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Abstract : This research delves into the application of stochastic processes, specifically the Geometric Brownian Motion (GBM) 

and the Cox-Ingersoll-Ross (CIR) process, in the realm of quantitative finance. Recognizing the ubiquity of Microsoft Excel in 

the finance sector, we introduce a hands-on approach to simulate these processes using Visual Basic for Applications (VBA). 

Our paper highlights the implementation details, ensuring the adaptability of the developed code for various financial stochastic 

processes. By bridging theoretical finance with practical Excel-based solutions, this research aims to provide a valuable tool for 

financial analysts and researchers. 
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1. INTRODUCTION  
Financial markets are inherently uncertain, with asset prices and interest rates exhibiting random fluctuations over time. To capture 

and understand these dynamics, stochastic processes, which describe systems evolving over time with a probabilistic element, have 

become fundamental in the realm of quantitative finance. Among these, the Geometric Brownian Motion (GBM) and the Cox-

Ingersoll-Ross (CIR) process stand out due to their widespread applications in modeling stock prices and interest rates, respectively. 

 

While there are numerous software platforms tailored for financial modeling, Microsoft Excel remains a staple in the finance industry, 

offering accessibility and ease of use. Its embedded programming environment, Visual Basic for Applications (VBA), allows for the 

creation of custom functions and simulations, making it a versatile tool for financial analysts and researchers. This paper delves into 

the implementation of the GBM and CIR processes in Excel using VBA, providing a hands-on approach to understanding and 

simulating these fundamental stochastic processes. Furthermore, we discuss the adaptability of the developed code to model other 

related processes, exemplified by the ease of transitioning from the CIR to the Ornstein–Uhlenbeck (OU) process. 

 

By bridging the gap between theoretical finance and practical implementation, this paper aims to serve as a valuable resource for 

both academia and industry professionals looking to harness the power of Excel for stochastic financial modeling. 

 

2. METHODOLOGY  

 

2.1. Stochastic Differential Equation and Milstein Scheme 
A general one-dimensional SDE can be written as: 

𝑑𝑋𝑡 = 𝑎(𝑋𝑡 , 𝑡)𝑑𝑡 + 𝑏(𝑋𝑡 , 𝑡)𝑑𝑊𝑡 (1) 

where 𝑑𝑋𝑡 is the change in the process 𝑋𝑡, 𝑎(𝑋𝑡 , 𝑡) is the drift term, 𝑏(𝑋𝑡 , 𝑡) is the diffusion term, and 𝑑𝑊𝑡 is a Wiener process or 

Brownian motion [1]. 

The Milstein scheme [1], [2] approximates the solution of the SDE by discretizing time into small intervals of length 𝛥𝑡, and the 

approximation at time 𝑡𝑛+1 is given by: 

𝑋𝑡𝑛+1
= 𝑋𝑡𝑛

+ 𝑎(𝑋𝑡𝑛
, 𝑡𝑛)𝛥𝑡 + 𝑏(𝑋𝑡𝑛

, 𝑡𝑛)𝛥𝑊𝑛 +
1

2
𝑏(𝑋𝑡𝑛

, 𝑡𝑛)𝑏′(𝑋𝑡𝑛
, 𝑡𝑛) ((𝛥𝑊𝑛)2 − 𝛥𝑡) (2) 

Here 𝛥𝑊𝑛 = 𝑊𝑡𝑛+1
− 𝑊𝑡𝑛

 is the increment of the Wiener process, which is normally distributed with mean 0 and variance 𝛥𝑡. 

Further, 𝑏′(𝑋𝑡𝑛
, 𝑡𝑛) is the derivative of the diffusion term with respect to 𝑋. 

 

2.2. Geometric Brownian Motion (GBM) and the Milstein Scheme  
Geometric Brownian Motion (GBM) is a continuous-time stochastic process [3] widely used in mathematical finance to model stock 

prices, interest rates, exchange rates, and other financial variables. The process assumes that the percentage changes in the stock 

price are normally distributed, resulting in a log-normal distribution of the stock price over time. Mathematically, it has the form 
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𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 . (3) 

where 𝑆𝑡 is the value of the stock price at time 𝑡, 𝜇 is the drift rate, often interpreted as the expected return of the stock, 𝜎 is the 

volatility coefficient, and 𝑊𝑡 is a standard Brownian motion or Wiener process. 

The Milstein approximation for GBM is: 

𝛥𝑆𝑡 = 𝜇 𝑆𝑡  𝛥𝑡 + 𝜎 𝑆𝑡  𝛥𝑊𝑡 +
1

2
𝜎2 𝑆𝑡  ((𝛥𝑊𝑡)2 − 𝛥𝑡) (4) 

Here, 𝛥𝑆𝑡  is the change in stock price, 𝛥𝑡 is the time step, and 𝛥𝑊𝑡  is the increment of the Wiener process, which is normally 

distributed with mean 0 and variance 𝛥𝑡. 

 

The additional term 
1

2
𝜎2 𝑆𝑡((𝛥𝑊𝑡)2 − 𝛥𝑡) in the Milstein scheme is a correction term which provides an improvement over the 

Euler-Maruyama method in approximating GBM. 

 

2.3. Cox-Ingersoll-Ross (CIR) Process and the Milstein Scheme  
The Cox-Ingersoll-Ross (CIR) process [3] is a type of mean-reverting stochastic process primarily used in finance to model interest 

rates. The CIR process ensures that interest rates remain positive, making it a more realistic model for certain financial applications 

compared to other interest rate models. 

 

The stochastic differential equation (SDE) representing the CIR process is given by: 

𝑑𝑋𝑡 = 𝛼(𝜃 − 𝑋𝑡) 𝑑𝑡 + 𝜎√𝑋𝑡  𝑑𝑊𝑡 . (5) 

where 𝑋𝑡 is the process value at time 𝑡, 𝛼 is the speed of mean reversion, 𝜃 is the long-term mean (interest rate), 𝜎 is the volatility 

and 𝑑𝑊𝑡 is the increment of a Wiener process. 

The Milstein scheme is an extension of the Euler-Maruyama scheme that includes a correction term to account for the second moment 

of the Wiener process increment. For the CIR process, the Milstein scheme can be written as: 

𝛥𝑋𝑡 = 𝛼(𝜃 − 𝑋𝑡) 𝛥𝑡 + 𝜎√𝑋𝑡  𝛥𝑊𝑡 +
1

2
𝜎2 ((𝛥𝑊𝑡)2 − 𝛥𝑡) (6) 

where 𝛥𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 is the change in the process value, 𝛥𝑡 is the time increment and 𝛥𝑊𝑡  is a Wiener process increment over the 

interval 𝛥𝑡 , which is normally distributed with mean 0 and variance 𝛥𝑡. 

The additional term 
1

2
𝜎2((𝛥𝑊𝑡)2 − 𝛥𝑡) in the Milstein scheme corrects for the approximation error in the Euler-Maruyama method, 

making the Milstein scheme a more accurate method for approximating the CIR process. 

 

2.4. Implementation in Excel using VBA 
Visual Basic for Applications (VBA) is an event-driven programming language developed by Microsoft. It is primarily used for 

automating tasks in Microsoft Office applications, with Excel being one of its most popular platforms. VBA allows users to create 

custom functions, automate repetitive tasks, and develop user-defined models and simulations, making it a powerful tool suitable for 

financial modeling and analysis.  

Further,  opting for ( 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑊𝑜𝑟𝑘𝑠ℎ𝑒𝑒𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 𝑅𝑎𝑛𝑑𝐵𝑒𝑡𝑤𝑒𝑒𝑛(0, 232) / (232) ) over VBA's native 𝑅𝑛𝑑()  function 

provided a more granular distribution of random numbers in the interval [0,1], due to its ability to generate a larger set of distinct 

values, enhancing the resolution of the random number generation process. 

 

Description of the functions: 

𝑀𝑖𝑙𝑠𝑡𝑒𝑖𝑛𝐺𝐵𝑀𝑎𝑛𝑑𝐸𝑋𝐴𝐶𝑇: This function approximates the Geometric Brownian Motion using the Milstein scheme and provides the 

exact solution values. Depending on the user's selection, it can return either the approximate values (upon selecting one column) or 

the exact values and approximate values (upon selecting two columns). The function requires the initial stock price (So), drift 

coefficient (Mu), volatility coefficient (Sigma), and a range of time values (tRange) as its arguments. (Appendix II) 

 

𝑀𝑖𝑙𝑠𝑡𝑒𝑖𝑛𝐶𝐼𝑅: Designed to approximate the Cox-Ingersoll-Ross (CIR) process using the Milstein scheme, this function takes initial 

parameters such as the initial value (Xo), mean reversion rate (Alpha), long-term mean (Mu), and volatility (Sigma), along with a 

range of time values (tRange). It then produces an array of approximated values over the specified time frame. (Appendix III) 

 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: Serving as a utility function, "ValidateParameters" ensures that the input parameters for the above functions 

are valid. It checks for numeric values, the structure of the time range, and the order of time values, raising errors if any 

inconsistencies are found. (Appendix I) 

 

 

3. RESULTS AND DISCUSSION  
Using the developed VBA functions, we generated sample paths for both the Geometric Brownian Motion and the Cox-Ingersoll-

Ross processes. For a given set of parameters, the functions returned arrays of values representing the evolution of the processes 

over time. The results were plotted directly within Excel, demonstrating the ease of integration and visualization when using VBA 

in conjunction with Excel's native charting capabilities. (Appendix IV and V) 

 

Upon comparing the results obtained from our VBA functions with those from other platforms, such as R and Python, we observed 

a high degree of similarity. This attests to the accuracy of the Milstein scheme's implementation in our VBA functions. While minor 

discrepancies can arise due to differences in random number generation or numerical methods across platforms, the overall 

trajectories of the generated paths were consistent. 
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The Milstein scheme, as implemented in our VBA functions, offers a balance between accuracy and computational efficiency. While 

there are more sophisticated numerical methods available, [2] the Milstein scheme provides a good trade-off, especially for 

applications within Excel where rapid computation is often desired. 

 

Furthermore, the flexibility of VBA allows for easy modifications and extensions of these functions, catering to more specific needs 

or advanced financial models. The integration with Excel also means that users can leverage Excel's data analysis and visualization 

tools, making the entire modeling and analysis process seamless and efficient. 

 

Further, the Cox-Ingersoll-Ross (CIR) process and the Ornstein–Uhlenbeck (OU) process share structural similarities, with the 

primary difference being in the volatility term. By adjusting the line 54 in the VBA function “𝑀𝑖𝑙𝑠𝑡𝑒𝑖𝑛𝐶𝐼𝑅” (Appendix-III) for the 

CIR process, one can easily adapt it to model the OU process, demonstrating the flexibility and adaptability of the developed code 

for various stochastic processes in finance. 

 

 

 

4. REFERENCES 

 

[1] T. Mikosch, “Elementary Stochastic Calculus, with Finance in View,” vol. 6, Oct. 1998, doi: 10.1142/3856. 
[2] P. E. Kloeden and E. Platen, “Numerical Solution of Stochastic Differential Equations,” Numerical Solution of 

Stochastic Differential Equations, 1992, doi: 10.1007/978-3-662-12616-5. 

[3] J. Franke, W. K. Härdle, and C. M. Hafner, “Statistics of Financial Markets,” 2019, doi: 10.1007/978-3-030-13751-

9. 

  

 

 

ACKNOWLEDGMENT 
The author would like to extend heartfelt gratitude to Ms. Jasvinder Goswami, Associate Professor in the Department of Statistics at 

PGDAV(M) College, University of Delhi, and his wife, for her invaluable discussions and insightful comments on the manuscript. 

 

 

 

 

APPENDIX - I 1 

' ==================== Helper Functions ==================== 2 
Function ValidateParameters(inputs As Variant, tRange As Range) As Boolean 3 
    ' Check if all inputs are numeric 4 
    Dim i As Integer 5 
    For i = LBound(inputs) To UBound(inputs) 6 
        If Not IsNumeric(inputs(i)) Then 7 
            Err.Raise 9999, "ValidateParameters", "All input parameters must be numeric values." 8 
            Exit Function 9 
        End If 10 
    Next i 11 
     12 
    ' Check if tRange is a single column 13 
    If tRange.Columns.Count > 1 Then 14 
        Err.Raise 9999, "ValidateParameters", "tRange must be a single column of values." 15 
        Exit Function 16 
    End If 17 
     18 
    ' Convert the range to an array 19 
    Dim t() As Variant 20 
    t = tRange.Value 21 
     22 
    ' Check if tRange contains only numeric values 23 
    For i = LBound(t, 1) To UBound(t, 1) 24 
        If Not IsNumeric(t(i, 1)) Then 25 
            Err.Raise 9999, "ValidateParameters", "tRange must contain only numeric values." 26 
            Exit Function 27 
        End If 28 
    Next i 29 
     30 
    ' Check if tRange values are in non-decreasing order 31 
    For i = LBound(t, 1) + 1 To UBound(t, 1) 32 
        If t(i, 1) <= t(i - 1, 1) Then 33 
            Err.Raise 9999, "ValidateParameters", "Values in tRange must be in >= order." 34 
            Exit Function 35 
        End If 36 
    Next i 37 
 38 
    ValidateParameters = True 39 
End Function 40 
 41 

 42 
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APPENDIX - II 43 

' ==================== Main Functions ==================== 44 
' Function: ========== MilsteinGBMandEXACT =============== 45 
' Purpose: Approximate the GBM using the Milstein scheme and provide the exact solution values. 46 
'          The function's behavior changes based on the number of selected columns: 47 
'          - 2 columns: Returns exact values in the first column and approximate values in the second. 48 
'          - 1 column: Returns only the approximate values. 49 
' Parameters: 50 
'   - So: Initial stock price 51 
'   - Mu: Drift coefficient 52 
'   - Sigma: Volatility coefficient 53 
'   - tRange: Range of time values 54 
' Returns: An array of exact and/or approximate stock prices based on the number of selected columns. 55 
 56 
Function MilsteinGBMandEXACT(So As Variant, Mu As Variant, Sigma As Variant, tRange As Range) As Variant() 57 
 58 
    On Error GoTo ErrorHandler 59 
 60 
    Dim DeltaT As Double 61 
    Dim CumDeltaW As Double 62 
    Dim DeltaW As Double 63 
    Dim PrevSt As Double 64 
    Dim ForNextSt As Double 65 
    Dim NextSt As Double 66 
    Dim ExactSt As Double 67 
    Dim St() As Variant 68 
    Dim t() As Variant 69 
    Dim i As Integer 70 
    Dim n As Integer 71 
    Dim no_of_column_selected As Integer 72 
 73 
    ' Convert the range to an array 74 
    t = tRange.Value 75 
 76 
    ' Determine the number of time steps based on the length of the input time array 77 
    n = UBound(t, 1) - LBound(t, 1) + 1 78 
 79 
    ' Validate the parameters using the helper function 80 
    If Not ValidateParameters(Array(So, Mu, Sigma), tRange) Then Exit Function 81 
 82 
    ' Determine the number of columns selected by the user 83 
    no_of_column_selected = Application.Caller.Columns.Count 84 
 85 
    ' Check the number of columns selected by the user 86 
    If no_of_column_selected = 2 Then 87 
        ' User selected two columns 88 
        ReDim St(1 To n, 1 To 2) As Variant 89 
    Else 90 
        ' User selected one column 91 
        ReDim St(1 To n, 1 To 1) As Variant 92 
    End If 93 
 94 
    ' Initialize the first value 95 
    St(1, 1) = So 96 
    If no_of_column_selected = 2 Then 97 
        St(1, 2) = So 98 
    End If 99 
 100 
' Initialize for the first value Wiener Process 101 
    CumDeltaW = 0 102 
 103 
    ' Loop through each time step 104 
    For i = 2 To n 105 
        ' Compute the time increment 106 
        DeltaT = t(i, 1) - t(i - 1, 1) 107 
 108 
        ' Generate a random number for the Wiener process increment 109 
        DeltaW = (Sqr(DeltaT) * Application.NormSInv(Application.WorksheetFunction.RandBetween(0, 2 ^ 32) / (2 ^ 32))) 110 
 111 
        CumDeltaW = CumDeltaW + DeltaW 112 
 113 
        ' Exact solution for GBM 114 
        ExactSt = So * Exp((Mu - 0.5 * Sigma ^ 2) * t(i, 1) + Sigma * CumDeltaW) 115 
 116 
        ' Milstein scheme for GBM approximation 117 
        PrevSt = St(i - 1, 1) 118 
        ForNextSt = Mu * PrevSt * DeltaT + Sigma * PrevSt * DeltaW + 0.5 * (Sigma ^ 2) * PrevSt * ((DeltaW ^ 2) - DeltaT) 119 
        NextSt = PrevSt + ForNextSt 120 
 121 
        ' Assign values to the output array based on the number of selected columns 122 
        If no_of_column_selected = 2 Then 123 
            St(i, 1) = ExactSt 124 
            St(i, 2) = NextSt 125 
        Else 126 
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            St(i, 1) = NextSt 127 
        End If 128 
    Next i 129 
 130 
    ' Return the array of values 131 
    MilsteinGBMandEXACT = St 132 
 133 
    Exit Function 134 
 135 
ErrorHandler: 136 
    MsgBox "An error occurred in MilsteinGBMandEXACT: " & Err.Description, vbExclamation, "Error" 137 
End Function 138 
 139 

APPENDIX - III 1 

' ==================== Main Functions ==================== 2 
' Function: ========== MilsteinCIR ======================= 3 
' Purpose: Approximate the Cox-Ingersoll-Ross (CIR) process using the Milstein scheme. 4 
' Parameters: 5 
'   - Xo: Initial value 6 
'   - Alpha: Speed of mean reversion 7 
'   - Mu: Long-term mean 8 
'   - Sigma: Volatility coefficient 9 
'   - tRange: Range of time values 10 
' Returns: An array of values representing the CIR process. 11 
 12 
Function MilsteinCIR(Xo As Variant, Alpha As Variant, Mu As Variant, Sigma As Variant, tRange As Range) As Variant() 13 
 14 
    On Error GoTo ErrorHandler 15 
 16 
    Dim n As Integer 17 
    Dim DeltaW As Double 18 
    Dim DeltaT As Double 19 
    Dim PrevSt As Double 20 
    Dim NextXt0 As Double 21 
    Dim NextXt1 As Double 22 
    Dim NextXt2 As Double 23 
    Dim NextXt3 As Double 24 
    Dim NextXt As Double 25 
    Dim Xt() As Variant 26 
    Dim t() As Variant 27 
    Dim i As Integer 28 
 29 
    ' Convert the range to an array 30 
    t = tRange.Value 31 
 32 
    ' Determine the number of time steps based on the length of the input time array 33 
    n = UBound(t, 1) - LBound(t, 1) + 1 34 
     35 
    ' Validate the parameters using the helper function 36 
    If Not ValidateParameters(Array(Xo, Alpha, Mu, Sigma), tRange) Then Exit Function 37 
 38 
    ' Initialize the St array to store the stock prices 39 
    ReDim Xt(1 To n, 1 To 1) As Variant 40 
    Xt(1, 1) = Xo 41 
 42 
    ' Loop through each time step to compute the stock price using the Milstein scheme 43 
    For i = 2 To n 44 
        ' Compute the time increment 45 
        DeltaT = t(i, 1) - t(i - 1, 1) 46 
 47 
        ' Generate a random number from a standard normal distribution for the Wiener process increment 48 
        DeltaW = (Sqr(DeltaT) * Application.WorksheetFunction.NormSInv(Application.WorksheetFunction.RandBetween(0, 2 ^ 32) / (2 ^ 32))) 49 
 50 
        ' Apply the Milstein scheme formula 51 
        PrevXt = Xt(i - 1, 1) 52 
        NextXt = PrevXt + (Alpha * (Mu - PrevXt) * DeltaT) + (Sigma * Sqr(PrevXt) * DeltaW) + (0.25 * (Sigma ^ 2) * DeltaT * ((DeltaW ^ 2) - DeltaT)) 53 
        Xt(i, 1) = NextXt 54 
    Next i 55 
 56 
    ' Return the array of stock prices 57 
    MilsteinCIR = Xt 58 
 59 
    Exit Function 60 
 61 
ErrorHandler: 62 
    MsgBox "An error occurred in MilsteinCIR: " & Err.Description, vbExclamation, "Error" 63 
End Function 64 
 65 
 66 
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APPENDIX - IV 

Table - 1 GBM 
 

    Time (t) 

Exact 

Solutio

n 

Approximate 

Solution 

 

n = 256 0 1.000 1.000 

DeltaT: 𝚫𝒕 = 0.00391 0.0039 0.836 0.836 

  0.0078 0.924 0.925 

mu: 𝝁 = 0.01 0.0117 0.904 0.904 

Sg: 𝝈 = 2 0.0156 0.734 0.734 

𝑺𝒐 = 1 0.0195 0.733 0.733 

  0.0234 0.765 0.765 

  0.0273 0.690 0.690 

    0.0313 0.644 0.643 

… … … … … Fig 1. Equidistant Milstein scheme approximating the Geometric Brownian 

Motion process for parameter choices in the Table 1. 
    0.9727 1.273 1.272 

    0.9766 1.329 1.329  

    0.9805 1.335 1.336 

    0.9844 1.378 1.378 

    0.9883 1.700 1.700 

    0.9922 1.841 1.842 

    0.9961 1.684 1.683 

    1.0000 1.554 1.554 

 

 

APPENDIX - V 

Table - 2 CIR 
 

    Time (t) 

Approximate 

Solution 

 

n = 128 0 0.5 

DeltaT: 𝚫𝒕 = 0.00781 0.0078 0.5191 

  0.0156 0.5110 

mu: 𝝁 = 1 0.0234 0.6123 

Sg: 𝝈 = 0.8 0.0313 0.5065 

𝑿𝒐 = 0.5 0.0391 0.5785 

Alpha: 𝜶 = 5 0.0469 0.4677 

  0.0547 0.4184 

  0.0625 0.3857 

… … … … 

    0.9453 1.3250 

    0.9531 1.3522 

    0.9609 1.3025 Fig 2. Equidistant Milstein scheme to approximate the Cox-Ingersoll-Ross (CIR) process 
for parameter choices in the Table 2. 

    0.9688 1.2873 

    0.9766 1.3052  

    0.9844 1.3930 

    0.9922 1.3613 

    1.0000 1.3001 

 

0.0

0.5

1.0

1.5

2.0

0 0.2 0.4 0.6 0.8 1
M

il
st

ei
n

 A
p

p
ro

x
im

at
io

n
Time (t)

n = 256

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

M
il

st
ei

n
 A

p
p

ro
x
im

at
io

n

Time (t)

n = 128

http://www.jetir.org/

