
 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j299

Detecting injection attacks and vulnerabilities inside

the DBMS

Dr.K.N.S Lakshmi, 2Manta Vasudeva kumar,
1head Professor 2MCA 2nd year,

 1Department of Computer Science, Sankethika Vidya Parishad Engineering College,
 1Sankethika Vidya Parishad Engineering College, Visakhapatnam, India

 Visakhapatnam, India

ABSTRACT

Nearly all businesses nowadays attempt to use back end storage to keep their important data safe. These databases frequently include weak

applications, like as front-end web pages for carrying out the activities, which makes injection attacks possible. Because the system cannot

easily distinguish between a regular query and a SQL attack, it is particularly difficult to detect such attacks. SEPTIC, a mechanism for

DBMS attack prevention that can also help with the identification of the vulnerabilities in the applications, is the solution we suggest to

identify such attacks. The technique was added to My SQL and experimentally tested with a number of different programmes and protection

strategies. No false negatives or false positives were found using SEPTIC, according to our findings.

KEYWORDS: database, weak applications, attack prevention, detect, identification, vulnerabilities

I.INTRODUCTION

The detection of SQL injection attacks[1] is the focus of our effort. SQL injection is only a code injection technique that compromises the

application's database layer's[2] security. Our project focuses on stopping users from trying to compromise database security by detecting SQL

injection attacks. SQL Injections[3] have the ability to destroy or remove database tables as well as change data (delete, update, add, etc.). It

is employed to target applications that rely on data. Unchecked input is a significant weakness[14] that makes dangerous database attacks

possible. Attackers exploit this and inject their code into programmes to carry out nefarious deeds. which executes malicious SQL statements

that have been entered into a field. The attacker sends a specially encoded SQL command meant to corrupt the database .Investigations

conducted over the years have consistently pointed to designers' lack of safety consciousness in online development to cleansed contribution

as the cause of SQLIA, and as a result they have floated towards code-based sterilisation for their suggested solutions to address SQLIA. As

a result, Like wi Exploration has drifted towards code-based sterilisation for their suggested solutions to handle SQLIA. Over the years,

LikewiExploration has typically identified designers' lack of safety mindfulness in online progression to disinfected contribution as the cause

of SQLIA. In a similar vein, SQLIA vulnerability is a direct byproduct of the kind-hearted open content preparation of the SQL engine itself,

rendering both legacy and cloud arrangements lacking in disinfection defenseless. A shameful SQL lobby hunt [1] that reports new patterns.

Examples of SQL tokens and images will be present in the assault marks at injection points that are SQLIA positive, whereas legitimate web

solicitations will appear as expected data from the application. In this study, we put together a web application for precognitive examination

with a lot of learning data to get a classifier ready.

II.EXISTING SYSTEM

Two of the earliest efforts on identifying SQLI by comparing the structure of a SQL query before and after the addition of inputs and before

the DBMS executes the queries are AMNESIA and CANDID . both rely The query models convert all characters in query statements—aside

from user inputs—to shadow characters and generate shadow values for all user-supplied string inputs. Second, it computes the query for a

query execution and checks to see if the root nodes from the two parsed trees are equal. Like SEPTIC, DIGLOSSIA recognises syntax

structure and mimicry attacks, but unlike SEPTIC, it does not recognise second-order SQLI because it only processes user-inputted queries,

nor does it recognise encoding and evasion space character attacks because they do not change the parse tree root nodes prior to the DBMS

processing the malicious user inputs. It is more adept at handling some semantic mismatch difficulties than AMNESIA and CANDID, but it

does not resolve all of them. Even though it handles some semantic mismatch issues better than AMNESIA and CANDID, it does not solve

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j300

all of them. AMNESIA and CANDID were two of the first attempts to discover SQLI by contrasting the structure of a SQL query before

and after the inclusion of inputs and before the DBMS runs the queries. both depend The query models generate shadow values for all user-

supplied string inputs and convert all characters in query statements—aside from user inputs—to shadow characters. Secondly, it determines

the

Disadvantages:

1. There is no SEPTIC that has not missed detections (false negatives) or reported false positives.

2. Complex and dynamic queries are not supported by any process.

III.PROPOSED SYSTEM

We are creating an online application where both the user and the administrator [21]must contribute. The key component is that as soon as the

user chooses a product, it is added to the cart for further processing, but first, we must create an account on the website hosting the application

so that we can access it again in the future. The user's task in this instance is to shop, or you could say to purchase a product, and the admin's

task is to show the product in terms of numerous categories. The prevention in two aspects is the goal of the development. Online prevention

is used when logging into accounts that are now active, and the second time is when we save personal information. We are creating an online

application where both the user and the administrator must contribute. The key component is that as soon as the user chooses a product, it is

added to the cart for further processing, but first, we must create an account on the website hosting the application so that we can access it

again in the future. The user's task in this instance is to shop, or you could say to purchase a product, and the admin's task is to show the

product in terms of numerous categories. The prevention in two aspects is the goal of the development. Online prevention is used when

logging into accounts that are now active, and the second time is when we save personal information.

This paper's key contributions are:

 (1) Detecting SQL injection attacks.

(2) halt database attacks and give databases security

 FIG1. System architecture

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j301

IV.SYSTEM ARCHITECTURE

 FIG2: system architecture

Application Server

The application server operates some tasks like managing a cloud that offers data storage services. View all Data Owners and give consent

view all users who are authorised, Observe all data contents along with rankings and digital signatures.View all data contents without a

digital signature, including rankings and ratings. View user search activity, View all SQL Injection Intruders, including their IP address,

date, and time. View the ranking of all documents, View all invaders and provide a link to the chart (name of the number of attacked

documents).

Generator of signatures

The person who creates the digital signature is known as the "signature generator," and they carry out the actions listed below, including

logging in, viewing all owner documents and providing a choice to create a digital signature, as well as viewing all data contents with rank

and providing a choice to create a secret key using RSA.

Nave Bayes: The Nave Bayes machine learning algorithm is used to detect SQL Injection attacks. A classification machine learning

algorithm called Naive Bayes makes the assumption that each incidence is unrelated to and independent of every other incident.

The Naive Bayes classifier is employed to distinguish between malicious and benign SQL queries.

The Advanced Encryption Standard (AES) algorithm: is used to safeguard sensitive data from attackers. Compared to DES, the AES is

more secure. AES encryption is broken down into three phases. Initial Round, Main Round, and Final Round are in order. These three phases

include various operations. Use three operations on the cypher text to decrypt it using the AES (Advanced Encryption Standard).

1) The Reverse Final Round]

2) Main Round Reverse

3) Reverse First round.

AES is built on various keys with sizes of 128, 192, and 256 bits.

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j302

SEPTIC: In this case, we're employing SEPTIC methods to protect the database system from various attacker attacks by adhering to three

modes.

Training Mode, first

Detection Mode

Prevention Modee

V.DBMS INJECTION ATTACKS

As previously stated, we define semantic mismatch as an inaccurate view of how the DBMS executes SQL queries; the developer expects

queries to be handled one way, while they are really executed in another way. This discrepancy frequently causes errors in the protections'

implementation in the source code of applications, leaving those applications open to SQL injection and other DBMS-related attacks. The

issue is subjective in that it is dependent on the coder, although mistakes do happen occasionally. Sanitising user inputs prior to usage is a

frequent practise to try to prevent SQLI.

 TABLE1: classes of attacks against dbms

'admin' as the username AND 'foo' as the password. This attack works since there is no need for a password because the query is equal to

SELECT * FROM users WHERE username='admin' (the two characters -- indicate that the remainder of the code in the line should be

ignored). This is also a S.1 attack because the query's structure has been altered by the removal of the section that checks the password..Other

masquerading methods are used in the other A subclasses. The attacker in class A.2 encodes some characters in Unicode (for instance, the

prime is encoded as U+02BC). A function is dynamically inserted and called in class A.3 (for instance, the prime is encoded as

char(39)).Class A.4 manipulates inquiries by using identical strings and spaces, such as hiding a space with the comment /**/ .Class B, which

consists of stored procedures, could be abused in a manner similar to how queries written in application code are.Attacks of type S.1 or S.2

may result from these processes accepting inputs that change or mimic the syntactic structure of the query. Blind SQLI attacks, which fall

under Class C, try to gather data from the database by watching how the application handles various inputs. These assaults could alternatively

be classified as S.1 or S.2 offences.Class D, "insert data," attempts to insert created data into the database (INSERT, UPDATE), where it

can then be later retrieved and used in an application query. The base of stored injection attacks (see subsequent classes), this attack type is

another instance of semantic mismatch.

VI.INJECTION ATTACK DETECTION

How SEPTIC finds active attacks is described in this section. To do this, Table 1's classes are split into two groups—SQL injection and

stored injection—each of which is subject to a distinct processing method.

Detection of SQLI

It is possible to identify SQLI attacks by determining whether a query belongs to class S.1 or S.2. Because all SQLI assault falls under one

of these groups, they are known as primordial for SQL injection. According to this logic, a SQL injection attack is not one if it does not alter

the query structure (class S.1) or alter the query that mimics the structure (class S.2); instead, it must leave the query unchanged.By comparing

Qval with the related query model syntactically (for class S.1) and structurally (for class S.2), SEPTIC detects attacks.

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j303

 FIG 3. CODE FOR DETECTION

 A)structural attack B) mimicry attack

 FIG4: QSs resulting from structural and mimicry attack

Consider a second-order SQLI attack that is executed as follows: (i) A malicious user enters information that causes the programme to place

adminU+02BC- — (i.e., admin'——with the prime represented in unicode as U+02BC——) in the database; (ii) subsequently, this

information is taken from the database and entered in the user field in the aforementioned query;(iii) The query is parsed and verified by the

DBMS, which decodes U+02BC into the prime character; query SELECT name FROM users in the output WHERE user= admin belongs to

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j304

class S.1 since it changes the query's structure. The QS is shown in Figure 5(a) for this question. When SEPTIC analyses the QS and QM, it

notices that they do not match because each have different numbers of nodes during structural verification.

Stored injection detection

Attacks using stored injection are conducted in two steps. The database is first compromised by the introduction of harmful data, and then

that data is removed and misused in another way. Consider a stored XSS (class F), for instance, where the data contains a malicious script.

The script is saved in the first phase, and then it is retrieved from the database and added to a web page so that a browser can view it in the

second. Since they don't alter queries, these attacks cannot be recognized as SQLI attacks. SEPTIC stops stored injection attacks in their first

stages by looking for malicious data in INSERT and UPDATE queries that insert data into the database, and then testing that data using

plugins. As a result, a collection of plugins—typically one for each sort of attack—is employed for this task.The plugins look through the

queries looking for code that may be run by a server-side application (php), a shell script, an operating system command, or a browser

(JavaScript, VBScript). The detection method does a preliminary check because starting the plugins may add some overhead. Thus, the

algorithm operates in two steps:

1) Filtering - checks for suspicious strings like the following (F), protocol keywords (e.g., http), and extensions of executable or script files

(e.g., exe, php) (G); special characters (e.g., ; and |) (H); and attributes (e.g.,, >, href, and JavaScript). If none is located, the search is over.

2) Testing involves sending the appropriate plugin the input for review. For instance, if the href string is discovered during the filtering

process, the information[19] is given to a plugin that can identify stored XSS threats[17]. This plugin calls an HTML parser to see if any

additional tags emerge in the page that would indicate the presence of a script after inserting the input into a basic HTML page with the three

major tags (html>, head>, and body>).

Consider a web application that registers new users, and a malicious client enters the JavaScript code script>alert(''Hello!'');/script> as the

user's first name. The plugin that detects stored XSS attacks is called by SEPTIC after it filters the query and discovers two characters, and

>, that are connected to XSS. This plugin calls an HTML parser, inserts this input into a webpage, and discovers that the input contains a

script. So, it marks a store.

VII.IMPLEMENTATION

Data Owner:

The data owner uploads their data to the cloud server[21] in this module. The data owner encrypts the file and the index name for security

reasons before storing them in the cloud. A specific file can be deleted by the data encryptor. He can also view transactions depending on

the files he uploaded to the cloud and perform the following tasks: Data owners, please login and register. Add information on the military,

the judiciary, government, and sports, as well as create digital signatures based on desc and ccat, cname, and cpublication. Browse and then

enc data desc to upload, add an image. Observe all data contents with rankings and ratings and a digital signature.View all submitted

information and rankings without a digital signature, Download required, see file.

Data User:

User logs in to this module using user name and password. After logging in, users can perform several actions including view their profiles.

Obtain the application server's secret key and review the response, Search data by its keyword, read full details, and automatically take the

secret key if permission is granted. Verify the file's signature before downloading. If the signature is incorrect, do not download. Models for

building and managing queries. The method was tested[20] using a variety of applications, including open-source PHP web applications and

synthetic code with intentional flaws included. This evaluation[12] suggested that the mechanism could identify the vulnerabilities in

application code when attacks attempted to exploit them, perform better than all other tools in the literature and the WAF most commonly

used in practice, and block the attacks it was programmed to handle. SEPTIC's performance overhead evaluation in MySQL shows an impact

of roughly 2.2%, indicating that our method can be applied to real systems.

VIII.CONCLUSION AND FUTURE WORK

This study investigated[11] a novel method of database defense[4] against attacks on websites and enterprise applications. In order to protect

the DBMS from SQLI and stored injection attacks, it proposed the idea of catching attacks inside the system. Furthermore, we demonstrated

that it is possible to recognize and thwart sophisticated assaults[5], including those linked to the semantic mismatch[16] problem, by integrating

protection within the DBMS. When attacks were discovered[23], a method of finding weaknesses in application code was provided as a second

concept. In addition, SEPTIC, a method built into MySQL, was presented in this work. SEPTIC utilizes a learning phase, as well as ageing

and quarantine procedures that deal with models for building and managing queries. The method was tested using a variety of applications,

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j305

including open-source PHP web applications[18] and synthetic code[11] with intentional flaws included. This evaluation suggested that the

mechanism could identify the vulnerabilities[6] in application code when attacks attempted to exploit them, perform [better than all other tools

in the literature and the WAF most commonly used in practice, and block the attacks it was programmed to handle. SEPTIC's performance

overhead evaluation in MySQL [25]shows an impact of about 2.2%, which suggests that our method can be used to real systems. With regard

to models for creating and managing enquiries[24], SEPTIC makes use of a learning phase as well as ageing and quarantine procedures.

Several programmers, including open-source PHP[7] web applications[8] and artificial code that contained errors[15] on purpose were used to

test the method. The second proposal was a way for discovering flaws[9] in application code[10]. Additionally, SEPTIC, a feature of MySQL.

IX.REFERENCES

[1] An Article on reference of injection attacks

https://dl.acm.org/doi/abs/10.1145/3332371

[2] An Article on reference of application's database

https://eric.ed.gov/?id=EJ1329085

[3] An Article on book reference of SQL Injections

https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-020-00113-y?ref=https://githubhelp.com

[4] An Article on book reference of database defense

 https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6551

[5] An Article on reference of sophisticated assaults

https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.5899

[6] An Article on reference of vulnerabilities

https://ieeexplore.ieee.org/abstract/document/9324852

[7] An Article on reference of PHP

https://link.springer.com/chapter/10.1007/978-1-4842-6791-2_2

[8] An Article on reference of web applications

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-014-0123-5

[9] An Article on reference of discovering flaws

https://www.sciencedirect.com/science/article/abs/pii/S0167404811001684

[10] An Article on reference of application code

https://journals.sagepub.com/doi/abs/10.1177/0002716215569441?journalCode=anna

[11] An Article on book reference of synthetic code

https://www.sciencedirect.com/science/article/abs/pii/S0958166922000118

[12] An Article on book reference of investigated

https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-4571(2000)51:7%3C635::AID-ASI6%3E3.0.CO;2-H

[13] An Article on book reference of evaluation

https://www.sciencedirect.com/science/article/abs/pii/S1751157715300900

[14] An Article on book reference of weakness

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j306

https://appliednetsci.springeropen.com/articles/10.1007/s41109-017-0034-3

[15] An Article on book reference of errors

 https://royalsocietypublishing.org/doi/full/10.1098/rspa.2020.0538

[16] An Article on reference of mismatch

 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009393

[17] An Article on reference of threats

 https://www.journals.uchicago.edu/doi/full/10.1086/710531

[18] An Article on reference of web applications

https://www.sciencedirect.com/science/article/abs/pii/S0950584919302551

[19] An Article on reference of information

https://journals.sagepub.com/doi/abs/10.1111/j.0956-7976.2004.00723.x?journalCode=pssa

[20] An Article on reference of tested

https://journals.lww.com/jbjsjournal/Abstract/2014/09030/Comparison_of_Ultrasound_and_Electrodiagnostic.15.aspx

[21] An Article on book reference of cloud server

https://www.emerald.com/insight/content/doi/10.1108/LHT-01-2021-0031/full/html

[22] An Article on book reference of administrator

 https://www.jstor.org/stable/1058497

[23] An Article on reference of discovered

https://www.emerald.com/insight/content/doi/10.1108/RSR-07-2014-0023/full/html?journalCode=rsr

[24] An Article on reference of enquiries

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-908X.2005.tb00904.x

[25] An Article on reference of MySQL

https://link.springer.com/article/10.1007/s42979-021-00716-3

X.BIBLOGRAPHY

Dr.K.N.S Lakshmi currently working as professor from department of computer science and engineering

at sankethika vidya parishad engineering college,affailated to Andhra university ,accredicted by

NAAC.madam is currently working as Head of the department ,published papers in various national&

international journals.her subjects of interests machine learning,data mining&ware housing .

http://www.jetir.org/

 2023 JETIR June 2023, Volume 10, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR2306943 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org j307

Manta.vasu deva kumar is Studying His 2nd Year, Master of Computer Applications In Sanketika Vidya Parishad

Engineering College, Affiliated To Andhra University, Accredited By NAAC. With His Interest in Deep Learning

And Machine Leaning Method As A Part Of Academic Project, he Used Detecting injection attacks and

vulnerabilities inside the DBMS As A Result Of Desired To Comprehend The Flaws In Conventional Reporting

And To Preserve Timely And High Quality Report Output In Detecting injection attacks and vulnerabilities inside

the DBMS. A Completely Developed Project Along With Code Has Been Submitted For Andhra University As

An Academic Project. In Completion Of His MCA.

http://www.jetir.org/

