

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR) An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Intuitionistic Fuzzy Soft α-open Sets

N. Chitradevi¹ S.Ramkumar ² P.Dharani ³ and K.Anitha⁴

^{1,3,4} Assistant Professor

Department of Mathematics

Unnamalai Institute of Technology, Kovilpatti,

Tamil Nadu, INDIA.

² Assistant Professor

Department of Mathematics

Renganayagi Varatharaj College of Engineering, Salvarpatti,

Tamil Nadu, INDIA.

Abstract

In this paper, we present a new class of generalized closed set known as intuitionistic fuzzy soft α - closed set has been introduced and their topological structure has been studied. Also, intuitionistic fuzzy soft α - continuous mapping is defined and some basic properties have been derived.

Keywords: intuitionistic fuzzy soft open set, intuitionistic fuzzy soft α –open set, intuitionistic fuzzy soft α -interior, intuitionistic fuzzy soft α -closure.

AMS Classification2010: 54A40,03F55.

1 INTRODUCTION

1.1. Preliminaries

Definition 1.1: An intuitionistic fuzzy set A in X is defined as an object of the following form A = {(x, $\mu_A(x), \gamma_A(x)$): x $\in E$ }, where X is a non-empty set, the functions $\mu_A : X \to [0, 1]$

and $\gamma_A \colon X \to [0, 1]$ define the degree of membership and the degree of nonmembership of the element $x \in X$, respectively, and for every $x \in X$; $0 \le \mu_A(x) + \gamma_A(x) \le 1$. In this paper, IF(U) denotes the family of all IF sets in U.

Definition 1.2: A pair (f,A) is called a soft set over U , where F is a mapping given by $f : A \to P(U)$. In other words, a soft set over U is a parameterized family of the subsets of the universe U. For $e \in A$, f(e) may be considered as the set of e -approximate elements of the soft set (f,A).

Definition 1.3: Let $A \subseteq E$. A pair (f,A) is called an IF soft set over U, where f is a mapping given by $f : A \to IF(U)$. We denote (f,A) (resp. $\mu_{f(e)}, \gamma_{f(e)}$) by f_A (resp.f_e, f^e).

In other words, an IF soft set fAover U is a parameterized family of IF sets in the universe U, and $\mu_{f(e)} = f_e \in F(U), \ \gamma_{f(e)} = f^e \in F(U), \ f(e) = (f_e, f^e) \in IF(U) \text{ and } f(e)(x) = (f_e(x), f^e(x)) \in J$ for any $e \in A$ and $x \in U$ where $J = \{(a, b) \in [0, 1] \times [0, 1] : a + b \le 1\}$. Let $A \subseteq E$. Denote IFS(U) $_A = \{f_A: f_A \text{ is an IF} \}$ Soft set over U}; IFS(U) = { $f_A = f_A$: is an IF soft set over U and A \subseteq E}. Obviously, $IFS(U) = \bigcup IFS(U)A$. $A \subset E$

Definition 1.4:Let $f_A, g_B \in IFS(U)$.

1. f_A is called IF soft subset of g_B , if A \subseteq B and f(e) \subseteq g(e) for any e \in A. We write $f_A \cong g_B$,

2. f_A and g_B are called IF soft equal, if $f_A \cong g_B$ and $g_B \cong f_A$ We write $f_A = g_B$. Obviously, $f_A = g_B$ if and only if A = Band f(e) = g(e) for any $e \in A$.

Definition 1.5:Let , $f_{Ag} \in IFS$ (U).

1. The intersection of f_A and g_B is the IF soft set h_C where $C = A \cap B$, and $h(e) = f(e) \cap g(e)$ for any $e \in C$. We write $f_A \cap g_B = h_C$

2. The union f_A and is g_B the IF soft set h_C , where $C = A \cup B$, and for any $e \in C$,

$$f(e), ife \in A$$

$$h(e) = g(e), if e \in B$$

f(e) Ug(e) if $e \in A \cap B$

We write $f_A \cup g_B = h_C$

Definition 1.6: The relative complement of an IF soft set f_E is denoted by f'_E and is defined By $(f_E)^c = f^c_E$; where f

^c: $E \to IF(U)$ is a mapping given by $f^{c}(e) = (f(e))^{c}$ for each $e \in E$.

Proposition 1.7: Let f_E , g_E IFS (U) $_E$. Then

$$\bigcap_{i \in I} f_i(E)^C = \left(\bigcup_{i \in I} f_i(E)\right)^C \text{ and } \bigcup_{i \in I} f_i(E)^C = \left(\bigcap_{i \in I} f_i(E)\right)^C$$

Definition 1.8: Let $f_E \in IFS(U)_E$.

1. f_E is called absolute IF soft over U, if f(e) = 1 for any $e \in E$. We denoted it by U_E.

2. f_E is called relative null IF soft over U, if f(e) = 0 for any $e \in E$. We denoted it by ϕ_E . Obviously, $\phi_E = U_E^C$ and

 $U_E = \phi_E^C$.

Theorem 1.9: Let (f, E) (or f_E) \in IFS $(U)_E$. Then,

- 1. $(f_E \widetilde{\cup} f_E) = f_E$
- 2. $(f_E \widetilde{\cap}) f_E = f_E$,
- 3. (f_E $\widetilde{\cup} \phi_F = f_E$,
- 4. $(f_E \cap \phi_E) = \phi_E$
- 5. $(f_E \widetilde{\cup} U_E) = U_{E_s}$
- 6. $(f_E \cap U_E) = f_{E_A}$

Definition 1.10: Let $\tau \subseteq \text{IFS}(U)_E$ and $\tau^C = \{f_E : f_E^C \in \tau\}$

Then τ is called an IF soft topology on U if the following conditions are satisfied:

- 1. U_E, $\phi_E \in \tau$,
- 2. $f_E, g_E \in \tau$ implies $f_E \cap g_E \in \tau$,

3. {(f_{α}) _E: $\alpha \in \Gamma$ } $\subseteq \tau$ impli g_E es $\bigcup_{\alpha \in \Gamma} (f_{\alpha})_E \subseteq \tau$. The triple (U, τ , E) is called an IF soft topological space over

U. Every member of τ is called an IF soft open set in U. f_E is called an IF soft closed set in U if $f_E \in \tau^C$.

Definition 1.11: Let (X, τ, E) , (Y, σ, E) be two intuitionistic fuzzy soft topological spaces, $f : X \to Y$ be a mapping and G_E be an intuitionistic fuzzy soft set over X. Then the image of f_E Under the mapping f denoted by $f(G_E) = (f(G_E) + f(G_E))$

 $_{e}$), f(G^e)) is an intuitionistic fuzzy soft set

Over Y defined by
$$f(G_E)(e)(y) = \left(\bigcup_{y=f(x)} G_e(x), \bigcap_{y=f(x)} G^e(x)\right)$$
 for each $e \in E$ and $y \in Y$.

Definition 1.12: Let (X, τ, E) , (Y, σ, E) be two intuitionistic fuzzy soft topological spaces, $g : X \to Y$ be a mapping and G_Ebe an intuitionistic fuzzy soft set over Y. Then the pre-image of (f_E) under the mapping g, denoted by g-1 (f_E) = $(g-1(F_e), g-1(F^e))$ is an intuitionistic fuzzy soft set over X defined by $(g-1(F_e), g-1(F^e))(x) = (F_e)(g(x))$, $F^e(g(x))$

for each $e \in E$ and $x \in X$.

Proposition 1.13: Let A_E , Q_E be two intuitionistic fuzzy soft sets over X and Y respectively, and $f : X \to Y$ be a mapping. Then

1. $(A_E) \subseteq f^{-1}(f(A_E))$

2. $f(f^{-1}(Q_E)) \subseteq (Q_E)$.

Proposition 1.14: Let $\{P_{iE}: i \in I\}$ be a family of intuitionistic fuzzy soft sets over Y. Then

1.
$$f^{-1}\left(\bigcup_{i} P_{iE}\right) = \bigcup_{i} f^{-1}(P_{iE})$$

2. $f^{-1}\left(\bigcap_{i} P_{iE}\right) = \bigcap_{i} f^{-1}(P_{iE})$
3. $f^{-1}(f^{-1}(P_{E}))^{C} = f^{-1}(P_{E}^{C})$

2.Intuitionistic fuzzy soft α-open sets

Definition 2.1: Let (U, τ, E) be an intuitionistic fuzzy soft topological space over U. An intuitionistic fuzzy soft set A_Eover U is said to be an intuitionistic fuzzy soft α -open (briefly IFS α - open) if $F_E \subseteq int (cl (int (F_E)))$. F_E^C is known as intuitionistic fuzzy soft α -closed (briefly IFS α - closed) set in IFS topological space (U, τ, E) over U. Also, IFS α O(U, τ , E) (resp. IFS α C(U, τ , E)) denote the set of all intuitionistic fuzzy soft α -open (resp. α -closed) sets in IFS topological space (U, τ, E) over U.

Remark 2.2: The following example ensures the existence of IFS α -open set in IFS topological space (U, τ , E) over U. **Example 2.3**: Consider the universe set U = {x₁,x₂} and the set of parameters E = {e₁, e₂, e₃}. Define F : E \rightarrow IF(U) as follows.

	$(\mu(x_1),\gamma(x_1))$	$(\mu(x_2,\gamma(x_2))$
$F(e_1)$	(0.6,0.3)	(0.7,0.2)
F(e ₂)	(0.9,0.01)	(0.8,0.03)

Now $F_E = \{F(e_1), F(e_2)\}$ is an intuitionistic fuzzy soft set over U. The collection $\tau = \{\phi_E, U_E, F_E\}$ defines an IFS topology over U. Also, F_E is an intuitionistic fuzzy soft α -opensets in the IFSTS (U, τ , E) over U.

Theorem 2.4: In an IFS topological space (U, τ, E) , an intuitionistic fuzzy soft set F_E is said to be an intuitionistic fuzzy soft α -closed in IFSTS (U, τ, E) iff cl (int (cl (F_E))) \subseteq F_E.

Proof: It follows from definition and [8]

Proposition 2.5: Every intuitionistic fuzzy soft open set is intuitionistic fuzzy soft α -open setin an IFSTS (U, τ , E) over U.

Proof: Let (U, τ, E) be an IFSTS over U. Le F_E be any intuitionistic fuzzy soft open set inIFSTS (U, τ, E) over U. By [6], int $(F_E) = F_E \subseteq c \ l(F_E)$. Therefore, $F_E \subseteq$ int (cl (int (F_E))).

By definition, F_E is an intuitionistic fuzzy soft α -open set in IFSTS (U, τ , E) over U.

Remark 2.6: The following example establishes that the converse of the above proposition is not true in general. It is shown that there are sets which can be an intuitionistic fuzzy soft α -open set but not a intuitionistic fuzzy soft open set.

Example 2.7: Consider a universe set $U = \{u_1, u_2\}$ and let $E = \{e_1, e_2\}$ be a set of parameters.

Define mappings $\alpha_E : E \to IF(U), \beta_E : E \to IF(U), :\gamma_E E \to IF(U), and \epsilon_E : E \to IF(U)$ as follows. The second table refers its complement γ_E

IF(U)	u ₁	u ₂
$\alpha_{E}(e_{1})$	(0.2,0.3)	(0.5,0.4)
$\alpha_E(e_2)$	(0.3,0.4)	(0.2,0.4)
$\beta_E(e_1)$	(0.6,0.1)	(0.4,0.2)
$\beta_E(e_2)$	(0.4,0.6)	(0.3,0.5)
$\gamma_E(e_1)$	(0.6,0.1)	(0.5,0.2)
$\gamma_E(e_2)$	(0.4,0.4)	(0.3,0.4)
$\epsilon_{E}(e_{1})$	(0.2,0.3)	(0.4,0.4)
$\epsilon_{E}(e_{2})$	(0.3,0.6)	(0.2,0.5)
$\delta_{E}(e_{1})$	(0.7,0.01)	(0.6,0.1)
$\delta_{E}(e_{2})$	(0.6,0.3)	(0.3,0.3)

IF(U)	u1	u ₂
$\alpha_E^c(e_1)$	(0.3,0.2)	(0.4,0.5)
$\alpha_E^c(e_2)$	(0.4,0.3)	(0.4,0.2)
$\beta_E^c(e_1)$	(0.1,0.6)	(0.2,0.4)

$\beta_E^C(e_2)$	(0.6,0.4)	(0.5,0.3)
$\gamma_E^C(e_1)$	(0.1,0.6)	(0.2,0.5)
$\gamma_E^C(e_2)$	(0.4,0.4)	(0.4,0.3)
$\epsilon_{E}^{C}(e_{1})$	(0.3,0.2)	(0.4,0.4)
$\epsilon_E^C(e_2)$	(0.6,0.3)	(0.5,0.2)
$\delta_{E}^{C}(e_{1})$	(0.01,0.7)	(0.1,0.6)
$\delta_{E}^{C}(e_{2})$	(0.3,0.6)	(0.3,0.3)

 $\delta_{E} = \{ \delta_{E}(e_{1}), \delta_{E}(e_{2}) \}, \epsilon_{E} = \{ \epsilon_{E}(e_{1}), \epsilon_{E}(e_{2}) \}$ are intuitionistic fuzzy soft sets over U. The collection $\tau = \{ \phi_{E}, U_{E} \}$ $\alpha_E, \beta_E, \gamma_E, \epsilon_E$ defines an intuitionistic fuzzy soft topology over U. Also, δ_E is an intuitionistic fuzzy soft set is an intuitionistic fuzzy soft α -open set on (U, τ, E) but not in τ .

Theorem 2.8: Let (U, τ, E) be an intuitionistic fuzzy soft topological space over U. Then the Following properties hold.

1. ϕ_E U_E are intuitionistic fuzzy soft α -open sets in (U, τ , E).

2. Arbitrary union of intuitionistic fuzzy soft α -open sets is an intuitionistic fuzzy soft α open set over (U, τ, E) .

3. Finite intersection of intuitionistic fuzzy soft α -open sets is an intuitionistic fuzzy soft α -open set over (U, τ , E)

Remark 2.9: [6] The above theorem yields that the family of all intuitionistic fuzzy soft α -open sets form a topology on (U, τ, E) . It is denoted by IFSaO (U, τ, E) . Always $\tau \subset$ IFSaO (U, τ, E) .

Theorem 2.10: Let (U, τ, E) be an intuitionistic fuzzy soft topological space over U. Then then following properties hold.

1. ϕ_E , U_E are intuitionistic fuzzy soft α -closed sets over (U, τ , E).

2. Arbitrary intersection of intuitionistic fuzzy soft α -closed sets is an intuitionistic fuzzy soft α -closed set over $(\mathbf{U}, \boldsymbol{\tau}, \mathbf{E})$.

3. Finite union of intuitionistic fuzzy soft α -closed sets is an intuitionistic fuzzy soft α -closed set over (U, τ, E) . **Proof**:

1. $(\phi_E)^C = U_E$ and $(U_E)^C = \phi_E$. By the definition of intuitionistic fuzzy soft α -closed set, it is arrived.

set, it is arrived. 2. By De-morgan's law, $\left(\bigcap_{i} F_{iE}\right)^{C} = \bigcup_{i} (F_{iE})^{C}$. Since arbitrary union of intuitionistic fuzzy soft α -open sets is an

intuitionistic fuzzy soft α -open, $\left(\bigcap_{i} F_{iE}\right)^{C}$ is intuitionistic fuzzysoft α -open. Soft, it's complement $\bigcap_{i} F_{iE}$ is an intuitionistic fuzzy soft a-closed

3. By De-morgan's law, $\left(\bigcup_{i} F_{iE}\right)^{C} = \bigcap_{i} (F_{iE})^{C}$. Since finite union of intuitionistic fuzzy soft α -open sets is an intuitionistic fuzzy soft α -open, $\left(\bigcup_{i} F_{iE}\right)^{C}$ is intuitionistic fuzzy soft α -open. So, its complement $\bigcup_{i} F_{iE}$ is intuitionistic fuzzy soft α -open.

intuitionistic fuzzy soft α -closed.

Definition 2.11: Let (U, τ, E) be an IFSTS over U. For any intuitionistic fuzzy soft set, F_E intuitionistic fuzzy soft α -interior and intuitionistic fuzzy soft α -closure are denoted by α int (F_E) and α cl (F_E) respectively.

They are defined as $\alpha int (F_E) = \bigcup \{F_E \in IFS\alpha O(U, \tau, E) : G_E \cong F_E\}$ and $\alpha cl(F_E) = \bigcap \{F_E \in IFS\alpha C(U, \tau, E) : F_E \cong G_E\}$

Proposition 2.12: In an intuitionistic fuzzy soft topological space (U, τ, E)

then following hold for any $F_E \in IFS(U)_E$.

1. $aint(F_E) \in IFSaO(U, \tau, E) (res.acl(F_E) \in IFSaC(U, \tau, E))$

2. $\alpha int(F_E) \cong F_E$ (res. $F_E \cong cl(F_E)$

3. α int(F_E)) is the largest intuitionistic fuzzy soft α -open set such that α int(F_E) \cong F_E.

(res. α cl(F_E) is the smallest intuitionistic fuzzy soft α -closed set such that F_E $\cong \alpha$ cl(F_E).

Proof:

1. It follows from the fact that arbitrary union (rep.intersection) of intuitionistic fuzzy soft α -open (res. α -closed) set is intuitionistic fuzzy soft α -open (res. α -closed).

2. By the definition of intuitionistic fuzzy soft α -interior (res. α -closure), it is true.

3. Let G_E be any IFS α -open (res. α -closed) set in (X, τ , E) such that $G_E \subseteq F_E$ (resp. $F_E \subseteq G_E$) By definition, G_E

 $\begin{array}{l} \subseteq \mbox{aint}(F_E) \ .(resp. \alpha cl(F_E) \subseteq G_E) \\ By \ 2, \ G_E \subseteq \mbox{aint}(F_E) \ \subseteq F_E \ (resp. F_E \subseteq \mbox{acl}(F_E) \subseteq G_E) \ . \end{array}$

Proposition 2.13: In an IFSTS (U, τ, E) over U, $int(F_E) \subseteq aint(F_E)$ for any $F_E \in IFS(U)$. **Proof**: It becomes true from the proposition 3.5

Theorem 2.14: Let (U, τ, E) be an intuitionistic fuzzy soft topological space over U. Then the Following properties hold.

- 1. $F_E \cong G_E \Rightarrow \alpha int(F_E) \cong \alpha int(G_E)$ for any $F_{E,G_E} \in IFS(U)$
- 2. F_E is an intuitionistic fuzzy soft α open set iff α int(F_E) = F_E .
- 3. $aint(aint(F_E)) = aint(F_E)$.
- 4. $\operatorname{aint}(F_E) \cap \operatorname{aint}(G_E) = \operatorname{aint}(F_E \cap G_E).$
- 5. $\operatorname{aint}(\mathbf{F}_{\mathbf{E}}) \widetilde{\cup} \operatorname{aint}(\mathbf{G}_{\mathbf{E}}) \widetilde{\subseteq} \operatorname{aint}(\mathbf{F}_{\mathbf{E}} \widetilde{\cup} \mathbf{G}_{E}).$
- 6. $(aint(F_E))^{C} = acl(F_E)^{C}$.

Proof:

1. By definition of IFS α -interior, α int(F_E) \cong F_E \cong G_E. But α int(G_E) is the largest IFS α -open set such that α int(G_E) \cong G_E. Therefore, α int(F_E) \cong α int(G_E).

2. By definition IFS α -interior α int(F_E) \cong F_E holds always. If F_E is IFS α -open, then reversible implication becomes true and hence α int (F_E) = F_E .

Conversely, assume that $aint(F_E) = F_E$. By proportion 3.12, $aint(F_E) \in IFSaO(U, \tau, E)$. So, $F_E \in IFSaO(U, \tau, E)$.

3.By proportion 3.12, α int (F_E) \in IFS α O(U, τ , E). By 2, α int(α int(F_E)) = α intF_E

4. Always, $F_E \cap G_E \subseteq F_E$. By thm3.14, $\alpha int(F_E \cap G_E) \subseteq \alpha int(F_E)$. Similarly, $\alpha int(F_E \cap G_E) \subseteq \alpha int(G_E)$. So, $\alpha int(F_E) \cap \alpha int(G_E) \subseteq \alpha int(F_E \cap G_E)$.

On the other hand, $\alpha int(F_E) \cong F_E$ and $\alpha int(G_E) \cong G_E$ gives $\alpha int(F_E) \cap \alpha int(G_E) \cong (F_E \cap G_E)$. Since intersection of any two IFS α -open sets is again an IFS α -open, $\alpha int(F_E) \cap \alpha int(G_E)$ is an IFS α -open But, $\alpha int(F_E \cap G_E)$ is the

largest IFS α -open such that α int($F_E \cap G_E$) \subseteq ($F_E \cap G_E$). Therefore, α int(F_E) $\cap \alpha$ int(G_E) = α int($F_E \cap G_E$). Hence, the equality holds.

5. By definition, $\operatorname{aint}(F_E) \subseteq F_E$, $\operatorname{aint}(G_E) \subseteq G_E$. then $\operatorname{aint}(F_E \widetilde{\cup} G_E) \subseteq (F_E \widetilde{\cup} G_E)$. But, is the larges $\operatorname{aint}(F_E \widetilde{\cap} G_E)$ is the largest IFS α -open set such that $\operatorname{aint}(F_E) \widetilde{\cup} \operatorname{aint}(G_E) \subseteq (F_E \widetilde{\cup} G_E)$. Therefore, $\operatorname{aint}(F_E) \widetilde{\cup} \operatorname{aint}(G_E) \subseteq \operatorname{aint}(F_E \widetilde{\cup} G_E)$.

6. $\operatorname{aint}(F_{\mathrm{E}}) = \bigcup \{ G_{\mathrm{E}} \in \mathrm{IFSaO}(\mathrm{U}, \tau, \mathrm{E}) : G_{\mathrm{E}} \subseteq F_{\mathrm{E}} \}$ $\Rightarrow (\operatorname{aint}(F_{\mathrm{E}}))^{C} = (\bigcup \{ G_{\mathrm{E}} \in \mathrm{IFSaO}(\mathrm{U}, \tau, \mathrm{E}) : G_{\mathrm{E}} \subseteq F_{\mathrm{E}} \})^{C}$ $\Rightarrow (\operatorname{aint}(F_{\mathrm{E}}))^{C} = \bigcap \{ ((G_{E})^{C} \in \mathrm{IFSaC}(\mathrm{U}, \tau, \mathrm{E}) : (F_{E})^{C} \subseteq (G_{E})^{C} \}$ $\Rightarrow (\operatorname{aint}(F_{\mathrm{E}}))^{C} = \operatorname{acl}(F_{\mathrm{E}})^{C}.$

Theorem 2.15:Let (U, τ, E) be an intuitionistic fuzzy soft topological space over U . and let

 F_E , $G_E \in IFS$ (U)_E. Then the following properties hold.

- 1. $F_E \cong G_E \Rightarrow \alpha cl(F_E) \cong \alpha cl(G_E)$.
- 2. F_E is an intuitionistic fuzzy soft α -closed set iff α cl(F_E) = F_E.
- 3. 3. $\alpha cl(\alpha cl(F_E)) = \alpha cl(F_E)$.

Proof:1. By proposition 3.12, $F_E \cong G_E \cong \alpha \operatorname{cl}(G_E)$. Now, $\operatorname{acl}(G_E)$ is an IFS α -closed set containing F_E . By proposition $\operatorname{acl}(F_E)$ is the smallest IFS α -closed set containing F_E and hence $\operatorname{acl}(F_E) \cong \operatorname{acl}(G_E)$.

2. By definition of IFS α -closure, $F_E \cong \alpha \operatorname{cl}(F_F)$ is always true. If F_E is an IFS α -closed set,

The $\alpha cl(F_E) \cong F_E$ Thus, $(\alpha cl(F_E) = F_E)$

3. If $\alpha cl(F_E)$ is an IFS α -closed set, then By 2, we have $\alpha cl(\alpha cl(F_E)) = \alpha cl(F_E)$

Theorem 2.16.Let (U, τ, E) be an intuitionistic fuzzy soft topological space over U. Let

 F_E , $G_E \in IFS(U)$. Then the following properties hold.

1. $\operatorname{acl}(F_E) \widetilde{\cup} \operatorname{acl}(G_E) = \operatorname{acl}(F_E \widetilde{\cup} G_E)$

 $2. \ \alpha cl(F_E) \,\widetilde{\cap} \, \alpha cl(G_E) \, \, \underline{\widetilde{\subset}} \, \alpha cl(F_E \, \widetilde{\cap} \, G_E).$

3. $\alpha cl(F_E))^{C} = \alpha int(F_E)^{C}$)

Proof.1. Always, $F_E \cong F_E \widetilde{\cup} \ G_E$. By proposition 3.12, , acl $(F_E) \cong acl \ (F_E \widetilde{\cup} \ G_E$).

Similarly, $\alpha cl(G_E) \cong \alpha cl(F_E \cup G_E)$. Therefore, $\alpha cl(F_E) \cup \alpha cl(G_E) \cong \alpha cl(F_E \cup G_E)$. On the other hand, $F_E \cong \alpha cl(F_E)$ and $G_E \cong \alpha cl(G_E)$ Hence, $F_E \cup G_E \cong \alpha cl(F_E) \cup \alpha cl(G_E)$. Since

union of two IFS α -closed set is IFS α -closed, $\alpha cl(F_E) \overset{\sim}{\cup} \alpha cl(G_E)$ is IFS α -closed set. By

proposition $\alpha cl (F_E \widetilde{\cup} G_E)$ is the smallest IFS α -closed set containing $(F_E \widetilde{\cup} G_E)$. So,

 $\alpha cl(F_E \ \widetilde{\cup} \ G_E) \ \widetilde{\subseteq} \ \alpha cl(F_E) \ \widetilde{\cup} \ \alpha cl \ (G_E) \ . \ Therefore, \ \alpha cl(F_E) \ \widetilde{\cup} \ \alpha cl \ (G_E) \ = \ \alpha cl \ (F_E \ \widetilde{\cup} \ G_E).$

2. Now, $F_E \cap G_E \subseteq \to F_E$. By proposition 2.12, $F_E \cap G_E \subseteq \to Cl$ (FE)Similarly, $F_E \cap G_E \subseteq \to Cl$ (GE)

Now, $\operatorname{acl}(F_E) \cap \operatorname{acl}(G_E)$ is an IFSa-closed set such that $F_E \cap G_E \subseteq \operatorname{acl}(F_E) \cap \operatorname{acl}(G_E)$. By

proposition 2.12, $\alpha cl(F_E \cap G_E)$ is the smallest IFS α -closed set containing $(F_E \cap G_E)$. Therefore, $\alpha cl(F_E) \cap \alpha cl(G_E) \cong \alpha cl(F_E \cap G_E)$.

3. It holds from the definitions of IFS α -interior and IFS α -closure and from De-Morgan's law.

4 Intuitionistic fuzzy soft α -continuous mappings

Definition 4.1.Let (X, τ, E) and (Y, σ, E) be two intuitionistic fuzzy soft topological spaces. A mapping $f : (X, \tau, E) \rightarrow (Y, \sigma, E)$ is said to be intuitionistic fuzzy soft α -continuous if for each $\mathbf{F}_{\mathbf{E}} \in \sigma$, $f^{-1}(F_E) \in \mathrm{IFSaO}(\mathbf{U}, \tau, \mathbf{E})$.

Example 4.2.Consider (U, τ , E) an intuitionistic fuzzy soft topological space over U as in the example... and let $V = \{v_1, v_2, v_3\}$. Define a mapping $P_E: E \to IF(V)$

	V ₁	V_2	V ₃
$P_{E}(e_{1})$	(0.4,0.4)	(0.3,0.1)	(0.2,0.3)
$P_{E}(e_{2})$	(0.2,0.5)	(0.5,0.2)	(0.3,0.6)

Now, (Y, σ, E) is an intuitionistic fuzzy soft topological space over V. Define a map $f: X \to Y$ by $f(x_1) = y_3$, $f(x_2) = y_1$. Then $f^{-1}(P_E) \in IFS\alpha O(U, \tau, E)$ and

 $f^{-1}(P_E) = \epsilon_E \in \tau$. Therefore, f is an intuitionistic fuzzy soft α -continuous.

Theorem 4.3: Let (U, τ, E) and (V, σ, E) be two intuitionistic fuzzy soft topological spaces. A mapping $f : (U, \tau, E) \rightarrow (V, \sigma, E)$ is IFS α -continuous iff $f^{-1}(G_E) \in IFS\alpha C$ (U, τ, E) for all $G_E \in \sigma^C$.

Proof. Assume that $f: (U, \tau, E) \to (V, \sigma, E)$ is IFSa-continuous. Let $G_E \in \sigma^C$. By definition,

. $G_{E} \in \sigma^{C}$ By hypothesis, $f^{-1}((G_{E})^{C}) \in IFS\alpha O(U, \tau, E)$.

since $f^{-1}((G_E)^C) = (f^{-1}(G_E))^C$

 $(f^{-1}(G_E))^C \in \text{IFSaO}(U, \tau, E)$. Again by definition, $f^{-1}(G_E) \in \text{IFSaC}(U, \tau, E)$

Conversely, suppose that inverse image of any intuitionistic fuzzy soft closed set in (V, σ, E) is intuitionistic fuzzy soft α -closed set in (U, τ, E) . Let $F_E \in \sigma$.

Then, $(\mathbf{F}_{\mathrm{E}})^{\mathrm{C}} \in \sigma^{\mathrm{C}}$. By hypothesis, $f^{-1}(F_{E}^{\mathrm{C}}) = (f^{-1}(F_{E}))^{\mathrm{C}}$.

Now, is an intuitionistic fuzzy soft α -open set in (U, τ , E). Therefore, f is IFS α -continuous.

Theorem 4.4.Let (U, τ, E) and (V, σ, E) be two intuitionistic fuzzy soft topological spaces. and $f: (U, \tau, E) \to (V, \sigma, E)$ is an IFS α -continuous iff $f^{-1}(\operatorname{int}(F_E)) \cong \alpha \operatorname{int}(f^{-1}(F_E))$ for each $F_E \in \operatorname{IFS}(V)_E$. **Proof.**Assume that $f: (U, \tau, E) \to (V, \sigma, E)$ is an IFS α -continuous. Let $F_E \in \operatorname{IFS}(V)_E$ By[6]..., $\operatorname{int}(F_E) \in \sigma$. By hypothesis, $f^{-1}(\operatorname{int}(F_E))$ is an intuitionistic fuzzy soft α -open set in (U, τ, E) . By [6], $\operatorname{int}(F_E) \cong F_E$ that gives $f^{-1}(\operatorname{int}(F_E)) \cong f^{-1}(F_E)$. By proportion, $\alpha \operatorname{int}(f^{-1}(F_E))$

is the largest intuitionistic fuzzy soft α -open set such that $\alpha \operatorname{int}(f^{-1}(F_E)) \cong f^{-1}(F_E)$ Therefore, $f^{-1}(\operatorname{int}(F_E)) \cong \alpha \operatorname{int}(f^{-1}(F_E))$.

Conversely, suppose that $f^{-1}(\operatorname{int}(F_E)) \cong \alpha \operatorname{int}(f^{-1}(F_E))$ for any $F_E \in \operatorname{IFS}(V)_E$. Let $G_E \in \sigma$.

By [6], $G_E = int(G_E)$. Now, by proposition 3.13, $f^{-1}(G_E) = f^{-1}(int(G_E)) \cong .\alpha int(f^{-1}(F_E))$

i73

By proposition $\alpha \operatorname{int}(f^{-1}(F_E)) \cong f^{-1}(F_E)$ Therefore $\alpha \operatorname{int}(f^{-1}(G_E)) = f^{-1}(G_E)$. By proportion 2.12, $f^{-1}(G_E)$ is an intuitionistic fuzzy soft α -open set in (U, τ, E) . Thus, f is intuitionistic fuzzy soft α -continuous. The above theorem gives the following result.

Theorem 4.5.Let (U, τ, E) and (V, σ, E) be two intuitionistic fuzzy soft topological spaces. Then $f: (U, \tau, E) \to (V, \sigma, E)$ is an IFS α -continuous iff $f^{-1}(\alpha cl(F_E)) \subseteq cl(f^{-1}(F_E))$ for each $G_E \in IFS(V)_E$ **Proof.**It follows by taking complements in

Theorem 4.6. Every intuitionistic fuzzy soft continuous function is IFS α -continuous. Proof. Assume that $f: (U, \tau, E) \to (V, \sigma, E)$ is any intuitionistic fuzzy soft continuous function. Let $G_E \in \sigma$. By [6],. By proposition. $f^{-1}(G_E) \in \tau$. $f^{-1}(G_E)$ is an intuitionistic fuzzy soft α -open set in (U, τ, E) . Thus, f is IFS α -continuous.

Remark 4.7. It is discussed in the following example that $IFS\alpha$ -continuous map need not be an intuitionistic fuzzy soft continuous.

Example 4.8.Consider (U, τ, E) , an intuitionistic fuzzy soft topological space over U as in the example 3.7, and let $V = \{v_1, v_2, v_3\}$. Define a mapping $\delta_E: E \to IF(V)$ by

Мар	V1	V2	V3
$\delta_{\rm E}({\rm e}_1)$	(0.6,0.1)	(0.8,0.1)	(0.7,0.01)
$\delta_{\rm E}({\rm e}_2)$	(0.3,0.3)	(0.5,0.2)	(0.6,0.3)

Now, (Y, σ, E) is an intuitionistic fuzzy soft topological space over V. Define a map $f: X \to Y$ by $f(x_1) = y_3$, $f(x_2) = y_1$. Then $f^{-1}(\delta_E) \in IFS\alpha O(U, \tau, E)$ and $f^{-1}(\delta_E)$ not in τ . Therefore, f is an intuitionistic fuzzy soft α -continuous but not intuitionistic fuzzy soft continuous.

Remark 4.9. The following example shows that the composition of two IFS α -continuous mappings is not an IFS α -continuous in general.

Example 4.10.Consider (U, τ , E) as in example ...,. Let $V = \{y_1, y_2, y_3\}, W = \{z_1, z_2, z_3\}$. Define mappings $P_E: E \rightarrow IF(V)$ for all $x \in V$ and $Q_E: E \rightarrow IF(W)$ for all $x \in W$ as follows.

Map	y 1	Y2	y 3
$P_{E}(e_{1})$	(0.4,0.4)	(0.3,0.1)	(0.2,0.3)
$P_{E}(e_{2})$	(0.2,0.5)	(0.5,0.2)	(0.3,0.6)

I

Map	Z1	Z2	Z3
$Q_{E}(e_{1})$	(0.4,0.1)	(0.3,0.3)	(0.5,0.3)
$Q_{E}(e_{2})$	(0.6,0.2)	(0.4,0.5)	(0.3,0.4)

Here, P_E = { $P_E(e_1)$, $P_E(e_2)$ } and Q_E = { $Q_E(e_1)$, $Q_E(e_2)$ } are IFS sets over V and W

respectively. Also, the collection $\sigma = \{ \phi_E, P_E, V_E \}$ and $\eta = \{ \phi_E, Q_E, W_E \}$ form IFS topology over V and W respectively and (V, σ, E) , (W, η, E) are IFS topological spaces. Define f : $U \rightarrow V$ and $g : V \rightarrow W$ by $f(x_1) = y_3$, $f(x_2) = y_1$, $g(y_1) = z_3$, $g(y_2) = z_1$, $g(y_3) = z_2$. Then $g \circ f : U \rightarrow W$ is defined as $(g \circ f)(x) = g(f(x))$ for all $x \in U$. Now, f and g are IFS α -continuous but $g \circ f$ is not.

Theorem 4.11.Let (U, τ, E) , (V, σ, E) and (W, η, E) be any three intuitionistic fuzzy soft topological spaces over U, V and W respectively. If $f : (U, \tau, E) \rightarrow (V, \sigma, K)$ is IFS α -continuous and $g : (V, \sigma, E) \rightarrow (W, \eta, E)$ is intuitionistic fuzzy soft continuous, then their composition

 $f \circ g : (U, \tau, E) \rightarrow (W, \eta, E)$ defined by $(g \circ f)(FE) = g(f(FE))$ for all FE 2 (U, τ, E) is IFS α -continuous.

Proof.Let $G_E \in \eta$ be arbitrary. Since g is intuitionistic fuzzy soft continuous, $g^{-1}(G_E) \in \sigma$.

Again by hypothesis, $(f^{-1}(g^{-1}(G_E)) = (g \circ f)^{-1}(G_E)) \in IFS\alpha O(U, \tau, E).$

Therefore, $g \circ f$ is IFS α -continuous.

References

[1] A.Arokia Lancy, I.Arokiarani and S.Jafari " soft interval valued intuitionistic fuzzy soft generalized closed sets" (JGRMA) Volume2, No.3, March2014.

[2] D. Molodstov, "Soft set theory- first results", computers and mathematics with applications, Vol37(1999)19-30.
[3] Ismail Osmanoglu and Deniz Toket "On intuitionistic fuzzy soft topology" Gen.Math.Notes, Vol.19, No.2, December 2013, pp.59-70.

[4] P.K. Maji, R.Biswas and Roy, A.R "fuzzy soft sets," J.fuzzy Maths. 9(3),(2001),589-602.

[5] P.K.Maji, R.Biswas, A.R. Roy, "Intuitionistic fuzzy soft sets", journal of fuzzy mathematics 9(3),(2001).677-691.

[6] Serkan Karatas, Metin Akdag "On intuitionistic fuzzy soft continuous mappings" (2014),55-70.

[7] Sadi Bayramov, Cigdem Gundun(ARAS), "On intuitionistic fuzzy soft topologicalspaces".TWMS J. Pure Appl.Math V.S, N.1, 2014 pp.66-79.

[8] Zhaowen Li, Rongchen Cui "On the topological structure of intuitionistic fuzzy soft sets", Annuals of fuzzy Mathematics and Information Volume5,No1,(Jan2013),pp.229-239.