
 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j189

A PCA BASED SOFTWARE FAULT

PREDICTION MODEL USING ADRF

1Madhusmita Das, 2Debasish Pradhan, 3Suryakant Mahapatra

 Asst. Professor, Asst. Professor, Asst. Professor

 Department of Computer Science

 NIIS Institute of Business Administration, Bhubaneswar, India

Abstract

The process of software testing is crucial in the development of software. Usually, errors committed by developers are

corrected during the latter phases of the software development procedure., resulting in a greater impact from the defects. To

avoid this, it is essential to anticipate defects early on during the software development phase. This proactive approach allows

for the efficient allocation of testing resources. The process of defect prediction entails categorizing software modules into

those likely to have defects and those not likely to have defects. The main goal of this study is to reduce the negative effects

caused by two major issues faced in defect prediction, namely, the unequal distribution of data and the extensive number of

factors in defect datasets. This research paper involves assessing multiple software metrics using feature selection methods like

PCA, along with several machine learning classifiers including Adaboost, MLP, NB, J48, and Random Forest. The objective is

to classify software modules as either prone to defects or not prone to defects. The suggested model utilizes a blend of

Adaboost and random forest classifiers, incorporating PCA for dimension reduction. The experimental analysis relies on the

publicly available NASA dataset. The findings indicate that the combination of Adaboost and random forest algorithms,

coupled with PCA for the MC1 dataset, produced the most favourable outcomes compared to other datasets. The defect

prediction accuracy reached an impressive 98.52% in contrast to the algorithms employed in the study.

Keyword: Software fault Prediction(SFP), AdaBoost, Random Forest, ADRF, Principal Component Analysis(PCA)

1. Introduction

Machine learning is altering how we deal with our day-to-day tasks. It permits us to generate self-functioning types of

equipment, controls the intellectual assistants that are used in our day-to-day life, and assists to make sure the cloud runs

perfectly. Artificial intelligence cannot function without machine learning. Machine learning is also used in the field of real

applications in software testing. Now a days machine learning provides us with a superior way to do software testing. Software

testing is the process of evaluating and verifying that what the software is supposed to do. Therefore, software testing is an

essential part of the SDLC (Software Development Life Cycle). Originally, software testing was a manual process. After the

development of AI & automation testing, it becomes more efficient, accurate, and faster. Now, Artificial intelligence (AI)

is variously making over software testing. Due to these reasons, it simplifies test creation, reduces the need for test

maintenance, and makes new ways to consider the result. The main advantages of testing include preventing bugs, minimizing

development costs, and improving the rate of performance. Machine learning is a specific domain within the broader field of

artificial intelligence, which encompasses the ability of machines to mimic human behaviour. Artificial intelligence

encompasses systems that can execute intricate tasks, much like humans do when they tackle problems. ML in software testing

is the best gadget for quality assurance (QA) since test automation is developed & implemented. Testing is a crucial aspect of

the software development life cycle (SDLC). In the past, testing used to be a manual process that was monotonous, tiring,

repetitive, and consumed a significant amount of time. It also caused delays in releasing and implementing software

modifications. However, the advent of automation in testing has revolutionized this practice. Automation in testing involves

the utilization of tools powered by machine learning to carry out testing tasks, manage test data, and produce reports for future

analysis. Presently, numerous organizations employ artificial intelligence and machine learning in test automation to expedite

their SDLC procedures.

2. Literature Review

Balaram et al. proposed a model that combines ensemble random forest with an adaptive synthetic sampling algorithm,

achieving an accuracy of 0.85 [1]. Pravin Chandra et al. provide an overview of machine learning techniques for software fault

prediction, including conventional methods. Their aim is to describe the issue of fault proneness [2]. Deepak Sharma et al.

suggested a model that analyzes various machine learning techniques, highlighting important characteristics and presenting a

vertical chevron list of decision tree techniques. They assess the efficiency of each technique [3]. Osama et al. proposed a

model that employs ensemble random forests and deep learning for software fault prediction. They develop an algorithm that

outperforms the CNN algorithm [4]. C. Laksmi Prabha et al. suggest that neural networks have the lowest failure rate

compared to random forests in their study. However, dimensional classification achieves the highest detection rate. In cases of

equal accuracy predictions, the failure rate parameter can be utilized to determine the correct outcome [5]. M. Farida Begam et

al. utilize historical data to predict future software faults. They employ ensemble classifiers, specifically random forest, and

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j190

validate their models using K-Fold cross-validation technique. The results indicate that their models effectively work in all

scenarios [6].

Awni Hammouri et al. suggested the evaluation process has been showed that ML algorithms like Naïve Bayes (NB), Artificial

Neural Network (ANN) and Decision Tree (DT) can be used effectively with high accuracy rate[7]. Aimen Khalid et al. used

K-means clustering techniques for software defect prediction and used the SVM and optimized SVM models which performed

with the highest achieved accuracy 95% and 95.80% respectively [8]. Praman Deep Singh et al. has suggested a model in

which PC1 data set with Linear Classifier algorithm produced an accuracy of 93.59% [9]. M. Farida Begam et.al. proposed a

model by using SPSS tools with 10-fold cross validation extreme learning machine produced an accuracy of 87.5% [10].

3. Purposed Methodology

Fig.1. block diagram for planned system

3.1 Machine learning classifier

The goal of a machine learning classifier is to build a predictive model that can generalize from the training data to make

accurate predictions or classifications on new, unseen data. The classifier learns from the features or attributes of the training

data and their corresponding class labels. It then uses this knowledge to classify new instances based on their feature values.

3.1.1. Random forest

A potent machine learning technique known as Random Forest falls under the category of ensemble learning. By leveraging

multiple decision trees, it achieves precise and resilient predictions. Its widespread adoption stems from its capacity to handle

intricate datasets and address overfitting concerns. Essentially, Random Forest constructs a group of decision trees and

amalgamates their predictions to yield the outcome, making it an ensemble learning approach. By aggregating the predictions

of multiple trees, it can achieve better generalization and reduce the impact of individual decision trees' errors. To make

predictions with Random Forest, each decision tree in the ensemble independently predicts the class label (for classification) or

target value (for regression) of a new instance. The ultimate forecast is derived by combining the individual tree predictions

using either majority voting (for classification) or averaging (for regression). Advantages and Limitations: It offers several

advantages, including its robustness against over fitting, ability to handle high-dimensional data, and capability to capture

complex relationships in the data. It is less sensitive to noise and outliers compared to individual decision trees. However, 's

main limitations include its potential for increased computational complexity due to the construction and combination of

multiple decision trees, as well as its reduced interpretability compared to a single decision tree. It is a versatile and widely

used algorithm in various domains such as finance, healthcare, and natural language processing. It continues to be an active

area of research, with on going developments to enhance its performance and address specific challenges in different

applications.

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j191

3.1.2 AdaBoost

AdaBoost, also known as Adaptive Boosting, is an ensemble learning technique that merges the predictions of several weak

classifiers to create a robust classifier. It is widely utilized for classification tasks and is recognized for its capability to enhance

the performance of feeble learners. The algorithm prioritizes instances that were misclassified by previous classifiers, enabling

subsequent classifiers to rectify their errors. By combining the predictions of multiple models, AdaBoost generates a final

prediction. In this case, the models employed are weak classifiers or weak learners, which are modest models that exhibit

slightly better performance than random guessing. Each instance in the training data is assigned weights by AdaBoost, with all

instances initially having equal weights. Following each iteration, the weights of misclassified instances are increased, while

the weights of correctly classified instances are decreased. This way, It focuses on the instances that are harder to classify,

allowing subsequent weak learners to pay more attention to them. It offers several advantages, including its ability to handle

complex datasets, improve weak learners' performance, and adapt to the characteristics of the data. It can be applied to various

types of weak classifiers and is less prone to over fitting. However, It can be sensitive to noisy data and outliers, and it may be

computationally expensive compared to individual weak classifiers. It remains a widely used and influential algorithm in the

field of machine learning. Researchers continue to explore variations and enhancements to AdaBoost, as well as its

applications in different domains, such as computer vision, natural language processing, and bioinformatics.

3.1.3 Naïve Bayes

A commonly used machine learning algorithm for classification tasks is Naive Bayes (NB). It operates on the principles of

Bayes' theorem and assumes that features are independent of each other when conditioned on the class label. Despite its simple

and "naive" assumption, NB has demonstrated effectiveness in a variety of real-world applications including text classification,

spam filtering, sentiment analysis, and recommendation systems. Bayes' theorem forms the foundation of NB, which calculates

the probability of an event based on prior knowledge or evidence. The theorem states that the probability of a hypothesis (class

label) given the observed evidence (feature values) is proportionate to the probability of the evidence given the hypothesis,

multiplied by the prior probability of the hypothesis. In mathematical terms:

P(hypothesis | evidence) = (P(evidence | hypothesis) * P(hypothesis)) / P(evidence)

Advantages and Limitations: It has several advantages, including its simplicity, scalability, and efficiency in both training and

prediction. It can handle large feature spaces and is less prone to over fitting, making it suitable for high-dimensional datasets.

However, its naive assumption

3.1.4 Multilayer Perception

The Multilayer Perceptron (MLP) is a fundamental type of artificial neural network (ANN) that consists of multiple layers of

interconnected artificial neurons, or nodes. Each node in an MLP is typically a mathematical function that takes inputs,

performs a calculation, and produces an output. MLPs are known as feed forward neural networks, meaning that information

flows through the network in one direction, from the input layer to the output layer, without any loops or feedback connections.

It’s primary aim is to learn and model complex patterns or relationships in data. It has been widely used in various domains,

including image and speech recognition, natural language processing, and financial analysis. MLPs are particularly effective in

tasks where the input-output mapping is nonlinear and where there is a large amount of data available for training. MLPs have

been the basis for many advanced neural network architectures, such as convolutional neural networks (CNNs) for image

analysis and recurrent neural networks (RNNs) for sequential data processing. These architectures build upon the basic

principles of MLPs and extend them to handle specific data types and tasks.

3.1.5 J48

It is a popular decision tree algorithm used for classification tasks in machine learning. It is an extension of the earlier ID3

algorithm and was developed by Ross Quinlan. It builds decision trees by recursively partitioning the training data based on the

values of input features to make predictions. It is a decision tree algorithm, which represents decisions and their possible

consequences as a tree-like structure. Each internal node in the tree corresponds to a test on a particular feature, and each leaf

node represents a class label or a decision. The path from the root to a leaf node captures the sequence of decisions that lead to

the final classification. Advantages and Limitations: It offers several advantages, including its interpretability, simplicity, and

ability to handle both categorical and numerical attributes. It can handle noisy data and provides insights into the important

features for classification. However, decision trees generated by J48 tend to be biased towards features with more levels or

attributes with many values. Additionally, decision trees can be sensitive to small changes in the training data, leading to

different tree structures. It remains a widely used and influential decision tree algorithm, providing a foundation for more

advanced tree-based algorithms and ensemble methods. It is important to note that this introduction is based on the information

available up until my knowledge cut off in September 2021. If there have been any significant developments or advancements

in J48 since then, I may not be aware of them.

3.1.6 ADRF

ADRF (Adaptive Boosting with Random Forest) is a technique for ensemble learning that combines the advantages of two

algorithms to enhance the accuracy of classification. It involves using the Random Forest algorithm as the weak learner within

the AdaBoost framework. During each iteration of AdaBoost, the weak learner (Random Forest) is trained on a modified

version of the training data, where the modifications are based on weights associated with each data point. These weights are

updated by considering the errors in classification. The final classification result is obtained by aggregating the predictions of

all weak learners through weighted voting, with the weights being determined by the accuracy of each weak learner. By

combining the Random Forest and AdaBoost algorithms, this approach can offer improved accuracy in classification as well as

robustness compared to using either algorithm independently. The Random Forest component of ADRF is effective in handling

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j192

complex and high-dimensional data, while AdaBoost adaptively concentrates on challenging instances to enhance overall

performance. Through the integration of these techniques, ADRF maximizes the strengths of both algorithms, resulting in a

more powerful ensemble classifier. Top of Form

3.2 Feature Selection

Feature selection is a crucial process in machine learning, which aims to select a subset of important features from a larger pool

of available features. This selection is done to enhance the performance of the model, mitigate overfitting issues, and improve

the interpretability of the results. There exist several techniques for feature selection, and I will provide an overview of a few

commonly employed methods.

3.2.1 Principal Component Analysis (PCA):

PCA, which stands for Principal Component Analysis, is a widely used technique for reducing the dimensionality of a dataset.

Its goal is to transform a dataset with many variables into a lower-dimensional space while retaining the most crucial

information. To achieve this, PCA identifies the main directions, known as principal components, that capture the highest

amount of variation in the data. The process typically begins by standardizing the dataset, where each feature is adjusted to

have a mean of zero and a variance of one. After standardization, PCA calculates the covariance matrix of the standardized

data. This matrix describes the relationships between different features and measures how they vary together. The subsequent

step involves performing an Eigen decomposition of the covariance matrix. This decomposition breaks down the matrix into its

eigenvectors and eigenvalues. The eigenvectors represent the principal components, and the corresponding eigenvalues

indicate the amount of variation explained by each principal component. It is important to consider that the selection of a

feature extraction method should depend on the specific characteristics of the dataset, the problem being addressed, and the

requirements of the model. Experimentation with different techniques and assessing their impact on the model's performance is

necessary to identify the most suitable approach.

4.Experimental discussion and result analysis.

The WEKA tool was used to evaluate the PCA+ADRF model on a computer system that had a core-i7, 3.4GHz processor,

16GB of RAM, and was running the Windows 11 operating system. To perform software fault prediction, NASA datasets such

as JM1, PC5, PC4, MC1 and KC1 were employed. Further details regarding the parameters can be found in the subsequent

description.

Sensitivity also known as the True Positive Rate, refers to the ratio of correctly predicted positive instances to the total number

of actual positive instances. It can be calculated using the formula Sensitivity = True Positives (TP) divided by the sum of True

Positives and False Negatives (TP + FN).

 Specificity also known as the true negative rate, refers to the likelihood that a true negative result will be obtained from a

negative test. Mathematically, it can be calculated by dividing the number of true negatives (TN) by the sum of true negatives

and false positives (TN + FP).

Accuracy (ACC) is a metric that measures the proportion of correct predictions compared to the total number of predictions

made. It is calculated by dividing the sum of true positives (TP) and true negatives (TN) by the sum of true positives, true

negatives, false positives (FP), and false negatives (FN).

Precision (PPV) is a measure that indicates how accurate a model is in correctly classifying positive samples. It is calculated

by dividing the number of true positive samples by the total number of positive samples classified, regardless of whether they

were classified correctly or incorrectly. The formula for Precision is: PPV = True Positives (TP) divided by the sum of True

Positives and False Positives (TP + FP).

 F1 Score (F1) is a metric used to assess the performance of a particular model. It measures the model's effectiveness by

considering both precision and recall through a harmonic average. Essentially, the F1 score provides a statistical evaluation of

how well the model performs. It is calculated by considering true positives (TP), false positives (FP), and false negatives (FN)

according to the formula: F1 = 2TP / (2TP + FP + FN). The resulting F1 score ranges from 0 (lowest) to 1 (highest),

representing the average performance of a person based on precision and recall.

Matthews Correlation Coefficient (MCC) is a metric used in machine learning to assess the accuracy of binary classifications

involving two classes. It considers true positives, true negatives, false positives, and false negatives, making it a well-balanced

measure suitable for cases where there is a significant difference in class sizes. Essentially, the MCC acts as a correlation

coefficient between the predicted and observed binary classifications, providing a value that ranges from -1 to +1. A coefficient

of +1 indicates a perfect prediction, 0 suggests an average random prediction, and -1 signifies an inverse prediction.

MCC= TP*TN-FP*FN/sqrt((TP+FP) *(TP+FN) *(TN+FP) *(TN+FN))

Were

TP (True Positive)- Correctly classified positive cases

TN (True Negative)-Correctly classified negative cases

FN (False Negative)-Incorrectly classified positive cases

FP (False Positive)-Incorrectly classified negative cases.

Fig.1 represents the Block diagram for planned System. In Table.1 the performance evaluation is carried out without using any

feature selection methods. In this table we have used 6 different machine learning classifiers (AB, RF, MLP, J48, NB, ADRF)

on different data sets (JM1,PC4,PC5,KC1,MC1). The accuracy out perform in case of ADRF classifier on MC1 with a value of

6 cross validations which is 98.14%. The same operation with PCA is carried out on table.2, PCA+ADRF produced a highest

accuracy of 98.52% on MC1 dataset with 9 fold cross validation. A comparative study has been done in graphical form

between classifier without feature selection and accuracy which is represented in fig.2 where as the same operation is

performed with PCA in fig.3 for JM1 dataset. Similarly the above operation is performed on MC1 dataset (fig.4,fig.5), PC5

dataset(fig.6,fig.7), KC1 dataset (fig.7, fig.8) and PC4 dataset (fig.9,fig.10) respectively. In Table.3 a comparison has been

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j193

made between some existing methodology and purposed system which conclude that the proposed system PCA+ADRF

outperformed in accuracy.

Table 1. Performance Evaluation without Feature Selection

Data Set Classify CV Sensitivity Specificity Precision F1 MCC Accuracy

JM1 AB 5 78.51 0 1 87.96 0 78.51

JM1 RF 5 81.14 56.43 96.12 88 23.33 79.41

JM1 NB 8 80.97 48.91 94.65 87.28 19.99 78.33

JM1 J48 7 81.50 43.49 91.41 86.17 19.72 76.96

JM1 MLP 6 79.78 57.36 98.15 88.02 16.4 79.02

JM1 ADRF 7 66.78 80.45 40.98 50.79 39.62 79.50

MC1 AB 6 97.74 1 1 98.85 14.58 97.74

MC1 RF 9 97.08 72.73 99.85 98.95 34.94 97.94

MC1 NB 9 98.11 63.35 90.9 94.37 8.7 89.40

MC1 J48 5 97.93 41.67 99.64 98.77 20.4 97.59

MC1 MLP 8 97.82 27.27 99.59 98.7 12.38 97.43

MC1 ADRF 6 97.74 1 1 98.85 14.58 98.14

PC5 AB 6 52.7 77.74 33.12 40.68 25.78 73.41

PC5 RF 7 66.78 80.45 40.98 50.79 39.62 78.14

PC5 NB 9 43.78 83.27 63.48 51.82 29.65 67.50

PC5 J48 9 56.1 82.7 53.72 54.88 38.27 75.69

PC5 MLP 8 52.55 78.52 37.15 43.53 27.54 73.47

PC5 ADRF 7 66.78 80.45 40.98 50.79 39.62 78.62

KC1 AB 9 61.84 75.88 14.97 24.1 20.95 74.98

KC1 RF 8 62.96 79.24 32.48 42.86 32.85 77.01

KC1 NB 7 49.75 78.15 31.53 38.6 23.63 73.37

KC1 J48 10 53.37 79.18 35.35 42.53 28.06 74.64

KC1 MLP 10 61.21 77.23 22.61 33.02 25.88 75.66

KC1 ADRF 8 62.96 79.24 32.48 42.86 32.85 77.30

PC4 AB 10 89.47 69.01 98.02 93.55 38.77 88.34

PC4 RF 9 90.45 74.7 98.11 94.12 46.46 89.43

PC4 NB 10 90.28 50.26 95.41 92.77 37.57 87.18

PC4 J48 10 92.48 58.6 94.14 93.3 48.54 88.34

PC4 MLP 10 92.75 60.9 94.5 93.62 50.84 88.89

PC4 ADRF 9 90.45 74.17 98.12 94.14 46.48 89.50

Table 2. Performance Evaluation with PCA

Data Set Classify No of

Features

CV Sensitivit

y

Specificit

y

Precision F1 MCC Accuracy

JM1 PCA+AB 16 5 78.51 0 100 87.96 0 78.53

JM1 PCA+RF 16 5 81.14 56.43 96.12 88.00 23.33 79.43

JM1 PCA+NB 16 8 80.97 48.91 94.65 87.28 19.99 78.35

JM1 PCA+J48 16 8 80.95 40.18 91.23 85.78 16.42 85.78

JM1 PCA+MLP 16 6 79.78 57.36 98.51 88.02 16.40 79.05

JM1 PCA+ADR

F

16 5 81.15 56.48 96.14 88.12 23.34 86.11

MC1 PCA+AB 9 5 97.69 0.00 1.00 98.83 0.00 97.81

MC1 PCA+RF 9 9 98.08 72.73 99.85 98.95 34.94 97.98

MC1 PCA+NB 9 9 98.11 6.35 90.89 94.36 8.70 89.45

MC1 PCA+J48 9 5 97.93 41.67 99.64 98.77 20.40 97.63

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j194

MC1 PCA+MLP 9 8 97.82 27.27 99.59 98.70 12.38 97.48

MC1 PCA+AD

RF

9 9 98.55 72.81 99.95 98.96 34.97 98.52

PC5 PCA+AB 16 7 57.60 77.62 30.57 39.94 27.85 74.69

PC5 PCA+RF 16 7 66.78 80.45 40.98 50.79 39.62 78.21

PC5 PCA+NB 16 9 60.37 75.95 21.02 31.18 23.94 74.46

PC5 PCA+J48 16 9 56.10 82.70 53.72 54.88 38.27 75.72

PC5 PCA+MLP 16 10 55.89 78.43 35.24 43.23 29.10 74.52

PC5 PCA+ADR

F

16 7 66.81 80.46 40.98 50.79 39.61 78.99

KC1 PCA+AB 16 9 61.84 75.88 14.97 24.10 20.95 75.14

KC1 PCA+RF 16 8 62.96 79.24 32.48 42.86 32.85 77.01

KC1 PCA+NB 16 7 49.75 78.15 31.53 38.60 23.63 73.37

KC1 PCA+J48 16 10 53.37 79.18 35.35 42.53 28.06 75.11

KC1 PCA+MLP 16 8 61.61 77.12 21.97 32.39 25.68 75.79

KC1 PCA+ADR

F

16 8 62.96 79.35 32.51 42.86 32.87 77.81

PC4 PCA+AB 10 10 89.47 69.01 98.02 93.55 38.77 88.41

PC4 PCA+RF 10 8 91.11 75.53 97.93 94.40 50.35 89.46

PC4 PCA+NB 10 10 90.28 55.26 95.41 92.77 37.57 87.25

PC4 PCA+J48 10 10 92.48 58.60 94.14 93.30 48.54 88.41

PC4 PCA+MLP 10 10 92.75 60.90 94.50 93.62 50.84 88.95

PC4 PCA+ADR

F

10 8 91.21 75.55 97.93 94.40 50.45 89.59

Fig.2: Accuracy for JM1 dataset without Feature Selection

Fig.3: Accuracy for JM1dataset with feature selection

78.51

79.41

78.33

76.96

79.02

79.50

75.5

76

76.5

77

77.5

78

78.5

79

79.5

80

AB RF NB J48 MLP ADRF

A
C

C
U

R
A

C
Y

CLASSIFIER

78.53
79.43

78.35

85.78

79.05

86.11

74

76

78

80

82

84

86

88

PCA+AB PCA+RF PCA+NB PCA+J48 PCA+MLP PCA+ADRF

A
C

C
U

R
A

C
Y

CLASSIFIER

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j195

Fig.4: Accuracy for MC1 dataset without Feature Selection

Fig.5 : Accuracy for MC1 dataset with feature selection

Fig.4: Accuracy for PC5 dataset without Feature Selection

97.74 97.94

89.4

97.59 97.43
98.14

84

86

88

90

92

94

96

98

100

AB RF NB J48 MLP ADRF

A
C

C
U

R
A

C
Y

CLASSIFIER

97.81 97.98

89.45

97.63 97.48
98.52

84

86

88

90

92

94

96

98

100

PCA+AB PCA+RF PCA+NB PCA+J48 PCA+MLP PCA+ADRF

A
C

C
U

R
A

C
Y

CLASSIFIER

73.41

78.14

67.5

75.69

73.47

78.62

60

62

64

66

68

70

72

74

76

78

80

AB RF NB J48 MLP ADRF

A
C

C
U

R
A

C
Y

CLASSIFIER

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j196

Fig.5: Accuracy for PC5 dataset with feature selection

Fig.6: Accuracy for KC1 dataset without Feature Selection

Fig.7: Accuracy for KC1 dataset with feature selection

74.69

78.21

74.46

75.72

74.52

78.99

72

73

74

75

76

77

78

79

80

PCA+AB PCA+RF PCA+NB PCA+J48 PCA+MLP PCA+ADRF

A
C

C
U

R
A

C
Y

CLASSIFIER

74.98

77.01

73.37

74.64

75.66

77.3

71

72

73

74

75

76

77

78

AB RF NB J48 MLP ADRF

A
C
C
U
R
A
C
Y

CLASSIFIER

75.14

77.01

73.37

75.11

75.79

77.81

71

72

73

74

75

76

77

78

79

PCA+AB PCA+RF PCA+NB PCA+J48 PCA+MLP PCA+ADRF

A
C
C
U
R
A
C
Y

CLASSIFIER

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j197

Fig.10: Accuracy for PC4 dataset without Feature Selection

Fig.11: Accuracy for PC4 dataset with feature selection

Table.3: Performance Comparison of Existing Methodology

References Methodologies Accuracy(%)

Balaram et al. [1] Random Forest+ ASSA 85.00

Aimen Khalid et al. [8] KNN +SVM 95.80

Praman Deep Singh et al.[9] Linear Regression 93.59

M. Farida Begam et.al.[10] ELM 87.5

R. Jayanthi et al. [11] PCA+ANN 93.64

Huihua Lu et al. [20] PCA+RF 95.18

Proposed Methodology PCA+ADRF 98.52

5. Conclusion

In our recent study, we have created a precise approach called PCA+ADRF to detect software defects within individual modules.

This method involves using PCA to reduce the complexity of the features. Then, we employ a combination of two algorithms, AD

and RF, known as ADRF, to develop a highly accurate and automated classifier. Through empirical findings, we have

demonstrated that the PCA+ADRF method outperforms all other existing techniques across six different datasets. Specifically,

when applied to the MC1 dataset, our approach achieves an outstanding accuracy of 98.52%. Researchers are still interested in

developing defect prediction techniques for software systems that are more precise and efficient. Our study contributes to early

problem detection, which saves time and reduces the overall cost of software projects. Further research can focus on developing

various hybrid models that can predict software system flaws with improved accuracy and fewer errors.

88.34

89.43

87.18

88.34

88.89

89.5

86

86.5

87

87.5

88

88.5

89

89.5

90

AB RF NB J48 MLP ADRF

A
C
C
U
R
A
C
Y

CLASSIFIER

88.41

89.46

87.25

88.41

88.95

89.59

86

86.5

87

87.5

88

88.5

89

89.5

90

PCA+AB PCA+RF PCA+NB PCA+J48 PCA+MLP PCA+ADRF

A
C
C
U
R
A
C
Y

CLASSIFIER

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j198

References

[1] Balaram, A., Vasundra, S. Prediction of software fault-prone classes using ensemble random forest with adaptive synthetic

sampling algorithm. Autom Software Eng 29, 6 (2022). https://doi.org/10.1007/s10515-021-00311-z

 [2] Sharma, Deepak & Chandra, Pravin. (2018). Software Fault Prediction Using Machine-Learning Techniques.

10.1007/978-981-10-5547-8_56.

[3] Alqasem, Osama & Akour, Mohammed. (2019). Software Fault Prediction Using Deep Learning Algorithms. International

Journal of Open Source Software and Processes. 10. 1-19. 10.4018/IJOSSP.2019100101.

[5] C. L. Prabha and N. Shivakumar, "Software Defect Prediction Using Machine Learning Techniques," 2020 4th

International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India, 2020, pp. 728-733, doi:

10.1109/ICOEI48184.2020.9142909.

[6] Immaculate, S. & Begam, M. & Floramary, M.. (2019). Software Bug Prediction Using Supervised Machine Learning

Algorithms. 1-7. 10.1109/IconDSC.2019.8816965.

[7] Hammouri, Awni & Hammad, Mustafa & Alnabhan, Mohammad & Alsarayrah, Fatima. (2018). Software Bug Prediction

using Machine Learning Approach. International Journal of Advanced Computer Science and Applications. 9.

10.14569/IJACSA.2018.090212.

[8] Khalid, Aimen & Badshah, Gran & Ayub, Nasir & Shiraz, Muhammad & Ghouse, Mohamed. (2023). Software Defect

Prediction Analysis Using Machine Learning Techniques. Sustainability. 15. 5517. 10.3390/su15065517.

[9] Singh, Praman & Chug, Anuradha. (2017). Software defect prediction analysis using machine learning algorithms. 775-

781. 10.1109/CONFLUENCE.2017.7943255.

[10] Farida Begam, M. & Floramary, M.. (2019). Software Bug Prediction Using Supervised Machine Learning Algorithms.

1-7. 10.1109/IconDSC.2019.8816965.

[11] R. Jayanthi and L. Florence, "Software defect prediction techniques using metrics based on neural network

classifiers", Cluster Computing, vol. 22, no. 1, pp. 77-88, 2019.

[12] E.A. Felix and S.P. Lee, "Integrated approach to software defect prediction", IEEE Access, vol. 5, pp. 21524-21547,

2017.

[13] T. Wang, Z. Zhang, X. Jing and L. Zhang, "Multiple kernel ensemble learning for software defect prediction", Autom.

Software. Eng., vol. 23, pp. 569-590, 2015.

[14] Z. Xu, J. Xuan, J. Liu and X. Cui, "MICHAC: defect prediction via feature selection based on maximal information

coefficient with hierarchical agglomerative clustering", 2016 IEEE 23rd International Conference on Software Analysis

Evolution and Reengineering (SANER), pp. 370-381, 2016.

[15] D. Ryu and J. Baik, "Effective multi-objective naïve Bayes learning for cross-project defect prediction", Appl. Soft

Comput., vol. 49, no. 1062, 2016.

[16] C. Shan, B. Chen, C. Hu, J. Xue and N. Li, "Software defect prediction model based on LLE and SVM", Proceedings of

the Communications Security Conference (CSC ‘14), pp. 1-5, 2014.

[17] K. Han, J.-H. Cao, S.-H. Chen and W.-W. Liu, "A software reliability prediction method based on software development

process", Quality Reliability Risk Maintenance and Safety Engineering (QR2MSE) 2013 International Conference on, pp. 280-

283, 2013.

[18] S. Parthipan, S. Senthil Velan and C. Babu, "Design level metrics to measure the complexity across versions of ao

software", Advanced Communication Control and Computing Technologies (ICACCCT) 2014 International Conference on, pp.

1708-1714, 2014.

[19] A.M. Bautista, T.S. Feliu, J. Mejia, M. Munoz, A. Rocha and J. Calvo-Manzano, "Defect prediction in software

repositories with artificial neural networks" in Trends and Applications in Software Engineering. Advances in Intelligent

Systems and Computing, Cham:Springer, vol. 405, 2016.

[20] H. Lu, B. Cukic and M. Culp, "Software defect prediction using semisupervised learning with dimension

reduction", Automated Software Engineering (ASE) 2012 Proceedings of the 27th IEEE/ACM International Conference on, pp.

314-317, 2012.

[21] M. Alenezi, S. Banitaan and Q. Obeidat, "Fault-proneness of open source systems: An empirical analysis", Synapse, vol.

1, pp. 256, 2014.

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306926 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j199

[22] Ahmed Iqbal et al., "Performance Analysis of Machine Learning Techniques on Software Defect Prediction using NASA

Datasets", Int. J. Adv. Comput. Sci. Appl, vol. 10, no. 5, 2019.

[23] Malkit Singh and Dalwinder Singh Salaria, "Software defect prediction tool based on neural network", International

Journal of Computer Applications, vol. 70, no. 22, 2013.

[24] I. A and A. Saha, "Software Defect Prediction: A Comparison Between Artificial Neural Network and Support Vector

Machine", Adv. Comput. Commun. Technol, pp. 51-61, 2017.

[25] Abdullah Alsaeedi and Mohammad Zubair Khan, "Software Defect Prediction Using Supervised Machine Learning and

Ensemble Techniques: A Comparative Study", Journal of Software Engineering and Applications, vol. 12, no. 5, pp. 85-100,

2019.

[26] Shuo Wang and Xin Yao, "Using class imbalance learning for software defect prediction", IEEE Transactions on

Reliability, vol. 62, no. 2, pp. 434-443, 2013.

[27] Chen, Lq., Wang, C. & Song, Sl. Software defect prediction based on nested-stacking and heterogeneous feature

selection. Complex Intell. Syst. 8, 3333–3348 (2022). https://doi.org/10.1007/s40747-022-00676-y

[28] Bowes D, Hall T, Petrić J (2018) Software defect prediction: do different classifiers find the same defects? Software Qual

J 26(2):525–552

[29] Khuat T T, Le M H (2020) Evaluation of sampling-based ensembles of classifiers on imbalanced data for software defect

prediction problems.SN Computer Science 1(2):1-16

[30] Bejjanki KK, Gyani J, Gugulothu N (2020) Class imbalance reduction (CIR): a novel approach to software defect

prediction in the presence of class imbalance. Symmetry 2(3):407

http://www.jetir.org/
https://doi.org/10.1007/s40747-022-00676-y

