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Abstract :  The onset of convective instability is analyzed in a triply diffusive Maxwell fluid layer in 

which density depends on three stratifying agents having different molecular diffusivities. The modified

Darcy-Brinkman-Maxwell model is used for the momentum equation. Two problems have been analyzed

mathematically. In the first problem, a sufficient condition is derived for the validity of the principle of 

the exchange of stabilities (PES). Further, when the complement of this condition holds good, oscillatory

motions of neutral or growing amplitude can exist. Thus as a second problem bounds for the complex

growth rate are also obtained. Further established that the results are consistently valid for any 

combination of rigid and/or free boundaries. 
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I. INTRODUCTION 

 

Buoyancy driven convection in a fluid layer investigated by Bénard and by Rayleigh in the early 

20th century, known as Rayleigh-Bénard convection, remains a topic of active research for more than a 

century. In many situations both temperature and some dissolved substance or any two dissolved substances 

possessing different diffusivities may contribute in opposite senses to the buoyancy gradient leading to 

instability in a fluid layer and the process is often referred to as double diffusive convection. Double 

diffusive convection is studied extensively, both experimentally and theoretically, because of its wide range 

of applications in many fields of science and engineering (for details see Chen and Johnson [1]). Excellent 

reviews on the development of this subject are reported by Turner [2], Huppert and Turner [3] and Platten 

and Legros [4]. 

 The presence of three different diffusing components having different molecular diffusivities is 

expected in many naturally occurring and industrial fluid systems which lead to convective instabilities 

known as triple diffusive convection. Examples of such systems include the solidification of molten alloys, 

Earth core, geothermally heated lakes, sea water, oil reservoir engineering, magmas and their laboratory 

models. Griffiths [5] was the first to investigate theoretically the linear stability of triple diffusive 
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convection in a horizontally unbounded fluid layer while Griffiths [6, 7] and Turner [2] reported the related 

experimental works. Coriell et al. [8] and Noulty and Leaist [9] presented explicit situations in which triple 

diffusive convection has useful significance. In their seminal paper, Pearlstein et al. [10] performed a 

comprehensive study on the linear stability of triple diffusive fluid layer and captured the physics of the 

onset of convection. Terrones and Pearlstein [11] generalized the linear stability analysis to an arbitrary 

number of components in a horizontal fluid layer. Moroz [12] considered the linear instability problem 

originally discussed by Griffiths [5]. Ryzhkov and Shevtsova [13] Lopez et al. [14] discovered the result of 

rigid boundaries on convective instability in a triply diffusive fluid layer. The effects of cross-diffusion on 

the onset of convective instability in a horizontally unbounded triply cross-diffusive fluid layer were 

investigated by Terrones [15]. Straughan and Walker [16] analyzed a variety of aspects of penetrative 

convection in a triply diffusive fluid layer, while Straughan and Tracey [17] considered multicomponent 

convection-diffusion with internal heating or cooling in a fluid layer. Recently, Shivakumara and Naveen 

Kumar [18] investigated linear and weakly nonlinear triple diffusive convection in a layer of couple stress 

fluid.  

Majority of the investigations on triple diffusive convection have been dealt with Newtonian fluids. 

But it is an established fact that the hypothesis of a Newtonian fluid turns out to be inadequate in describing 

rheologically complex fluid flows occurring in many contexts such as polymer solutions, melts and paints 

which involve more than two diffusing components. To predict the flow of such fluids use of alternative 

non-Newtonian models are inevitable and viscoelastic fluid models which account for elastic and memory 

effects are one among them. Copious literature is available on linear and nonlinear Rayleigh-Bénard 

convection of viscoelastic fluids (Rosenblat [19], Li and Khayat [20] ). The establishment of the 

nonoccurrence of every slow oscillatory motions, which may be neutral or unstable, implies the validity of 

the PES. The validity of this principle in stability problems eliminates unsteady terms from linearized 

perturbation equations. Pellew and Southwell [21] proved the PES validity for the classical Rayleigh-

Bernard instability problem. Gupta et al. [22] and Prakash et al. [23-28] investigated on the principle of the 

exchange of stabilities of multi diffusive convection in the presence of rotation, magnetic field. Prakash et 

al. [23] investigated on the characterization of magnetohydrodynamic triple diffusive convection. Contrary 

to the stationary onset observed in Newtonian fluids, the onset of convection in viscoelastic fluids was 

found to be oscillatory depending on the fluid elasticity. Mardones et al. [29] investigated the onset of 

convection in a binary-viscoelastic Oldroyd-B fluid layer. Malashetty et al. [30] discussed double diffusive 

convection in a viscoelastic fluid layer. Recently, Hirata et al. [31] examined convective and absolute nature 

of instabilities in Rayleigh–Bénard–Poiseuille mixed convection for viscoelastic fluids. Recently, multi-

diffusive convection in a non-Newtonian fluid saturated porous and nonporous domain problems are studied 

[32-45].   

Zhao et al. [46] investigated the linear instability of triply diffusive convection in a Maxwell fluid-

saturated porous layer. Prakash et al. [25] derived a sufficient condition for the occurrence of stationary 

convection for triply diffusive fluid systems and also obtained upper bounds. Prakash et al. [28] investigated 

the limitations of linear growth rates for triply diffusive convection in a Newtonian fluid-saturated porous 

medium. In the present work, we have analyzed the onset of triple diffusive convection in a Maxwell fluid 
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layer by proving theorems for the validity of PES and also upper bounds on the complex growth rate of 

oscillatory motions. The results obtained are shown to be uniformly valid for any combination of rigid and 

free boundaries.  

II. MATHEMATICAL FORMULATION AND ANALYSIS  

 

 We consider an incompressible Maxwell fluid layer of depth d in which the density depends on three 

different stratifying agents having different molecular diffusivities (temperature T and solute concentrations

, 1,2iS i  ). The lower and upper boundaries of the fluid layer 0z   and z d  are held at constant 

temperatures LT  and ( )U LT T , respectively while species concentration of ith  component is held at fixed 

values 
i LS and ( )iU i LS S , respectively. The stratifying agents are assumed to obey the following equation of 

state 

      0 1 1 1 2 2 21 T L S L S LT T S S S S                                                                                      (1) 

where T  
is the thermal expansion coefficient, 1S  and 2S are the solute analogs of T  and 0 is the 

reference density. Under the Boussinesq approximation, the conservation of mass, momentum, energy and 

solute concentrations are 

0q                                                 (2) 
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where  , ,q u v w is the velocity, p is the pressure,  is the stress tensor,  is the fluid viscosity, g is the 

acceleration due to gravity, T  is the thermal diffusivity, 1S and 2S are the solute analogs of T . The 

constitutive equation for an Maxwell fluid is (Rosenblat [19] and Bird et al. [47] )  

     1

T
q q q

t


     

 
         

 
                                   (7) 

where  
T

q q   is the rate-of-strain tensor,  is the  fluid viscosity, 1  is the relaxation time. The 

constitutive equation considered includes Stokes’s law adopted in the theory of Newtonian viscous fluid 

flows as a special case for 1 0  . The basic state is quiescent and the gradients of the stratifying agents are 

constant and vertical. Thus 

0, 0b bq   , 
1b LT T z  ,  1,2ib i L iS S z i   ,   0 1 1 2 21b T S S z          

                       

(8)
 

  2

0 0 0 1 1 2 2 2b b T S Sp P P g z z                                                      (9) 
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where the subscript b denotes the basic state,
0p  is the pressure at 0z  , L UT T T   , 

( 1,2)i iL iUS S S i    ,
T

d



 and ( 1, 2)i

i

S
i

d



  .  

To study the instability of the system, we superimpose infinitesimal perturbations on the basic state which 

are of the form 

bq q q  , bP P P  , b    , b     , bT T T   ,  1,2i ib iS S S i                                     (10) 

where primes indicate infinitesimal perturbations. Equation (10) is substituted back into the governing 

equations and the linearized perturbation equations are  
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The normal mode expansion of the unknown variables , , , ,u v w P T    and ( 1,2)iS i 
 
is assumed in the form  

( , , , ) ( )exp( ( ) )x yF x y z t F z i k x k y nt                            (18) 

where n  is the growth term, xk and 
yk  are wave numbers in the x and y direction respectively. 

Substituting Eq. (18) into Eqs. (11)-(17), thus becomes  

0x y

w
ik u ik v

z


  


                           (19) 

     2 2

11 xn nu ik P D k u                                                                 (20) 

    2 2

11 yn nv ik P D k v                                                                    (21)

   2 2

1 1 1 2 21 T S S

P
n nw g T g S g S D k w

z
    

 
       

 
                                                       (22) 

 2 2

TnT w D k T                                                                     (23) 

 2 2

1 1 1 1Sn S w D k S                                                                         (24) 

 2 2

2 2 2 2SnS w D k S                                                                                (25) 
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where 2 2 2

x yk k k  . Eliminating u and v  from Eq. (20) and (21) by multiplying Eq. (20) by  xik  and (21) by 

yik respectively, adding the resulting equations and using Eq. (19) and then eliminating P  between this 

ensuing equation and Eq. (22), we get  

        
2

2 2 2 2 2

1 1 1 1 2 21 1 T S SD k w n n D k w n k g T g S g S                                                 (26) 

Equations (23)-(25) can also be written as  

2 2

T T

n
D k T w



 

 
    

 
                                                                 (27) 

2 2 1
1

1 1S S

n
D k S w



 

 
    

 
                                                                            (28) 

2 2 2
2

2 2S S

n
D k S w



 

 
    

 
                                                                            (29) 

Now using the following non-dimensional parameters  

a kd  , z z d  , 1 1S T    ,
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4
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  ,                        (30) 
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   , 2

1 1 d   .                                                                                             

We can reduce Eqs. (26)-(29) to the following coupled ordinary differential equations in the non-

dimensional form (after omitting the asterisks for simplicity) 

        
2

2 2 2 2 2

1 1 1 1 2 21 1 S S

p
D a w p D a w p a RT R S R S


                                                   (31) 

 2 2D a p T w                                                                         (32) 

2 2

1

1 1

1p
D a S w

 

 
    

 
                                                                               (33) 

2 2

2

2 2

1p
D a S w

 

 
    

 
                                                                                (34) 

The linear coupled ordinary differential equations (31)-(34) are to be solved by using the following 

boundary conditions  

1 2 0w Dw T S S     at 0z  and 1z   (both the boundaries are rigid)                                     (35) 

2

1 2 0w D w T S S     at 0z  and 1z   (both the boundaries are free)                                     (36) 

1 2 0w Dw T S S     at 0z   (lower boundary is rigid) 

and 2

1 2 0w D w T S S     at 1z   (upper boundary is  free)                                                         (37) 

2

1 2 0w D w T S S     at 0z   (lower boundary is free) 

and 
1 2 0w Dw T S S     at 1z   (upper boundary is rigid)                            (38) 
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where z  is the rear known variable such that 0 1z  , D is the differentiation with respect to z , 0  is 

the Prandtl number, 1 2, 0    are the ratio of diffusivities, 0R  is the thermal Rayleigh number, 

1 2, 0S SR R  are solute Rayleigh numbers, 
1 is the relaxation parameter, 2a  is the square of the wave 

number, r ip p ip  is the complex growth rate where
rp  and ip are real constants and the dependent 

variables ( ) ( ) ( )r iw z w z i w z  , ( ) ( ) ( )r iT z T z iT z  , 
1 1 1( ) ( ) ( )r iS z S z i S z  , 

2 2 2( ) ( ) ( )r iS z S z i S z  are 

complex valued functions of the real known variable z . Further we note that Eqs. (31)-(38) describes an 

eigenvalue problem for p  and govern triple diffusive convection in a Maxwell fluid layer for any 

combination of dynamically free and rigid boundaries.   

 

Theorem 1. If 
1 2( , , , , )w T S S p , 0rp 

 
with 

1 0SR  , 2 0SR  , 1 0  ,  4 2 2

10 2R a      and 0rp 
 

is a solution of Eqs. (31)-(34) together with either of the boundary conditions Eqs. (35)-(38) and 
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then 0ip  . In  particular 0rp   implies 0ip 
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   . 

 

Proof.  Multiplying Eq. (31) by w  ( w is the complex conjugate of w ) on both the sides and integrating 

over vertical range of z , we get  
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Making use of Eqs. (33)-(38), we can write  
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Substituting Eqs. (40)-(42) in Eq. (39), we obtain  
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Integrating various terms of Eq. (43) by using integration by parts for an suitable number of times and 

making use of either of the boundary conditions (35)-(38), it follows that  
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Equating imaginary parts of both sides of Eq. (44) and cancelling ( 0)ip   throughout from the imaginary 

part, we have   

   

     

1 1 1 1
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1 1 1 2 2
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                        (45) 

Multiplying Eq. (32) by its complex conjugate and integrating the ensuing equation for a suitable number of 

times and using the boundary conditions on T  namely, (0) 0 (1)T T  , we get  

   
1 1 1 1

2 2 2 2 2 2 2 22 2 4 2

0 0 0 0

2 2 rD T a DT a T dz p DT a T dz p T dz w dz        
                                  

(46) 

given that 0rp  , it follows from above equation is that  

1 1
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2
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1

2
DT dz w dz
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                                                                                   (47) 

similarly from Eqs. (33) and (34), by adopting the same procedure, we obtain  
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respectively. We first note that since 
1, ,w T S
 

and 2S  satisfy (0) 0 (1)w w  , (0) 0 (1)T T  ,

1 1(0) 0 (1)S S  and 
2 2(0) 0 (1)S S  respectively, we have by Rayleigh-Ritz inequality [48] that  
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2 22
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Utilizing inequalities (47)-(50) in inequalities (51)-(53) we obtain   

1 1
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DT dz Dw dz
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Given that 0rp  and utilizing inequalities (54)-(57) in Eq. (45), we get 

   

 

1 1 12
2 2 2 2 22 2 2 2

1 1 1 1 1 1 2 2 2 2

0 0 0

2 21 1
2 212 1 2

4 2 4 2 4

1 20 0

1
1 0

2 2 2

S S

S S

a
w dz a R DS a S dz a R DS a S dz

R a R R
Ra T dz Dw dz

 


   

     

   

  
      
 
 

  

 

                         

(58) 

the above equation clearly implies that  
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Hence,  if 
 2 2

11 2

2 4 2 4 4
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1
2 2 2

S S
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   then we must have 0ip  . 

We complete the proof.  

The vital content of theorem 1 from the physical point of view is that an arbitrary neutral or unstable mode 

of the system has the non-oscillatory character for the problem of triple diffusive convection in Maxwell 

fluid layer. In particular, PES is valid if    

 2 2

11 2

2 4 2 4 4

1 2

1
2 2 2

S S
R aR R   

    

 
   .                                                    (60) 

 

Special case: It follows from Theorem 1 that PES is valid for the triple diffusive convection (
1 0SR  ,

2 0SR  , 1 0  , 0R  ) if

 

1 2

2 4 2 4

1 2

1
2 2

S SR R 

   
  . (See Ref. [23]). 

Clearly the complement of the above results implies the occurrence of oscillatory motions, therefore it is 

significant to derive the bounds for the complex rate oscillatory motions. we prove the following theorem in 

this direction. 
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Theorem 2. If 
1 0SR  , 2 0SR  , 1 0  , 2

1R a   , 0rp  , 0ip  , then a necessary condition for the 

existence of a nontrivial solution 
1 2( , , , , )w T S S p of Eqs. (31)-(34) together with either of the boundary 

conditions Eqs. (35)-(38) is that  
2 1

1 2 2
1S S

R
p R R
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. 

Proof. Given that 0rp  and rewriting the Eq. (45), we get  
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0 0 0
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(61) 

Now, multiplying Eq. (32) by its complex conjugate and integrating the ensuing equation for a suitable 

number of times and using the boundary conditions on T  namely, (0) 0 (1)T T  , we get  

   
1 1 1 1
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2 2 rD T a DT a T dz p DT a T dz p T dz w dz                                           (62) 

given that 0rp  , it follows from above equation is that  
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likewise from Eqs. (33) and (34), by adopting the same procedure, we obtain  
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1 1
2 2
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1
S dz w dz

p
                                             (65) 

respectively.  

given that 0rp   and utilizing inequalities (63)-(65) in Eq. (61) , we have  

   
1 1 1
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1 1 1 1 1 2 2 2 2
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1 12 22
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(66) 

which obviously implies that  

 
2 1

1 2 2
1S S

R
p R R

a
 

 
   

 
                                                               (67) 

This proves the theorem. 

The above theorem states, from the physical point of sight, that the complex growth rate ( , )r ip p p of an 

arbitrary neutral or unstable oscillatory perturbation of growing amplitude, in a triple diffusive convection in 

a Maxwell fluid layer with one of the components as heat with diffusivity 
T  , must lie inside a semicircle 

in the right-half of the ( , )r ip p plane whose centre is the origin and radius equals 
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  1
1 2 2

1S S

R
p R R

a
 

 
   

 
. It is further proved that this result is uniformly valid for any combination 

of rigid and/or free boundaries. 

 

Special case:  

The following result may be obtained from the theorem 2 as a special case for triple diffusive convection 

(
1 0SR  , 2 0SR  , 1 0  , 0R  ),  

2

1 2S Sp R R  

  

(See Ref. [27]). 

 

III. Conclusions  

 

Linear instability analysis is used to investigate triple diffusive convection in Maxwell fluid layer. The 

mathematical analysis carried out here yields a sufficient condition for the validity of the principle of the 

exchange of stabilities in the present problem. Since the complement of this condition implies the 

occurrence of oscillatory motions, the upper bounds for the linear growth rate of an arbitrary neutral or 

unstable oscillatory perturbation of growing amplitude are obtained. It is further proved that the results 

are uniformly applicable to any combination of rigid and/or free boundaries.   
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