
© 2023 JETIR August 2023, Volume 10, Issue 8 www.jetir.org(ISSN-2349-5162)

JETIR2308658 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g542

Harnessing Excel's VBA for Simulating

Fundamental Stochastic Processes: A Deep Dive

into GBM and CIR Implementations

1Debasree Goswami
1Associate Professor, Department of Statistics, Hindu College, University of Delhi, Delhi, India-7

Abstract : This research delves into the application of stochastic processes, specifically the Geometric Brownian Motion (GBM)

and the Cox-Ingersoll-Ross (CIR) process, in the realm of quantitative finance. Recognizing the ubiquity of Microsoft Excel in

the finance sector, we introduce a hands-on approach to simulate these processes using Visual Basic for Applications (VBA).

Our paper highlights the implementation details, ensuring the adaptability of the developed code for various financial stochastic

processes. By bridging theoretical finance with practical Excel-based solutions, this research aims to provide a valuable tool for

financial analysts and researchers.

Keywords: Stochastic Processes, Geometric Brownian Motion (GBM), Cox-Ingersoll-Ross (CIR) Process, Visual Basic for

Applications (VBA), Financial Modeling in Excel, Numerical Simulation, Milstein Scheme.

1. INTRODUCTION
Financial markets are inherently uncertain, with asset prices and interest rates exhibiting random fluctuations over time. To capture

and understand these dynamics, stochastic processes, which describe systems evolving over time with a probabilistic element, have

become fundamental in the realm of quantitative finance. Among these, the Geometric Brownian Motion (GBM) and the Cox-

Ingersoll-Ross (CIR) process stand out due to their widespread applications in modeling stock prices and interest rates, respectively.

While there are numerous software platforms tailored for financial modeling, Microsoft Excel remains a staple in the finance industry,

offering accessibility and ease of use. Its embedded programming environment, Visual Basic for Applications (VBA), allows for the

creation of custom functions and simulations, making it a versatile tool for financial analysts and researchers. This paper delves into

the implementation of the GBM and CIR processes in Excel using VBA, providing a hands-on approach to understanding and

simulating these fundamental stochastic processes. Furthermore, we discuss the adaptability of the developed code to model other

related processes, exemplified by the ease of transitioning from the CIR to the Ornstein–Uhlenbeck (OU) process.

By bridging the gap between theoretical finance and practical implementation, this paper aims to serve as a valuable resource for

both academia and industry professionals looking to harness the power of Excel for stochastic financial modeling.

2. METHODOLOGY

2.1. Stochastic Differential Equation and Milstein Scheme
A general one-dimensional SDE can be written as:

𝑑𝑋𝑡 = 𝑎(𝑋𝑡 , 𝑡)𝑑𝑡 + 𝑏(𝑋𝑡 , 𝑡)𝑑𝑊𝑡 (1)

where 𝑑𝑋𝑡 is the change in the process 𝑋𝑡, 𝑎(𝑋𝑡 , 𝑡) is the drift term, 𝑏(𝑋𝑡 , 𝑡) is the diffusion term, and 𝑑𝑊𝑡 is a Wiener process or

Brownian motion [1].

The Milstein scheme [1], [2] approximates the solution of the SDE by discretizing time into small intervals of length 𝛥𝑡, and the

approximation at time 𝑡𝑛+1 is given by:

𝑋𝑡𝑛+1
= 𝑋𝑡𝑛

+ 𝑎(𝑋𝑡𝑛
, 𝑡𝑛)𝛥𝑡 + 𝑏(𝑋𝑡𝑛

, 𝑡𝑛)𝛥𝑊𝑛 +
1

2
𝑏(𝑋𝑡𝑛

, 𝑡𝑛)𝑏′(𝑋𝑡𝑛
, 𝑡𝑛) ((𝛥𝑊𝑛)2 − 𝛥𝑡) (2)

Here 𝛥𝑊𝑛 = 𝑊𝑡𝑛+1
− 𝑊𝑡𝑛

 is the increment of the Wiener process, which is normally distributed with mean 0 and variance 𝛥𝑡.

Further, 𝑏′(𝑋𝑡𝑛
, 𝑡𝑛) is the derivative of the diffusion term with respect to 𝑋.

2.2. Geometric Brownian Motion (GBM) and the Milstein Scheme
Geometric Brownian Motion (GBM) is a continuous-time stochastic process [3] widely used in mathematical finance to model stock

prices, interest rates, exchange rates, and other financial variables. The process assumes that the percentage changes in the stock

price are normally distributed, resulting in a log-normal distribution of the stock price over time. Mathematically, it has the form

http://www.jetir.org/

© 2023 JETIR August 2023, Volume 10, Issue 8 www.jetir.org(ISSN-2349-5162)

JETIR2308658 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g543

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 . (3)

where 𝑆𝑡 is the value of the stock price at time 𝑡, 𝜇 is the drift rate, often interpreted as the expected return of the stock, 𝜎 is the

volatility coefficient, and 𝑊𝑡 is a standard Brownian motion or Wiener process.

The Milstein approximation for GBM is:

𝛥𝑆𝑡 = 𝜇 𝑆𝑡 𝛥𝑡 + 𝜎 𝑆𝑡 𝛥𝑊𝑡 +
1

2
𝜎2 𝑆𝑡 ((𝛥𝑊𝑡)2 − 𝛥𝑡) (4)

Here, 𝛥𝑆𝑡 is the change in stock price, 𝛥𝑡 is the time step, and 𝛥𝑊𝑡 is the increment of the Wiener process, which is normally

distributed with mean 0 and variance 𝛥𝑡.

The additional term
1

2
𝜎2 𝑆𝑡((𝛥𝑊𝑡)2 − 𝛥𝑡) in the Milstein scheme is a correction term which provides an improvement over the

Euler-Maruyama method in approximating GBM.

2.3. Cox-Ingersoll-Ross (CIR) Process and the Milstein Scheme
The Cox-Ingersoll-Ross (CIR) process [3] is a type of mean-reverting stochastic process primarily used in finance to model interest

rates. The CIR process ensures that interest rates remain positive, making it a more realistic model for certain financial applications

compared to other interest rate models.

The stochastic differential equation (SDE) representing the CIR process is given by:

𝑑𝑋𝑡 = 𝛼(𝜃 − 𝑋𝑡) 𝑑𝑡 + 𝜎√𝑋𝑡 𝑑𝑊𝑡 . (5)

where 𝑋𝑡 is the process value at time 𝑡, 𝛼 is the speed of mean reversion, 𝜃 is the long-term mean (interest rate), 𝜎 is the volatility

and 𝑑𝑊𝑡 is the increment of a Wiener process.

The Milstein scheme is an extension of the Euler-Maruyama scheme that includes a correction term to account for the second moment

of the Wiener process increment. For the CIR process, the Milstein scheme can be written as:

𝛥𝑋𝑡 = 𝛼(𝜃 − 𝑋𝑡) 𝛥𝑡 + 𝜎√𝑋𝑡 𝛥𝑊𝑡 +
1

2
𝜎2 ((𝛥𝑊𝑡)2 − 𝛥𝑡) (6)

where 𝛥𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 is the change in the process value, 𝛥𝑡 is the time increment and 𝛥𝑊𝑡 is a Wiener process increment over the

interval 𝛥𝑡 , which is normally distributed with mean 0 and variance 𝛥𝑡.

The additional term
1

2
𝜎2((𝛥𝑊𝑡)2 − 𝛥𝑡) in the Milstein scheme corrects for the approximation error in the Euler-Maruyama method,

making the Milstein scheme a more accurate method for approximating the CIR process.

2.4. Implementation in Excel using VBA
Visual Basic for Applications (VBA) is an event-driven programming language developed by Microsoft. It is primarily used for

automating tasks in Microsoft Office applications, with Excel being one of its most popular platforms. VBA allows users to create

custom functions, automate repetitive tasks, and develop user-defined models and simulations, making it a powerful tool suitable for

financial modeling and analysis.

Further, opting for (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. 𝑊𝑜𝑟𝑘𝑠ℎ𝑒𝑒𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 𝑅𝑎𝑛𝑑𝐵𝑒𝑡𝑤𝑒𝑒𝑛(0, 232) / (232)) over VBA's native 𝑅𝑛𝑑() function

provided a more granular distribution of random numbers in the interval [0,1], due to its ability to generate a larger set of distinct

values, enhancing the resolution of the random number generation process.

Description of the functions:

𝑀𝑖𝑙𝑠𝑡𝑒𝑖𝑛𝐺𝐵𝑀𝑎𝑛𝑑𝐸𝑋𝐴𝐶𝑇: This function approximates the Geometric Brownian Motion using the Milstein scheme and provides the

exact solution values. Depending on the user's selection, it can return either the approximate values (upon selecting one column) or

the exact values and approximate values (upon selecting two columns). The function requires the initial stock price (So), drift

coefficient (Mu), volatility coefficient (Sigma), and a range of time values (tRange) as its arguments. (Appendix II)

𝑀𝑖𝑙𝑠𝑡𝑒𝑖𝑛𝐶𝐼𝑅: Designed to approximate the Cox-Ingersoll-Ross (CIR) process using the Milstein scheme, this function takes initial

parameters such as the initial value (Xo), mean reversion rate (Alpha), long-term mean (Mu), and volatility (Sigma), along with a

range of time values (tRange). It then produces an array of approximated values over the specified time frame. (Appendix III)

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: Serving as a utility function, "ValidateParameters" ensures that the input parameters for the above functions

are valid. It checks for numeric values, the structure of the time range, and the order of time values, raising errors if any

inconsistencies are found. (Appendix I)

3. RESULTS AND DISCUSSION
Using the developed VBA functions, we generated sample paths for both the Geometric Brownian Motion and the Cox-Ingersoll-

Ross processes. For a given set of parameters, the functions returned arrays of values representing the evolution of the processes

over time. The results were plotted directly within Excel, demonstrating the ease of integration and visualization when using VBA

in conjunction with Excel's native charting capabilities. (Appendix IV and V)

Upon comparing the results obtained from our VBA functions with those from other platforms, such as R and Python, we observed

a high degree of similarity. This attests to the accuracy of the Milstein scheme's implementation in our VBA functions. While minor

discrepancies can arise due to differences in random number generation or numerical methods across platforms, the overall

trajectories of the generated paths were consistent.

http://www.jetir.org/

© 2023 JETIR August 2023, Volume 10, Issue 8 www.jetir.org(ISSN-2349-5162)

JETIR2308658 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g544

The Milstein scheme, as implemented in our VBA functions, offers a balance between accuracy and computational efficiency. While

there are more sophisticated numerical methods available, [2] the Milstein scheme provides a good trade-off, especially for

applications within Excel where rapid computation is often desired.

Furthermore, the flexibility of VBA allows for easy modifications and extensions of these functions, catering to more specific needs

or advanced financial models. The integration with Excel also means that users can leverage Excel's data analysis and visualization

tools, making the entire modeling and analysis process seamless and efficient.

Further, the Cox-Ingersoll-Ross (CIR) process and the Ornstein–Uhlenbeck (OU) process share structural similarities, with the

primary difference being in the volatility term. By adjusting the line 54 in the VBA function “𝑀𝑖𝑙𝑠𝑡𝑒𝑖𝑛𝐶𝐼𝑅” (Appendix-III) for the

CIR process, one can easily adapt it to model the OU process, demonstrating the flexibility and adaptability of the developed code

for various stochastic processes in finance.

4. REFERENCES

[1] T. Mikosch, “Elementary Stochastic Calculus, with Finance in View,” vol. 6, Oct. 1998, doi: 10.1142/3856.
[2] P. E. Kloeden and E. Platen, “Numerical Solution of Stochastic Differential Equations,” Numerical Solution of

Stochastic Differential Equations, 1992, doi: 10.1007/978-3-662-12616-5.

[3] J. Franke, W. K. Härdle, and C. M. Hafner, “Statistics of Financial Markets,” 2019, doi: 10.1007/978-3-030-13751-

9.

ACKNOWLEDGMENT
The author would like to extend heartfelt gratitude to Ms. Jasvinder Goswami, Associate Professor in the Department of Statistics at

PGDAV(M) College, University of Delhi, and his wife, for her invaluable discussions and insightful comments on the manuscript.

APPENDIX - I 1

' ==================== Helper Functions ==================== 2
Function ValidateParameters(inputs As Variant, tRange As Range) As Boolean 3
 ' Check if all inputs are numeric 4
 Dim i As Integer 5
 For i = LBound(inputs) To UBound(inputs) 6
 If Not IsNumeric(inputs(i)) Then 7
 Err.Raise 9999, "ValidateParameters", "All input parameters must be numeric values." 8
 Exit Function 9
 End If 10
 Next i 11
 12
 ' Check if tRange is a single column 13
 If tRange.Columns.Count > 1 Then 14
 Err.Raise 9999, "ValidateParameters", "tRange must be a single column of values." 15
 Exit Function 16
 End If 17
 18
 ' Convert the range to an array 19
 Dim t() As Variant 20
 t = tRange.Value 21
 22
 ' Check if tRange contains only numeric values 23
 For i = LBound(t, 1) To UBound(t, 1) 24
 If Not IsNumeric(t(i, 1)) Then 25
 Err.Raise 9999, "ValidateParameters", "tRange must contain only numeric values." 26
 Exit Function 27
 End If 28
 Next i 29
 30
 ' Check if tRange values are in non-decreasing order 31
 For i = LBound(t, 1) + 1 To UBound(t, 1) 32
 If t(i, 1) <= t(i - 1, 1) Then 33
 Err.Raise 9999, "ValidateParameters", "Values in tRange must be in >= order." 34
 Exit Function 35
 End If 36
 Next i 37
 38
 ValidateParameters = True 39
End Function 40
 41

 42

http://www.jetir.org/

© 2023 JETIR August 2023, Volume 10, Issue 8 www.jetir.org(ISSN-2349-5162)

JETIR2308658 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g545

APPENDIX - II 43

' ==================== Main Functions ==================== 44
' Function: ========== MilsteinGBMandEXACT =============== 45
' Purpose: Approximate the GBM using the Milstein scheme and provide the exact solution values. 46
' The function's behavior changes based on the number of selected columns: 47
' - 2 columns: Returns exact values in the first column and approximate values in the second. 48
' - 1 column: Returns only the approximate values. 49
' Parameters: 50
' - So: Initial stock price 51
' - Mu: Drift coefficient 52
' - Sigma: Volatility coefficient 53
' - tRange: Range of time values 54
' Returns: An array of exact and/or approximate stock prices based on the number of selected columns. 55
 56
Function MilsteinGBMandEXACT(So As Variant, Mu As Variant, Sigma As Variant, tRange As Range) As Variant() 57
 58
 On Error GoTo ErrorHandler 59
 60
 Dim DeltaT As Double 61
 Dim CumDeltaW As Double 62
 Dim DeltaW As Double 63
 Dim PrevSt As Double 64
 Dim ForNextSt As Double 65
 Dim NextSt As Double 66
 Dim ExactSt As Double 67
 Dim St() As Variant 68
 Dim t() As Variant 69
 Dim i As Integer 70
 Dim n As Integer 71
 Dim no_of_column_selected As Integer 72
 73
 ' Convert the range to an array 74
 t = tRange.Value 75
 76
 ' Determine the number of time steps based on the length of the input time array 77
 n = UBound(t, 1) - LBound(t, 1) + 1 78
 79
 ' Validate the parameters using the helper function 80
 If Not ValidateParameters(Array(So, Mu, Sigma), tRange) Then Exit Function 81
 82
 ' Determine the number of columns selected by the user 83
 no_of_column_selected = Application.Caller.Columns.Count 84
 85
 ' Check the number of columns selected by the user 86
 If no_of_column_selected = 2 Then 87
 ' User selected two columns 88
 ReDim St(1 To n, 1 To 2) As Variant 89
 Else 90
 ' User selected one column 91
 ReDim St(1 To n, 1 To 1) As Variant 92
 End If 93
 94
 ' Initialize the first value 95
 St(1, 1) = So 96
 If no_of_column_selected = 2 Then 97
 St(1, 2) = So 98
 End If 99
 100
' Initialize for the first value Wiener Process 101
 CumDeltaW = 0 102
 103
 ' Loop through each time step 104
 For i = 2 To n 105
 ' Compute the time increment 106
 DeltaT = t(i, 1) - t(i - 1, 1) 107
 108
 ' Generate a random number for the Wiener process increment 109
 DeltaW = (Sqr(DeltaT) * Application.NormSInv(Application.WorksheetFunction.RandBetween(0, 2 ^ 32) / (2 ^ 32))) 110
 111
 CumDeltaW = CumDeltaW + DeltaW 112
 113
 ' Exact solution for GBM 114
 ExactSt = So * Exp((Mu - 0.5 * Sigma ^ 2) * t(i, 1) + Sigma * CumDeltaW) 115
 116
 ' Milstein scheme for GBM approximation 117
 PrevSt = St(i - 1, 1) 118
 ForNextSt = Mu * PrevSt * DeltaT + Sigma * PrevSt * DeltaW + 0.5 * (Sigma ^ 2) * PrevSt * ((DeltaW ^ 2) - DeltaT) 119
 NextSt = PrevSt + ForNextSt 120
 121
 ' Assign values to the output array based on the number of selected columns 122
 If no_of_column_selected = 2 Then 123
 St(i, 1) = ExactSt 124
 St(i, 2) = NextSt 125
 Else 126

http://www.jetir.org/

© 2023 JETIR August 2023, Volume 10, Issue 8 www.jetir.org(ISSN-2349-5162)

JETIR2308658 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g546

 St(i, 1) = NextSt 127
 End If 128
 Next i 129
 130
 ' Return the array of values 131
 MilsteinGBMandEXACT = St 132
 133
 Exit Function 134
 135
ErrorHandler: 136
 MsgBox "An error occurred in MilsteinGBMandEXACT: " & Err.Description, vbExclamation, "Error" 137
End Function 138
 139

APPENDIX - III 1

' ==================== Main Functions ==================== 2
' Function: ========== MilsteinCIR ======================= 3
' Purpose: Approximate the Cox-Ingersoll-Ross (CIR) process using the Milstein scheme. 4
' Parameters: 5
' - Xo: Initial value 6
' - Alpha: Speed of mean reversion 7
' - Mu: Long-term mean 8
' - Sigma: Volatility coefficient 9
' - tRange: Range of time values 10
' Returns: An array of values representing the CIR process. 11
 12
Function MilsteinCIR(Xo As Variant, Alpha As Variant, Mu As Variant, Sigma As Variant, tRange As Range) As Variant() 13
 14
 On Error GoTo ErrorHandler 15
 16
 Dim n As Integer 17
 Dim DeltaW As Double 18
 Dim DeltaT As Double 19
 Dim PrevSt As Double 20
 Dim NextXt0 As Double 21
 Dim NextXt1 As Double 22
 Dim NextXt2 As Double 23
 Dim NextXt3 As Double 24
 Dim NextXt As Double 25
 Dim Xt() As Variant 26
 Dim t() As Variant 27
 Dim i As Integer 28
 29
 ' Convert the range to an array 30
 t = tRange.Value 31
 32
 ' Determine the number of time steps based on the length of the input time array 33
 n = UBound(t, 1) - LBound(t, 1) + 1 34
 35
 ' Validate the parameters using the helper function 36
 If Not ValidateParameters(Array(Xo, Alpha, Mu, Sigma), tRange) Then Exit Function 37
 38
 ' Initialize the St array to store the stock prices 39
 ReDim Xt(1 To n, 1 To 1) As Variant 40
 Xt(1, 1) = Xo 41
 42
 ' Loop through each time step to compute the stock price using the Milstein scheme 43
 For i = 2 To n 44
 ' Compute the time increment 45
 DeltaT = t(i, 1) - t(i - 1, 1) 46
 47
 ' Generate a random number from a standard normal distribution for the Wiener process increment 48
 DeltaW = (Sqr(DeltaT) * Application.WorksheetFunction.NormSInv(Application.WorksheetFunction.RandBetween(0, 2 ^ 32) / (2 ^ 32))) 49
 50
 ' Apply the Milstein scheme formula 51
 PrevXt = Xt(i - 1, 1) 52
 NextXt = PrevXt + (Alpha * (Mu - PrevXt) * DeltaT) + (Sigma * Sqr(PrevXt) * DeltaW) + (0.25 * (Sigma ^ 2) * DeltaT * ((DeltaW ^ 2) - DeltaT)) 53
 Xt(i, 1) = NextXt 54
 Next i 55
 56
 ' Return the array of stock prices 57
 MilsteinCIR = Xt 58
 59
 Exit Function 60
 61
ErrorHandler: 62
 MsgBox "An error occurred in MilsteinCIR: " & Err.Description, vbExclamation, "Error" 63
End Function 64
 65
 66

http://www.jetir.org/

© 2023 JETIR August 2023, Volume 10, Issue 8 www.jetir.org(ISSN-2349-5162)

JETIR2308658 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g547

APPENDIX - IV

Table - 1 GBM

 Time (t)

Exact

Solutio

n

Approximate

Solution

n = 256 0 1.000 1.000

DeltaT: 𝚫𝒕 = 0.00391 0.0039 0.836 0.836

 0.0078 0.924 0.925

mu: 𝝁 = 0.01 0.0117 0.904 0.904

Sg: 𝝈 = 2 0.0156 0.734 0.734

𝑺𝒐 = 1 0.0195 0.733 0.733

 0.0234 0.765 0.765

 0.0273 0.690 0.690

 0.0313 0.644 0.643

… … … … … Fig 1. Equidistant Milstein scheme approximating the Geometric Brownian

Motion process for parameter choices in the Table 1.
 0.9727 1.273 1.272

 0.9766 1.329 1.329

 0.9805 1.335 1.336

 0.9844 1.378 1.378

 0.9883 1.700 1.700

 0.9922 1.841 1.842

 0.9961 1.684 1.683

 1.0000 1.554 1.554

APPENDIX - V

Table - 2 CIR

 Time (t)

Approximate

Solution

n = 128 0 0.5

DeltaT: 𝚫𝒕 = 0.00781 0.0078 0.5191

 0.0156 0.5110

mu: 𝝁 = 1 0.0234 0.6123

Sg: 𝝈 = 0.8 0.0313 0.5065

𝑿𝒐 = 0.5 0.0391 0.5785

Alpha: 𝜶 = 5 0.0469 0.4677

 0.0547 0.4184

 0.0625 0.3857

… … … …

 0.9453 1.3250

 0.9531 1.3522

 0.9609 1.3025 Fig 2. Equidistant Milstein scheme to approximate the Cox-Ingersoll-Ross (CIR) process
for parameter choices in the Table 2.

 0.9688 1.2873

 0.9766 1.3052

 0.9844 1.3930

 0.9922 1.3613

 1.0000 1.3001

0.0

0.5

1.0

1.5

2.0

0 0.2 0.4 0.6 0.8 1
M

il
st

ei
n

 A
p

p
ro

x
im

at
io

n
Time (t)

n = 256

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

M
il

st
ei

n
 A

p
p

ro
x
im

at
io

n

Time (t)

n = 128

http://www.jetir.org/

