decision tree. It is a versatile and widely 

used algorithm in various domains such as finance, healthcare, and natural language processing. It continues to be an active 

area of research, with on going developments to enhance its performance and address specific challenges in different 

applications. 
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3.1.2 AdaBoost 

 

AdaBoost, also known as Adaptive Boosting, is an ensemble learning technique that merges the predictions of several weak 

classifiers to create a robust classifier. It is widely utilized for classification tasks and is recognized for its capability to enhance 

the performance of feeble learners. The algorithm prioritizes instances that were misclassified by previous classifiers, enabling 

subsequent classifiers to rectify their errors. By combining the predictions of multiple models, AdaBoost generates a final 

prediction. In this case, the models employed are weak classifiers or weak learners, which are modest models that exhibit 

slightly better performance than random guessing. Each instance in the training data is assigned weights by AdaBoost, with all 

instances initially having equal weights. Following each iteration, the weights of misclassified instances are increased, while 

the weights of correctly classified instances are decreased. This way, It focuses on the instances that are harder to classify, 

allowing subsequent weak learners to pay more attention to them. It offers several advantages, including its ability to handle 

complex datasets, improve weak learners' performance, and adapt to the characteristics of the data. It can be applied to various 

types of weak classifiers and is less prone to over fitting. However, It can be sensitive to noisy data and outliers, and it may be 

computationally expensive compared to individual weak classifiers. It remains a widely used and influential algorithm in the 

field of machine learning. Researchers continue to explore variations and enhancements to AdaBoost, as well as its 

applications in different domains, such as computer vision, natural language processing, and bioinformatics. 

 

3.1.3 Naïve Bayes  

 

A commonly used machine learning algorithm for classification tasks is Naive Bayes (NB). It operates on the principles of 

Bayes' theorem and assumes that features are independent of each other when conditioned on the class label. Despite its simple 

and "naive" assumption, NB has demonstrated effectiveness in a variety of real-world applications including text classification, 

spam filtering, sentiment analysis, and recommendation systems. Bayes' theorem forms the foundation of NB, which calculates 

the probability of an event based on prior knowledge or evidence. The theorem states that the probability of a hypothesis (class 

label) given the observed evidence (feature values) is proportionate to the probability of the evidence given the hypothesis, 

multiplied by the prior probability of the hypothesis. In mathematical terms: 

P(hypothesis | evidence) = (P(evidence | hypothesis) * P(hypothesis)) / P(evidence) 

 

Advantages and Limitations: It has several advantages, including its simplicity, scalability, and efficiency in both training and 

prediction. It can handle large feature spaces and is less prone to over fitting, making it suitable for high-dimensional datasets. 

However, its naive assumption 

3.1.4 Multilayer Perception  

 

The Multilayer Perceptron (MLP) is a fundamental type of artificial neural network (ANN) that consists of multiple layers of 

interconnected artificial neurons, or nodes. Each node in an MLP is typically a mathematical function that takes inputs, 

performs a calculation, and produces an output. MLPs are known as feed forward neural networks, meaning that information 

flows through the network in one direction, from the input layer to the output layer, without any loops or feedback connections. 

It’s primary aim is to learn and model complex patterns or relationships in data. It has been widely used in various domains, 

including image and speech recognition, natural language processing, and financial analysis. MLPs are particularly effective in 

tasks where the input-output mapping is nonlinear and where there is a large amount of data available for training. MLPs have 

been the basis for many advanced neural network architectures, such as convolutional neural networks (CNNs) for image 

analysis and recurrent neural networks (RNNs) for sequential data processing. These architectures build upon the basic 

principles of MLPs and extend them to handle specific data types and tasks. 

 

3.1.5 J48 

It is a popular decision tree algorithm used for classification tasks in machine learning. It is an extension of the earlier ID3 

algorithm and was developed by Ross Quinlan. It builds decision trees by recursively partitioning the training data based on the 

values of input features to make predictions. It is a decision tree algorithm, which represents decisions and their possible 

consequences as a tree-like structure. Each internal node in the tree corresponds to a test on a particular feature, and each leaf 

node represents a class label or a decision. The path from the root to a leaf node captures the sequence of decisions that lead to 

the final classification. Advantages and Limitations: It offers several advantages, including its interpretability, simplicity, and 

ability to handle both categorical and numerical attributes. It can handle noisy data and provides insights into the important 

features for classification. However, decision trees generated by J48 tend to be biased towards features with more levels or 

attributes with many values. Additionally, decision trees can be sensitive to small changes in the training data, leading to 

different tree structures. It remains a widely used and influential decision tree algorithm, providing a foundation for more 

advanced tree-based algorithms and ensemble methods. It is important to note that this introduction is based on the information 

available up until my knowledge cut off in September 2021. If there have been any significant developments or advancements 

in J48 since then, I may not be aware of them. 

3.1.6  ADRF 

 

ADRF (Adaptive Boosting with Random Forest) is a technique for ensemble learning that combines the advantages of two 

algorithms to enhance the accuracy of classification. It involves using the Random Forest algorithm as the weak learner within 

the AdaBoost framework. During each iteration of AdaBoost, the weak learner (Random Forest) is trained on a modified 

version of the training data, where the modifications are based on weights associated with each data point. These weights are 

updated by considering the errors in classification. The final classification result is obtained by aggregating the predictions of 

all weak learners through weighted voting, with the weights being determined by the accuracy of each weak learner. By 

combining the Random Forest and AdaBoost algorithms, this approach can offer improved accuracy in classification as well as 

robustness compared to using either algorithm independently. The Random Forest component of ADRF is effective in handling 
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complex and high-dimensional data, while AdaBoost adaptively concentrates on challenging instances to enhance overall 

performance. Through the integration of these techniques, ADRF maximizes the strengths of both algorithms, resulting in a 

more powerful ensemble classifier. Top of Form 

 

3.2   Feature Selection 

 

Feature selection is a crucial process in machine learning, which aims to select a subset of important features from a larger pool 

of available features. This selection is done to enhance the performance of the model, mitigate overfitting issues, and improve 

the interpretability of the results. There exist several techniques for feature selection, and I will provide an overview of a few 

commonly employed methods. 

 

3.2.1 Principal Component Analysis (PCA):   

PCA, which stands for Principal Component Analysis, is a widely used technique for reducing the dimensionality of a dataset. 

Its goal is to transform a dataset with many variables into a lower-dimensional space while retaining the most crucial 

information. To achieve this, PCA identifies the main directions, known as principal components, that capture the highest 

amount of variation in the data. The process typically begins by standardizing the dataset, where each feature is adjusted to 

have a mean of zero and a variance of one. After standardization, PCA calculates the covariance matrix of the standardized 

data. This matrix describes the relationships between different features and measures how they vary together. The subsequent 

step involves performing an Eigen decomposition of the covariance matrix. This decomposition breaks down the matrix into its 

eigenvectors and eigenvalues. The eigenvectors represent the principal components, and the corresponding eigenvalues 

indicate the amount of variation explained by each principal component. It is important to consider that the selection of a 

feature extraction method should depend on the specific characteristics of the dataset, the problem being addressed, and the 

requirements of the model. Experimentation with different techniques and assessing their impact on the model's performance is 

necessary to identify the most suitable approach. 

 

4.Experimental discussion and result analysis. 

 

The WEKA tool was used to evaluate the PCA+ADRF model on a computer system that had a core-i7, 3.4GHz processor, 

16GB of RAM, and was running the Windows 11 operating system. To perform software fault prediction, NASA datasets such 

as JM1, PC5, PC4, MC1 and KC1 were employed. Further details regarding the parameters can be found in the subsequent 

description. 

Sensitivity also known as the True Positive Rate, refers to the ratio of correctly predicted positive instances to the total number 

of actual positive instances. It can be calculated using the formula Sensitivity = True Positives (TP) divided by the sum of True 

Positives and False Negatives (TP + FN). 

 Specificity also known as the true negative rate, refers to the likelihood that a true negative result will be obtained from a 

negative test. Mathematically, it can be calculated by dividing the number of true negatives (TN) by the sum of true negatives 

and false positives (TN + FP). 

Accuracy (ACC) is a metric that measures the proportion of correct predictions compared to the total number of predictions 

made. It is calculated by dividing the sum of true positives (TP) and true negatives (TN) by the sum of true positives, true 

negatives, false positives (FP), and false negatives (FN). 

Precision (PPV) is a measure that indicates how accurate a model is in correctly classifying positive samples. It is calculated 

by dividing the number of true positive samples by the total number of positive samples classified, regardless of whether they 

were classified correctly or incorrectly. The formula for Precision is: PPV = True Positives (TP) divided by the sum of True 

Positives and False Positives (TP + FP). 

 F1 Score (F1) is a metric used to assess the performance of a particular model. It measures the model's effectiveness by 

considering both precision and recall through a harmonic average. Essentially, the F1 score provides a statistical evaluation of 

how well the model performs. It is calculated by considering true positives (TP), false positives (FP), and false negatives (FN) 

according to the formula: F1 = 2TP / (2TP + FP + FN). The resulting F1 score ranges from 0 (lowest) to 1 (highest), 

representing the average performance of a person based on precision and recall. 

Matthews Correlation Coefficient (MCC) is a metric used in machine learning to assess the accuracy of binary classifications 

involving two classes. It considers true positives, true negatives, false positives, and false negatives, making it a well-balanced 

measure suitable for cases where there is a significant difference in class sizes. Essentially, the MCC acts as a correlation 

coefficient between the predicted and observed binary classifications, providing a value that ranges from -1 to +1. A coefficient 

of +1 indicates a perfect prediction, 0 suggests an average random prediction, and -1 signifies an inverse prediction. 

MCC= TP*TN-FP*FN/sqrt((TP+FP) *(TP+FN) *(TN+FP) *(TN+FN)) 

Were 

TP (True Positive)- Correctly classified positive cases 

TN (True Negative)-Correctly classified negative cases 

FN (False Negative)-Incorrectly classified positive cases 

FP (False Positive)-Incorrectly classified negative cases. 

Fig.1 represents the Block diagram for planned System.  In Table.1 the performance evaluation is carried out without using any 

feature selection methods. In this table we have used 6 different machine learning classifiers (AB, RF, MLP, J48, NB, ADRF) 

on different data sets (JM1,PC4,PC5,KC1,MC1). The accuracy out perform in case of ADRF classifier on MC1 with a value of 

6 cross validations which is 98.14%. The same operation with PCA is carried out on table.2, PCA+ADRF produced a highest 

accuracy of 98.52% on MC1 dataset with 9 fold cross validation. A comparative study has been done in graphical form 

between classifier without feature selection and accuracy which is represented in fig.2 where as the same operation is 

performed with PCA in fig.3 for JM1 dataset. Similarly the above operation is performed on MC1 dataset (fig.4,fig.5), PC5 

dataset(fig.6,fig.7), KC1 dataset (fig.7, fig.8) and PC4 dataset (fig.9,fig.10) respectively. In Table.3 a comparison has been 
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made between some existing methodology and purposed system which conclude that the proposed system PCA+ADRF 

outperformed in accuracy.  

 

Table 1. Performance Evaluation without Feature Selection 

Data Set Classify CV Sensitivity Specificity Precision F1 MCC Accuracy 

JM1 AB 5 78.51 0 1 87.96 0 78.51 

JM1 RF 5 81.14 56.43 96.12 88 23.33 79.41 

JM1 NB 8 80.97 48.91 94.65 87.28 19.99 78.33 

JM1 J48 7 81.50 43.49 91.41 86.17 19.72 76.96 

JM1 MLP 6 79.78 57.36 98.15 88.02 16.4 79.02 

JM1 ADRF 7 66.78 80.45 40.98 50.79 39.62 79.50 

MC1 AB 6 97.74 1 1 98.85 14.58 97.74 

MC1 RF 9 97.08 72.73 99.85 98.95 34.94 97.94 

MC1 NB 9 98.11 63.35 90.9 94.37 8.7 89.40 

MC1 J48 5 97.93 41.67 99.64 98.77 20.4 97.59 

MC1 MLP 8 97.82 27.27 99.59 98.7 12.38 97.43 

MC1 ADRF 6 97.74 1 1 98.85 14.58 98.14 

PC5 AB 6 52.7 77.74 33.12 40.68 25.78 73.41 

PC5 RF 7 66.78 80.45 40.98 50.79 39.62 78.14 

PC5 NB 9 43.78 83.27 63.48 51.82 29.65 67.50 

PC5 J48 9 56.1 82.7 53.72 54.88 38.27 75.69 

PC5 MLP 8 52.55 78.52 37.15 43.53 27.54 73.47 

PC5 ADRF 7 66.78 80.45 40.98 50.79 39.62 78.62 

KC1 AB 9 61.84 75.88 14.97 24.1 20.95 74.98 

KC1 RF 8 62.96 79.24 32.48 42.86 32.85 77.01 

KC1 NB 7 49.75 78.15 31.53 38.6 23.63 73.37 

KC1 J48 10 53.37 79.18 35.35 42.53 28.06 74.64 

KC1 MLP 10 61.21 77.23 22.61 33.02 25.88 75.66 

KC1 ADRF 8 62.96 79.24 32.48 42.86 32.85 77.30 

PC4 AB 10 89.47 69.01 98.02 93.55 38.77 88.34 

PC4 RF 9 90.45 74.7 98.11 94.12 46.46 89.43 

PC4 NB 10 90.28 50.26 95.41 92.77 37.57 87.18 

PC4 J48 10 92.48 58.6 94.14 93.3 48.54 88.34 

PC4 MLP 10 92.75 60.9 94.5 93.62 50.84 88.89 

PC4 ADRF 9 90.45 74.17 98.12 94.14 46.48 89.50 

 

 

 

 

 

 

 

 

Table 2. Performance Evaluation with PCA 

Data Set Classify No of 

Features 

CV Sensitivit

y 

Specificit

y 

Precision F1 MCC Accuracy 

JM1 PCA+AB 16 5 78.51 0 100 87.96 0 78.53 

JM1 PCA+RF 16 5 81.14 56.43 96.12 88.00 23.33 79.43 

JM1 PCA+NB 16 8 80.97 48.91 94.65 87.28 19.99 78.35 

JM1 PCA+J48 16 8 80.95 40.18 91.23 85.78 16.42 85.78 

JM1 PCA+MLP 16 6 79.78 57.36 98.51 88.02 16.40 79.05 

JM1 PCA+ADR

F 

16 5 81.15 56.48 96.14 88.12 23.34 86.11 

MC1 PCA+AB 9 5 97.69 0.00 1.00 98.83 0.00 97.81 

MC1 PCA+RF 9 9 98.08 72.73 99.85 98.95 34.94 97.98 

MC1 PCA+NB 9 9 98.11 6.35 90.89 94.36 8.70 89.45 

MC1 PCA+J48 9 5 97.93 41.67 99.64 98.77 20.40 97.63 
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MC1 PCA+MLP 9 8 97.82 27.27 99.59 98.70 12.38 97.48 

MC1 PCA+AD

RF 

9 9 98.55 72.81 99.95 98.96 34.97 98.52 

PC5 PCA+AB 16 7 57.60 77.62 30.57 39.94 27.85 74.69 

PC5 PCA+RF 16 7 66.78 80.45 40.98 50.79 39.62 78.21 

PC5 PCA+NB 16 9 60.37 75.95 21.02 31.18 23.94 74.46 

PC5 PCA+J48 16 9 56.10 82.70 53.72 54.88 38.27 75.72 

PC5 PCA+MLP 16 10 55.89 78.43 35.24 43.23 29.10 74.52 

PC5 PCA+ADR

F 

16 7 66.81 80.46 40.98 50.79 39.61 78.99 

KC1 PCA+AB 16 9 61.84 75.88 14.97 24.10 20.95 75.14 

KC1 PCA+RF 16 8 62.96 79.24 32.48 42.86 32.85 77.01 

KC1 PCA+NB 16 7 49.75 78.15 31.53 38.60 23.63 73.37 

KC1 PCA+J48 16 10 53.37 79.18 35.35 42.53 28.06 75.11 

KC1 PCA+MLP 16 8 61.61 77.12 21.97 32.39 25.68 75.79 

KC1 PCA+ADR

F 

16 8 62.96 79.35 32.51 42.86 32.87 77.81 

PC4 PCA+AB 10 10 89.47 69.01 98.02 93.55 38.77 88.41 

PC4 PCA+RF 10 8 91.11 75.53 97.93 94.40 50.35 89.46 

PC4 PCA+NB 10 10 90.28 55.26 95.41 92.77 37.57 87.25 

PC4 PCA+J48 10 10 92.48 58.60 94.14 93.30 48.54 88.41 

PC4 PCA+MLP 10 10 92.75 60.90 94.50 93.62 50.84 88.95 

PC4 PCA+ADR

F 

10 8 91.21 75.55 97.93 94.40 50.45 89.59 

 

 
 

Fig.2: Accuracy for JM1 dataset without Feature Selection 

 

 

 
Fig.3: Accuracy for  JM1dataset with feature selection 
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Fig.4: Accuracy for MC1 dataset without Feature Selection 

 

 
Fig.5 : Accuracy for MC1 dataset with feature selection 

 

 
Fig.4: Accuracy for PC5 dataset without Feature Selection 
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Fig.5: Accuracy for PC5 dataset with feature selection 

 

 
 

Fig.6: Accuracy for KC1 dataset without Feature Selection 

 

 
Fig.7: Accuracy for KC1 dataset with feature selection 
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Fig.10: Accuracy for PC4 dataset without Feature Selection 

 

 
Fig.11: Accuracy for PC4 dataset with feature selection 

 

Table.3: Performance Comparison of Existing Methodology 

References Methodologies Accuracy(%) 

Balaram et al. [1] Random Forest+ ASSA 85.00 

Aimen Khalid et al. [8] KNN +SVM 95.80 

Praman Deep Singh et al.[9] Linear Regression 93.59 

M. Farida Begam et.al.[10] ELM 87.5 

R. Jayanthi et al. [11] PCA+ANN 93.64 

Huihua Lu et al. [20] PCA+RF 95.18 

Proposed Methodology PCA+ADRF 98.52 

 

5. Conclusion  

 

In our recent study, we have created a precise approach called PCA+ADRF to detect software defects within individual modules. 

This method involves using PCA to reduce the complexity of the features. Then, we employ a combination of two algorithms, AD 

and RF, known as ADRF, to develop a highly accurate and automated classifier. Through empirical findings, we have 

demonstrated that the PCA+ADRF method outperforms all other existing techniques across six different datasets. Specifically, 

when applied to the MC1 dataset, our approach achieves an outstanding accuracy of 98.52%. Researchers are still interested in 

developing defect prediction techniques for software systems that are more precise and efficient. Our study contributes to early 

problem detection, which saves time and reduces the overall cost of software projects. Further research can focus on developing 

various hybrid models that can predict software system flaws with improved accuracy and fewer errors. 
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