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Abstract: 

Calculus is a branch of Mathematics which is associated with the calculation of instantaneous rates of variation, 

the fundamental principle of the sub-branch of Calculus  i.e., Differential Calculus and the addition of infinitely 

many infinitesimal elements or partitions to calculate the entire as a whole is the basic functioning principle of 

the other sub-branch of Calculus i.e., the Integral Calculus which is the topic of study of this paper. Integral 

calculus is that sub-branch of Calculus apportioning with the concepts and applications of different integrals 

in different practical scenarios. Out of the two emerging vital sub-branches of Mathematics, Differential 

Calculus emphasizes on the point at which frequency, a change or variation occurs at an instantaneous time. 

For instance, in calculating the gradients of tangent lines and velocities. Integral Calculus deals with areas and 

volumes. These two twigs are coupled by the fundamental theorem of Calculus that illustrates the procedure 

in which manner, a definite integral is calculated by dint of its antiderivative. During the 17th century, two 

significant figures in the field of mathematicians, one from England and the other from Germany, viz., Sir 

Isaac Newton and Gottfried Wilhelm Leibniz respectively, should be intensely honoured for simultaneously 

making research but not knowingly one another on the most applicable significant sub-branch of Mathematics 

across the world i.e.,  Calculus. Calculus is now emanating as the key subject to be learnt by the scholars, 

practicing in the fields of Mathematics, Physics, Economics, Commerce and Finance. Calculus turns it 

conceivable to resolve the complications arising in solving the analytical criticalities in the research arenas of 

Mathematics, Physics and Econometrics. With the advancements of the modern digitalized technologies and 

with the strenuous innovations of the artificial intelligences, computers are put forwarding an energetic bridge 

between finding solutions arising in the fields of calculus complications and intricate concepts that were 

previously pondered dreadfully problematic. The extraordinary effectiveness of the sub-branch springs from 

its practice in solving differential equations and calculus of variations. 
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1. Introduction of Integral Calculus: 

The very branch of mathematics Calculus affords a technique to calculate the distance of a curve expressed in 

terms of length by applying a concept of  partitioning the entire length into smaller and smaller line fragments 

or arcs of circles. The meticulous value of the length of a curve is determined by compounding this type of 

method with the idea of a limit. The complete method is abridged by a formulation concerning the integral of 

the function relating to the curve. Integral calculus assistances in finding the anti-derivatives of a function. 

These anti-derivatives are also termed as the integrals of the function. The procedure of extracting the anti-

derivative of a function is termed as integration. The inverse process of calculating the derivatives is nothing 

but searching the integrals. The integral of a function epitomizes a family of curves.  

Integrals are the values of the function calculated by the process of integration. The process of 

extracting or finding the requisite value of f(x) from 𝑓/ (𝑥) is nothing but the very process called integration. 

Integrals allocate numbers to functions by a means that describe displacement and motion problems, area and 

volume problems and so on that get up by merging all the small statistics. Given the derivative 𝑓/ of the 

function f, we can evaluate the function f. This is the context where the function f is defined to be the 

antiderivative or integral of 𝑓/.  

Let us take a simple instance illustrating the principle of finding the derivative of a function and 

applying the inverse procedure i.e., finding the anti-derivative of the function i.e., the integration: 

Let us consider the function, 𝑓(𝑥)=𝑥3  

∴ Derivative of 𝑓(𝑥)=𝑓/ (𝑥) = 3𝑥2 = 𝑔(𝑥)  

Let us take, 𝑔(𝑥)=3𝑥2, ∀𝑥 ∈ 𝑹, the set of Reals. 

Anti-derivative of 𝑔(𝑥)= ∫ 𝑔(𝑥) = ∫ 𝑓/ (𝑥) = ∫ 3𝑥2 = 3 ∫ 𝑥2 = 3.
𝑥3

3
= 𝑥3 + 𝑐, where 𝑐 is the constant of 

integration to be added. 

1.1 Definition of Integral: 

A function of the variable x, F(x) is called the Antiderivative or Newton-Leibnitz Integral or Primitive of a 

function f(x) of the variable x, on an interval, generally denoted by the capital case letter I, the first letter I 

from the word Integral is taken.  

Thus, I= F'(x) = f(x), for 𝑥 ∈ 𝑹. 

The hidden logic or the physical interpretation behind finding the Integral is the representation of the area of a 

region bounded by a curve, the horizontal/abscissa or the X-axis and the vertical/ordinate or the Y-axis. The 

authentic value of an integral is supported by drawing rectangles of infinitesimal areas occupied under the 

curve. The concept of definite integral comes to put its existence here in finding the area of the region bounded 

under the curve and the two co-ordinate axes which is the fundamental property of Integral calculus. A definite 

integral of a function that can be evaluated by calculating the area of the portion bounded by the graph 

(particularly a curve which is a portion of a circle) of the specific definite function between two extremities 

situated on the same line segment. The area of a region is calculated by making infinitesimal partitions of 

miniscule vertical rectangles and applying the lower and the upper limits by putting the corresponding values 
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on the two upper and lower portions of the integration sign which is written in the shape of an elongated S and 

using the mathematical expression as   

∫ (𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑏𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑) 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑛𝑑
𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡
, 

the area of the surrounded region is then summed up. The integral of a function is usually computed over an 

interval grounded on which the existence of the conforming integral substantiates.  

 

 

 

 

 

 

1.2 Fundamental Theorems of Integral Calculus: 

Let us define the integrals as the function of the area bounded by the curve y = f(x), a ≤ x ≤ b, the x-axis, and 

the ordinates x = a and x =b, where b>a. Let x be a given point in [a,b]. Then the mathematical notation 

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 denotes the area function. This concept of area function leads to the fundamental theorems of 

Integral Calculus. Two fundamental theorems emanate accordingly viz.,  

 First Fundamental Theorem of Integral Calculus 

 Second Fundamental Theorem of Integral Calculus 

1.3 First Fundamental Theorem of Integrals: 

Let us consider the function 𝑍(𝑥) of the variable x where 𝑍(𝑥) can be expressed as 

𝑍(𝑥) = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 

for every value of 𝑥 satisfying the inequality, x ≥ a, conforming the condition that the function 𝑓(𝑥) is a 

continuous function on the closed interval [a,b].  

∴ 𝑍/(𝑥)= f(x) as [∫ ≡
1

𝑑
] ; ∀x ϵ [a,b] 

1.4 Second Fundamental Theorem of Integrals 
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Let us consider a function z which is a continuous function of x defined on the closed interval [a,b] and Z be 

another function such that 
𝑑

𝑑𝑥
Z(x) = z(x) for all x in the domain of z, then ∫ 𝑧(𝑥)

𝑏

𝑎
𝑑𝑥= z(b) -z(a). This is called 

the definite integral corresponding to the function f over the range [a,b], where a and b represent the lower and 

the upper limit accordingly. 

 

2. Different Types of Integrals Existed Conforming to Different Complicated Scenarios: 

The general utilizations of integral calculus lie in resolving the complications of the categories enlisted below: 

 The problem of evaluating a function when the value if its derivative is known to us. 

 The problem of calculating the area of the region bounded by the curve abiding by some constraints. 

As a repercussion, the sub-branch Integral calculus of the branch Calculus of Mathematics confronts 

to two kinds of divisions accordingly as:  

 Definite Integrals (the value of the integrals possess definite numerical values) 

 Indefinite Integrals (the value of the integral is indefinite for which usually an arbitrary constant is 

added with the calculated value of the integral). 

Now let us take glimpse of the two integrals. 

2.1 Indefinite Integrals: 

These are the integrals that are not possessing any pre-existing values of the limits. Thus, making the final 

value of integral indefinite. ∫ 𝑝/ (𝑥)𝑑𝑥 =𝑝(𝑥) + 𝑐. Indefinite integrals fit in to the family of parallel curvatures. 

2.2 Definite Integrals: 

Definite integrals are bearing the antagonist characteristics to those of the previously discussed indefinite 

integrals. The definite integrals have a pre-existing value of the limits, thus making the final value of an integral 

definite or fixed. If a curve is represented by the function, g(x) then definite integrals mathematically predicts 

that ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 =f(b)−f(a) 

3. Properties of Integral Calculus 

Let us have a go through about the behavioural characteristics of the indefinite integrals to endure a clear 

knowledge on them. These are discussed abridgedly below: 

 The derivative of an integral is the integrand itself i.e., ∫ 𝑓(𝑥)𝑑𝑥= 𝑓(𝑥)+c, where c is an arbitrarily 

chosen constant to be added with the integration result [considering the arbitrarily adopted function of 

the variable 𝑥 to be 𝑓(𝑥)]. 

 Two indefinite integrals exhibiting the same values of the two derivatives conforms to the identical 

family of curves and that is the very reason why the two curvatures are similar or alike.  

∴ ∫[𝑓(𝑥)𝑑𝑥 − 𝑔(𝑥)𝑑𝑥] = 0 ∵ 𝑓(𝑥) = 𝑔(𝑥) 

 The integral of the addition or subtraction of a predetermined number of functions is equal to the 

addition or subtraction of the integrals added or subtracted separately or in a discrete manner.  
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i.e., ∫[𝑓(𝑥)𝑑𝑥 ± 𝑔(𝑥)𝑑𝑥] = ∫ 𝑓(𝑥) 𝑑𝑥 ± ∫ 𝑔(𝑥) 𝑑𝑥. 

 When there is some constant term inside the integration symbol, it is carried outside the integral sign  

i.e., ∫ 𝑘ℎ(𝑦)𝑑𝑦 = 𝑘 ∫ ℎ(𝑦)𝑑𝑦, ∀𝑘 ∈ 𝑹 

 Combining the previous two properties which leads to the mathematical equation as follows: 

∫[𝑐1𝑓1(𝑥) ± 𝑐2𝑓2(𝑥) ± 𝑐3𝑓3(𝑥) ± ⋯ ± 𝑐𝑛𝑓𝑛(𝑥)] 𝑑𝑥       

= ∫ 𝑐1𝑓1(𝑥)𝑑𝑥 ± ∫ 𝑐2𝑓2(𝑥)𝑑𝑥 ± ∫ 𝑐3𝑓3(𝑥)𝑑𝑥 ± ⋯ ± ∫ 𝑐𝑛𝑓𝑛(𝑥)𝑑𝑥 𝑐𝑛𝑓𝑛(𝑥) 

3.1 Some Standard Integral Formulae: 

There has a bundle of formulae for derivatives of a few numbers of significant functions. Here are presenting 

below the correlated integrals of those important functions which are reminisced as standard formulae for 

integrals. Some of these are as follows: 

 ∫ xn dx=xn+1 /n+1+C, where n ≠ -1 

 ∫ dx =x+C 

 ∫ cosxdx = sinx+C 

 ∫ sinx dx = -cosx+C 

 ∫ sec2x dx = tanx+C 

 ∫ cosec2x dx = -cotx+C 

 ∫ sec2x dx = tanx+C 

 ∫ secx tanxdx = secx+C 

 ∫ cscx cotx dx = -cscx+C 

 ∫1/(√(1-x2))= sin-1 x + C 

 ∫-1/(√(1-x2))= cos-1 x + C 

 ∫1/(1+x2)= tan-1 x + C 

 ∫-1/(1+x2)= cot-1 x + C 

 ∫1/(x√(x2 -1))= sec-1 x + C 

 ∫-1/(x√(x2 -1))= cosec-1 x + C 

 ∫ exdx=ex + C 

 ∫dx/x=ln|x| + C 

 ∫ ax dx=ax/ln a + C 

Where in each of these formulae, C is the constant of integration to be added as these are indefinite 

integrals. 

4. Review of Related Literature: 

4.1 Calculating curves and areas under curves: 

The backgrounds of the very implementational branch of mathematics i.e., Calculus, falsehood its 

origin in solving and analysing a good number of ancient problems of Geometry which are on top score. The 

well recorded Egyptian Rhind papyrus near the river Nile which is cited for the extreme initiator of the human 

civilization, almost around the 1650 BCE, springs strategies for calculating the area of a circle and the volume 

of a curtailed pyramid. Antique Greek geometry investigators inspected finding tangents to concerned curves, 

making the formulae or building the algorithm for evaluating the centre of gravity (C.G.) of plane (two, three 
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or multi-dimensional) and solid geometrical structures and the volumes of objects designed by revolving a 

multiple number of  curves about a fixed axis. 

The year 1635 is a noteworthy year in the antiquity of Greek Geometry, as the renowned Italian 

mathematician named Bonaventura Cavalieri had complemented the hard demanding supportive aids of Greek 

geometry with practical approaches that castoff the knowledge of infinitely small fragments of the geometric 

shapes viz., lines, areas and volumes. Subsequently, the year 1637 also deployed its importance in the record-

breaking advancement of geometrical implications, since in this year, French mathematician and emerging 

philosopher of that time, named René Descartes made available his creations in the form of tangible 

publications of works in the arena of Analytic Geometry which compassionate algebraic descriptions of 

geometric structures. Descartes’s technique, in amalgamation with an antique idea of curves being engendered 

by a travelling point, insisted some mathematicians such as Newton to describe the concept of motion i.e., 

displacement, velocity and acceleration, deceleration and the calculus of variation, algebraically by providing 

mathematically fortified algebraic expressions. Rapidly geometry researchers possibly will go outside of the 

boundary of the solitary cases and some improvised procedures of earlier epochs to cross the confined research 

findings and postulate new advanced practical theories and supplementary ideas. Those mathematicians and 

Geometry researchers could investigate emerging and promising designs of consequences. As a result, the 

antique mathematicians were capable of establishing creative estimates of new research findings that the elder 

geometric philological ground-work had concealed. 

Let us discuss about the great Greek Mathematicians and Geometry expertise fellow, Archimedes, 

somewhat between 287–212/211 BCE, discovered as an inaccessible solution that the area of a line fragment 

of a parabola which is analogous to a certain specific triangle. With the progress of the parametric equation of 

expressing a parabola fortified with algebraic symbolization, a parabola can be written as y = x2, Cavalieri and 

other Geometry researchers shortly distinguished that the area between this curve and the x-axis from 0 to a is 

a3/3 whereas a comparatively equivalent principle holds good for the curve y = x3, for which the conforming 

area is a4/4. As a repercussion of which, they could come to speculate that the universal formula for calculating 

the area under a curve which is bearing the unique representation as y = xn is an + 1/(n + 1). 

5. Integration and Differentiation: 

Newton and Leibniz, two contemporary Mathematicians, individually, developed the most plausible and 

general rules for evaluating the formula for calculation of the gradient of the tangent to a curve at some point 

on it, whenever the equation of the curve is provided to us. The rate of variation of a function f (denoted by f′) 

is recognized as the derivative of the corresponding function f. The procedure for finding out the formula of 

the derivative of a function is called differentiation and the techniques employed in the execution of such 

procedure is the building-block of the sub-branch of Calculus i.e., the Differential Calculus. Constructed on 

this propounding framework, derivatives may be  construed as slopes or gradients of the tangent lines drawn 

to a curve which is nothing but a portion of the circle then velocities of the transversing particles or a good 

number of additional quantities and these practical scenarios mendacities the prodigious supremacy of 

Differential  Calculus. 

Let us consider the mathematical scenario when the equation of a curve has its representation in the 

form as y = f(x), the sub-branch Differential Calculus plays a very vital role in tracing or plotting the graph of 

this aforesaid curve. This scenery requires, in particular, calculating the local maximum and minimum valued 

points on the graph, as well as changes in intonation (from convex to concave or vice versa). Working with a 

staging of  intensively investigating a function utilized in designing a mathematical model, such geometric 

concepts offer physical elucidations that permit  mathematicians or scientific researchers with a view of  rapidly 

increasing  deep sensations for the characteristics of a physical run-through process. 
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The supplementary pronounced breakthrough discoveries of the two great contemporary mathematics, 

one from England and the other from Germany is that of Newton and Leibniz respectively was finding the 

derivatives of functions. Subsequently, the inverse process of finding requisite areas under curves satisfying 

some constraints acknowledged as the fundamental theorem of Calculus. Precisely, the discovery of Newton 

suggests that if there exists a function F(t) that signifies the area under the curve y = f(x), varying from the 

initial value or lower limit 0 to a final or upper limit t, under such situation, the derivative of the relevant 

function is identical to the original curve over that interval, i.e., F′(t) = f(t) of the variable t. Henceforth, 

enchanting an example of finding the area under the curve y = x2 under this circumstance, from a lower limit 0 

to an upper limit valued as t, it is sufficient to produce a function F so that F′(t) = t2. The sub-branch Differential 

calculus confirms that the most conventional representation of a function is suppose, x3/3 + C, where C is an 

arbitrary constant. This is called the (indefinite) integral of the function y = x2, and it is denoted by the integral 

𝐼 = ∫x2dx. The sign ∫ is an elongated S which attitudes for addition and dx which is called the integrand, 

designates an infinitesimally small increments of the variable on the co-ordinate axis over which the function 

is being summed. Leibniz presented this concept with the help of co-ordinate geometry as he supposed that 

integration is a procedure of calculating the area under a prescribed curve by a process of  summation of the 

areas of substantially many infinitesimally slim rectangles drawn in between the abscissa i.e., the X-axis and 

the very mentioned curve. Newton and Leibniz arrived at the point from their individual research that 

integrating the function f(x) is alike as  solving a differential equation i.e., evaluating a function F(t) such that 

F′(t) = f(t). In physical representation, finding the explanatory resolution to this equation can be understood as 

calculating the remoteness F(t), traversed by an entity whose velocity possess a valid expression, f(t) of the 

variable 𝑡. 

 

 

 

7. Calculating Velocities and Slopes: 

The problematic scenario of finding out the tangents to corresponding curves was meticulously correlated to 

an significant problem that ascended from the Italian renowned scientist Galileo Galilei’s shocking 

investigations performed on the physical phenomenon i.e., motion which further projects on evaluating the 

velocity of a particle at any prescribed instant of time and at the same instance which is moving bestowing 

upon some universally and practically visible laws of motion. Galileo recognized that in t seconds a freely 

falling body falls a distance gt2/2, where g is a constant, in subsequent times, it is construed by Newton as the 

earth’s gravitational constant or more frequently,  constant of gravity. Taking the support of the definition of 

average velocity as the distance per time or the rate of change occurring with the factor time, the particle’s 

average velocity over an interval, ranging from an initial time t to a modified time t + h, where ℎ is the height 

or distance traversed by the particle, can be formulated by the algebraic expression [g(t + h)2/2 − gt2/2]/h. This 

on simplification gives rise to an expression gt + gh/2 and is termed as the difference proportion of the function 

gt2/2. As the variable factor h approaches 0, this formula approaches gt, which is deciphered as the 

instantaneous velocity of a freely falling body at any instant of time t. 

This expression depicting the physical phenomenon of motion is identical to that attained for the 

gradient of the tangent to the parabola of the variable 𝑡 is f(t) = y = gt2/2 at any point t. This geometrical concept 

leads to the expression gt + gh/2 (or its equivalent [f(t + h) − f(t)]/h) on further simplification which symbolizes 

the gradient of a secant segment involving the point (t, f(t)) to the adjacent point (t + h, f(t + h)). In the limiting 
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value, containing lesser and lesser intervals h, the secant line approaches the relevant tangent line and its 

gradient at some point t. 

This leads to the concept that the difference in quotient can be understood as instantaneous change in 

velocity or as the slope of a tangent line drawn to a specified curve at any pre- defined point of time. This leads 

to the genesis of Calculus that founded the unfathomable correlation arising between Geometry and Physics, 

in a progression of converting Physics and promoting an innovative incentive to the learning arena of 

Geometry. 

In Mathematics, Integration deploys the practice of finding a function g(x) the derivative of which is 

denoted by the expression, Dg(x) is equivalent to a given function f(x). The symbol dx represents an 

infinitesimal displacement along x thus, the integral 𝐼 = ∫ 𝑓(𝑥) 𝑑𝑥 signifies the summation of the product of 

f(x) and dx. The definite integral, written ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 with the two numerals viz., a and b respectively occupying 

the lower and upper positions of the integration sign,  called the limits of integration, gives rise to the valued 

algebraic expression  g(b) − g(a), carrying the functional relation Dg(x) = f(x). 

A handful of antiderivatives can be intended by just remembering the function that possess a specified 

derivative, whereas the techniques of integration frequently include categorizing the functions affording to 

different sorts of operations that will alter the function into an arrangement of the antiderivative of which can 

be further effortlessly predictable. An example can be cited in this context that if somebody is acquainted with 

calculation of derivatives of functions, the function 1/(x + 1) can be straightforwardly predictable as the 

derivative of loge(x + 1). The antiderivative of (x2 + x + 1)/(x + 1) cannot be so effortlessly established, but  if 

it is written as x(x + 1)/(x + 1) + 1/(x + 1) = x + 1/(x + 1),  it can be acknowledged as the derivative of x2/2 + 

loge(x + 1). A beneficial support for evaluating the value of an integration is the theorem recognized as 

Integration by Parts. The symbolic representation of the rule is ∫fDg = fg − ∫gDf  which signifies that if a 

function is the product of two different functions, f and one that can be recognized as the derivative of some 

function g, then the initial problem can be solved if one can integrate the product of the two functions viz., 

gDf. For instance, if f = x, and Dg = cos x, then ∫x·cos x = x·sin x − ∫sin x = x·sin x − cos x + C, where C is the 

constant of integration to be added. Integrals have the utilizations in evaluating some physical quantities such 

as area, volume, work, and more generally any quantity that can be interpreted as the area under a curve. 

8. Length of a Curve: 

In calculating the length of a curve, geometrical concept is concentrated by Integral Calculus. Approaches for 

calculating meticulous lengths of line fragments and arches of circles that have been recognized since primeval 

aeras. The emanating branch Analytical Geometry permitted the evaluations of these aforesaid  geometries to 

be quantified as formulae including coordinate systems of points and measurements of allied angles. Calculus 

provided a technique to invent the length of a curve by contravening it into smaller and smaller line fragments 

or curves of circles. The accurate value of a curve’s length is created by compounding a procedure with the 

implication of the inkling concept of a limit. The complete process is abridged by formulating which 

encompasses the integral of the function styling the curve. 

9. Fundamental Ground Work for Functioning Technologies of Calculus: 

Basic principle of calculus relates the derivative to the integral and provides the principal method for evaluating 

definite integrals. In brief, it states that any function that is continuous (continuity) over an interval has an 

antiderivative (a function whose rate of change, or derivative, equals the function) on that interval. Further, the 

definite integral of such a function over an interval a < x < b is the difference F(b) − F(a), where F is an 

antiderivative of the function. This particularly elegant theorem shows the inverse function relationship of the 
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derivative and the integral and serves as the backbone of the physical sciences. It was articulated independently 

by Isaac Newton and Gottfried Wilhelm Leibniz. 

In this paper, study is carried out on the properties of Integral Calculus strictly. 

9.1 A Glimpse of the Procedures of Finding Integrals: 

There are several methods which are employed for calculating the value of the indefinite integrals. The 

protuberant procedures are: 

 Finding the value of the integrals by the method of integration by substitution. 

 Finding the requisite value of the integrals by applying the method of integration by parts. 

 Finding the value of integrals by utilizing the method of integration by partial fractions. 

9.2 Finding the Values of Integrals by Applying Substitution Method: 

The values of some integrals are calculated by using the procedure of substitution. Thus, if u is a function of 

x, then u' = du/dx. 

∫ f(u)u' dx = ∫ f(u)du, where u = g(x). 

9.3 Finding the Values of Integrals by the Method of Integration by Parts: 

Let us consider a product function which is the product or multiplication of two different functions, in such 

scenario, the requisite integrals are evaluated by the method of integration by parts. 

i.e., ∫f(x)g(x) dx = f(x)∫ g(x) dx - ∫ (f'(x) ∫g(x) dx) dx+c, where c is the constant of integration to be added. 

9.4 Finding the Values of Integrals by Adopting the Method of Integration by Partial Fractions: 

The process of integration of rational algebraic functions whose numerator and denominator comprise of 

positive integral powers of the variable x with constant coefficients is carried out by resolving them into 

partial fractions. 

In order to find the value of the integral, ∫ f(x)/g(x) dx, we need to decompose this improper rational function 

to a proper rational function and then we integrate as: 

∫f(x)/g(x) dx = ∫ p(x)/q(x) + ∫ r(x)/s(x), where g(x) = a(x).s(x) 

10. Applications of Integral Calculus: 

Exercising the concept of integration, someone can be capable of calculating the remoteness given by the 

velocity function which is a rate of alteration of speed with time factor. Definite integrals construct the most 

persuasive authoritative tool to find the area under some prescribed curves by abiding by some constraints like 

the area confined by a curve and a line segment, the area between two curves, the volume of the solids etc. The 

shifting and motion related complicated problems also find their applications of integrals accordingly in 

different problem-solving scenarios. The area of the region surrounded by the two curves which have the 

parametric equations as y = f(x) and y = g(x) and the lines by the equations viz., by two lines drawn parallel to 

the Y-axis which are represented by the two equations viz., x =a, x =b is given by the following integral 
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Area = ∫ [(𝑓(𝑥) − 𝑔(𝑥))]𝑑𝑥
𝑏

𝑎
 

We would like to calculate the area bounded by the curve y = x and y = x2 intersecting at two points whose 

co-ordinates are represented by (0,0) and (1,1) respectively. 

The specified curves are that of a line and a parabola.  

∴The area bounded by the curves = ∫ (y2 − y1)dx
1

0
 

and Area = ∫ (x − x2)dx
1

0
 = x2 /2- x 3/3 = 1/2-1/3 = 1/6 square units. 

 The primitive value of the function evaluated by applying the procedure of integration is named as an 

integral. 

 An integral is a mathematically fortified expression or procedure which is more often construed as an 

area or a simplification of area. 

 A polynomial function when integrated, raises the degree of the integral by 1. 

11. Characteristic Properties of Integrals: 

Properties of integrals describe or points to the instructions for working deep immensely with some concerned 

integral problems. The properties of integrals can be hugely classified into two broad categories, depending on 

the nature of integrals.  

The properties of integrals are supportive in solving integral problems. Integration concerns requisite 

functions and the most relevant algebraic expressions. These complications can be cracked with a detailed 

knowledge of the properties of integrals. The properties of integrals can be largely classified as the subsequent 

two kinds grounded on the sorts of integrals. 

 Properties of indefinite integrals and 

 Properties of definite integrals. 

 

12.  Exposition Made on the Procedure of Integral Calculus: 

 

The most impetuous branch of Mathematics i.e., Calculus is the education of the relevant procedure in which 

manner, belongings variate. It delivers a background for modelling arrangements in which there is alteration 

and a means to deduce the prophecies of such type of replicas. The sub-branch of  the branch Calculus 

concerned with manipulating integrals is the Integral Calculus and amongst its numerous appliances, it is 

functional in finding effort completed by physical structures and calculating heaviness behind a dam at a 

prearranged depth. Calculus is of extreme significance because of its gigantic pertinency. Calculus is not only 

constrained to Mathematics and Analysis, it is castoff handsome significantly far and wide - Physics, 

Economics, Engineering, Dynamic systems and so far. That is the actual point from where the significance of 

Calculus originates. 
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