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ABSTRACT 

This paper related to principal of functional analysis  that explains the original topics or materials 

that can be developed by mean of techniques existing within the original framework .In 

particular we discuss normed vector spaces and linear operators specially results related to 

Hilbert space i.e. The Riesz representation theorem & many other examples of bounded linear 

functionals 
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INTRODUCTION 

Let 𝐻 be a Hilbert space and let (𝑥, 𝑦) denote its scalar product. If we fix 𝑦, then the expression 

(𝑥, 𝑦) assigns to each 𝑥 ∈ 𝐻 a number. An ass:gnment 𝐹 of a number to each element 𝑥 of a 

vector space is called a functional and denoted by 𝐹(𝑥) . The scalar product is not the first 

functional we have encountered. In any normed vector space, the norm is also a functional. 

The functional 𝐹(𝑥) = (𝑥, 𝑦) has some very interesting and surprising 

features. For instance it satisfies 

(1.1)                    𝐹(𝛼1𝑥1 + 𝛼2𝑥2) = 𝛼1𝐹(𝑥1) + 𝛼2𝐹(𝑥2) 

for 𝛼1, 𝛼2 scalars. A functional satisfying (1.1) is called linear. Another property is 

(1.2)                              |𝐹(𝑥)| ≤ 𝑀‖𝑥‖, 

which follows immediately from Schwarz’s inequality. A functional satisfying (1.2) is called 

bounded. Thus for 𝑦 fixed, 𝐹(𝑥) = (𝑥, 𝑦) is a bounded linear functional in the Hilbert space 𝐻. 

Now we can find many other examples of bounded linear functionals Well. In fact we have the 

following 
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Theorem 1.1. ( Riesz representation theorem ) For every bounded linear functíonal 𝐹 on a Hílbert 

space 𝐻 there is a uruque element 𝑦 ∈ 𝐻 such that 

(1.3)     𝐹(𝑥) = (𝑥, 𝑦) for all 𝑥 ∈ 𝐻. 

Moreover,  

(1.4)  ‖𝑦‖ =  sup 
|𝐹(𝑥)|

‖𝑥‖
. 

In order to get an idea how to go about proving it, let us examine (1.3) a bit more closely. If 𝐹 

assigns to each element 𝑥 the value zero, then we can take 𝑦 = 0, and the theorem is trivial. 

Otherwise the 𝑦 we are searching for cannot vanish. However, it must be “orthogonal” to every 

𝑥 for which 𝐹(𝑥) = 0; i.e., we must have (𝑥, 𝑦) = 0 for all such 𝑥. Let 𝑁 denote the set of those 

𝑥 satisfying 𝐹(𝑥) = 0. Suppose we can find a 𝑦 ≠ 0 which is orthogonal to each 𝑥 ∈ 𝑁. Then I 

claim that the theorem is proved. For clearly 𝑦 is not in 𝑁 (otherwise we would have ‖𝑦‖2 =

(𝑦, 𝑦) = 0), and hence 𝐹(𝑦) ≠ 0. Moreover, for each 𝑥 ∈ 𝐻, we have 

𝐹(𝐹(𝑦)𝑥 − 𝐹(𝑥)𝑦) = 𝐹(𝑦)𝐹(𝑥) − 𝐹(𝑥)𝐹(𝑦) = 0, 

showing that 𝐹(𝑦)𝑥 − 𝐹(𝑥)𝑦 is in 𝑁. Hence 

(𝐹(𝑦)𝑥 − 𝐹(𝑥)𝑦, 𝑦) = 0, 

or 

𝐹(𝑥) = (𝑥,
𝐹(𝑦)

‖𝑦‖2 𝑦) . 

This gives (1.3) if we use 𝐹(𝑦)𝑦/‖𝑦‖2 in place of 𝑦. 〈This is to be expected since we made no 

stipulation on 𝑦 other than that it be orthogonal to 𝑁.) We also note that the uniqueness and 

(1.4) are trivial. For if 𝑦1 were another element of 𝐻 satisfying (1.3), we would have 

(𝑥, 𝑦 − 𝑦1) = 0 for all 𝑥 ∈ 𝐻. 

In particular this holds for 𝑥 = 𝑦 − 𝑦1, showing that ‖𝑦 − 𝑦1‖ = 0. Thus, 𝑦1 = 𝑦. Now by 

Schwarz’s inequality, 

Hence, 

|𝐹(𝑥)| = |(𝑥, 𝑦)| ≤ ‖𝑥‖‖𝑦‖. 

‖𝑦‖ ≥  sup 
|𝐹(𝑥)|

‖𝑥‖
. 

However, we can obtain equality by taking 𝑥 = 𝑦. In fact, ‖𝑦‖ = |𝐹(𝑦)|/‖𝑦‖. This gives (1.4).    

 In order to do element 𝑦 ≠ 0 which is orthogonal to 𝑁 (i.e., to every element of 𝑁) . we examine 

𝑁 a little more closely. What kind of set is it? First of all, we notice that if 𝑥1 and 𝑥2 are elements 

of 𝑁, so is 𝛼1𝑥1 + 𝛼2𝑥2 for any scalars 𝛼1, 𝛼2. For, by the linearity of 𝐹, 
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𝐹(𝛼1𝑥1 + 𝛼2𝑥2) = 𝛼1𝐹(𝑥1) + 𝛼2𝐹(𝑥2) = 0. 

 

A subset 𝑈 of a vector space 𝑉 is called a subspace of 𝑉 if 𝛼1𝑥1 + 𝛼2𝑥2 is in 𝑈 whenever 𝑥1, 𝑥2 

are in 𝑈 and 𝛼1, 𝛼2 are scalars. Thus 𝑁 is a subspace of 𝐻. There is another property of 𝑁 which 

comes from (1.2) and is not so obvious. This is the fact that it is a closed subspace. A subset 𝑈 of 

a normed vector space 𝑋 is called closed if for every sequence {𝑥𝑛} of elements in 𝑈 having a 

limit in 𝑋, the limit is actually in 𝑈. In our particular case, if {𝑥𝑛} is a sequence of elements in 𝑁 

which approaches a limit 𝑥 in 𝐻, then by (1.2) 

|𝐹(𝑥)| = |𝐹(𝑥) − 𝐹(𝑥𝑛)| = |𝐹(𝑥 − 𝑥𝑛)| ≤ 𝑀‖𝑥 − 𝑥𝑛‖ → 0 as 𝑛 → ∞. Since 𝑥 does not 

depend on 𝑛, we have 𝐹(𝑥) = 0. Thus, 𝑥 ∈ 𝑁, showing that 𝑁 is closed in 𝐻. 

Thus, we have a closed subspace 𝑁 of 𝐻 which is not the whole of 𝐻. We 

are interested in obtaining an element 𝑦 ≠ 0 of 𝐻 which is orthogonal to 𝑁. For the special case 

of two‐dimensional Euclidean space, we recall from our plane geometry that this can be done by 

drawing a perpendicular. We also recall that the shortest distance from a point (element) to a 

line (subspace) is along the perpendicular. The same thing is true in Hilbert space. We have 

Theorem 1.1. Let 𝑁 be a closed subspace of a Hilbert space 𝐻: and let 𝑥 be an element of 𝐻 which 

is not in N. Set 

(1.5) 

𝑑 =  inf ‖𝑥 − 𝑧‖. 

Then there is an element 𝑧 ∈ 𝑁 such that ‖𝑥 − 𝑧‖ = 𝑑. 

Proof. By the definition of 𝑑, there is a sequence {𝑧𝑛} of elements of 𝑁 such that ‖𝑥 − 𝑧𝑛‖ → 𝑑. 

We apply the parallelogram law  to 𝑥 − 𝑧𝑛 and 𝑥 − 𝑧𝑚. Thus 

‖(𝑥 − 𝑧𝑛) + (𝑥 − 𝑧𝑚)‖2 + ‖(𝑥 − 𝑧𝑛) − (𝑥 − 𝑧𝑚)‖2 = 2‖𝑥 − 𝑧𝑛‖2 + 2‖𝑥 − 𝑧𝑚‖2, 

or 

(1.6)   4‖𝑥 − [(𝑧𝑛 + 𝑧𝑚)/2]‖2 + ‖𝑧𝑚 − 𝑧𝑛‖2 = 2‖𝑥 − 𝑧𝑛‖2 + 2‖𝑥 − 𝑧𝑚‖2\ 

Since 𝑁 is a subspace, (𝑧𝑛 + 𝑧𝑚)/2 is in 𝑁. Hence, the left‐hand side of (1.6) is not less than 

4𝑑2 + ‖𝑧𝑚 − 𝑧𝑛‖2 

This implies 

‖𝑧𝑚 − 𝑧𝑛‖2 ≤ 2‖𝑥 − 𝑧𝑛‖2 + 2‖𝑥 − 𝑧𝑚‖2 − 4𝑑2 → 0 as 𝑚, 𝑛 → ∞. 

Thus, {𝑧𝑛} is a Cauchy sequence in 𝐻. Using the fact that a Hilbert space is complete, we let 𝑧 be 

the limit of this sequence. But 𝑁 is closed in 𝐻. Hence, 𝑧 ∈ 𝑁, and 𝑑 = lim ‖ 𝑥 − 𝑧𝑛‖ = ‖𝑥 − 𝑧‖. 
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Theorem 1.3. Let 𝑁 be a closed subspace of a Hilbert space H. Then for each 𝑥 ∈ 𝐻, there are a 

𝑣 ∈ 𝑁 and a 𝑤 orthogonal to 𝑁 such that 𝑥 = 𝑣 + 𝑤. This decomposition is unique. 

Proof. If 𝑥 ∈ 𝑁, put 𝑣 = 𝑥, 𝑤 = 0. If 𝑥 ∉ 𝑁, let 𝑧−∈ 𝑁 be such that ‖𝑥 − 𝑧‖ = 𝑑, where 𝑑 is 

given by (1.5). We set 𝑣 = 𝑧, 𝑤 = 𝑥 − 𝑧 and must show that 𝑤 is orthogonal to 𝑁. Let 𝑢 ≠ 0 be 

any element of 𝑁 and 𝛼 any scalar. Then 

𝑑2 ≤ ‖𝑤 + 𝛼𝑢‖2 = ‖𝑤‖2 + 2𝛼(𝑤, 𝑢) + 𝛼2‖𝑢‖2 

= ‖𝑢‖2 [𝛼2 + 2𝛼
(𝑤, ′𝑢)

||𝑢||2
+

(𝑤, ′𝑢)2

‖𝑢‖4
] + 𝑑2 − 

(𝑤, ′𝑢)2

‖𝑢‖2
 

= ‖𝑢‖2 [𝛼 +
(𝑤, ′𝑢)

||𝑢||2
]

2

+ 𝑑2 − 

(𝑤, ′𝑢)2

‖𝑢‖2
, 

where we completed the square with respect to 𝛼. Take 𝛼 = −(𝑤, 𝑢)/‖𝑢‖2. Thus, (𝑤, 𝑢)2 ≤ 0, 

which can only happen if 𝑤 is orthogonal to 𝑢. Since 𝑢 was any arbitrary element of 𝑁, the first 

statement is proved. If 𝑥 = 𝑣1 + 𝑤1, where 𝑣1 ∈ 𝑁 and 𝑤1 is orthogonal to 𝑁, then 𝑣 − 𝑣1 =

𝑤1 − 𝑤 is both in 𝑁 and orthogonal to 𝑁. In particular, it is orthogonal to itself and thus must 

vanish. This completes the proof. □ 

The proof of Theorem 1.1 (the Riesz Representation Theorem) is now complete. 
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