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Abstract  

    In this paper a numerical scheme has been developed for solving second order linear integro-differential 

equations subject to mixed conditions. We adopted the standard collocation points and the integro-differential 

equations is transformed into a system of linear equations. The linear system is then solved using MATLAB 

programming. The proposed scheme exhibits convergence, while the efficiency and applicability of the 

scheme has been demonstrated using two examples. The results were compared with an existing method that 

used Laguerre polynomials. The proposed method is computationally reliable. 
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1. INTRODUCTION 

  In this study, we considered the system of linear integro-differential difference equation of the form 
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subject to the mixed condition 
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j  The solution to (1) and (2) is a continuous function to be determined, that is, 
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The resolution of many problems in physics and engineering leads to (1) and (2) which is an important branch 

in modern day mathematics. Integro-differential equation arises frequently in mechanics, astronomy, biology, 

economics, chemistry, etc. [1]. It has attracted much attention and solving this equation has been one of the 

interesting tasks for mathematicians, because it can usually be reduced to a system of integral and integro-

differential equations. Integro-differential equation can be classified into Fredholm, Volterra or a combination 

of both. It is termed Fredholm integro-differential equation if the upper part of the integral is a constant and 

Volterra if the upper part of the integral is a variable. 

Fredholm integro-differential equation has applicability in Nano-hydrodynamics [2], glass-forming process 

[3], dropwise condensation [4], wind ripples in the desert [5], modelling the competition between tumour cell 

and the immune system [6], and also examining the noise term phenomenon [7]. Since analytical solutions of 

such types of problems are not easily determined, we therefore sought for numerical methods. 

Several numerical methods were presented for solving of Fredholm integro-differential equations, such as 

Fibonacci matrix method [8], differential transform method [9], Bessel matrix method [10], Laguerre 

polynomials method [11] and Bell polynomials by [12]. Equation (1) is a combination of differential equation, 

difference equation, Fredholm integro-differential equation and Volterra integro-differential equation obtained 

by extending the work of [13], [14] and [15]. 

The aim of this study is to obtain an approximate solution of (1) and (2) using polynomial collocation method.  

2. MATHEMATICAL REPRESENTATION OF SYSTEM AND METHODS 

Suppose we write (1) in the for 

                                                             xIxIxgxIxI j 4321  ,    (3) 
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where         Tk xgxgxgx 21G  

Thus, (1) reduces to 
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with mixed conditions 
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2.1 Methodology 

Let the approximate solution of (9) be  

                                                                         jjj xx CXy      (11) 

where  H

jjjj xxx 
2

1X  and  TH

jjjjj cccc 210C  are constants to be determined. 

The standard collocation  
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is given by (12). 

Collocating and substituting (11) into (9) yields 
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Substituting (13) into the mixed condition (10) 
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Augmenting (13) and (14) gives 
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 The unknown constants C  in (15) yields 
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Equation (16) is then substituted into the approximate solution (11) to give the desired numerical solutions. 

3. NUMERICAL EXAMPLES 

In this section, some numerical examples of (1) are given to illustrate the accuracy and simplicity of the 

method. Let  xyn  and  xy  be the approximate and exact solutions respectively, Ne  is the error function, 

therefore yyeabs nN   is the absolute error for N . All results are presented in tables except where 

0 Neabs . 
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Example 1:  Let us consider 
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Example 2:  Let us consider 
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Table 1: Comparison of Absolute Error with Existing Method for Example 2 

                                       Laguerre Polynomials, [11]                 Presented Method  

     ix       y  
3eabs  4eabs   5eabs  3eabs  4eabs   5eabs  

    0.0     1y  1.99e-15 1.33e-15 2.38e-15 0.00 0.00 0.00 

     2y  0.00 0.00 0.00 0.00 0.00 0.00 

    0.2     1y  3.00e-5 1.43e-4 9.00e-6 3.70e-5 4.00e-6 9.00e-6 

     2y  1.47e-4 1.43e-3 1.00e-6 1.54e-4 2.00e-6 0.00 

    0.4     1y  9.80e-4 7.80e-4 1.00e-6 1.57e-4 4.20e-5 0.00 

     2y  6.50e-4 4.00e-3 1.00e-6 7.09e-4 3.00e-4 2.00e-6 

    0.6     1y  2.40e-5 1.29e-3 4.00e-6 1.73e-4 4.20e-5 1.00e-6 

     2y  4.39e-4 1.16e-2 1.00e-6 7.09e-3 7.00e-4 4.00e-6 

    0.8     1y  1.22e-3 2.15e-4 1.30e-6 7.58e-4 2.51e-4 0.00 

     2y  3.02e-3 8.69e-2 1.20e-6 7.09e-4 4.60e-5 1.00e-6 

    1.0     1y  5.28e-3 4.54e-3 5.80e-5 4.36e-3 1.33e-3 3.10e-5 

     2y  1.30e-2 2.86e-4 1.02e-4 1.27e-2 4.70e-4 7.40e-5 

 

4. CONCLUSION 

In this paper we presented a new method that efficiently solved a system of second order linear Fredholm 

integro-differential equations. [11] used collocation method which transformed the system of Fredholm 
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integro-differential equations into a system of equations in unknown Laguerre coefficients. Our new method 

used standard collocation points to transform the system of equations into linear algebraic equations. These 

algebraic equations are then solved by polynomial collocation method and substituted into the approximate 

solution to obtain the desired numerical results. The scheme gave the exact solution for 3N in example 1. 

For example 2, as N  increases the absolute error is decreasing, thereby showing accuracy of the results. The 

absolute errors tends to zero which shows that the solution is converging. For the same value of N  the 

presented method gave better results in few computations. Furthermore, the results gave better approximations 

than the method used in [14]. Both problems were solved using a program written using MATLAB 2016a 

software. 
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