
© 2023 JETIR September 2023, Volume 10, Issue 9 www.jetir.org(ISSN-2349-5162)

JETIR2309482 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e672

Software Defect Prediction using Machine Learning

Algorithms

Karedla Chayadevi

Dept. Of Computer Science

Engineering,

Specialization in CNIS,

Andhra University College of

Engineering, Visakhapatnam,

Andhra Pradesh, India

Prof. Ch.Satyanada Reddy

Dept. Of Computer Science

Engineering,

Andhra University College of

Engineering, Visakhapatnam,

Andhra Pradesh, India

Abstract—Software testing is a time-consuming and costly

task, as it involves testing all software modules. To minimize the

cost and effort of software testing, automatic defect detection can

be used to identify the defective modules during the early stages.

These aid software testers in detecting the modules that require

intensive testing. Therefore, automatically predicting software

defects has become a critical factor in software engineering. This

paper explores the existing methods and techniques on software

defect prediction (SDP) and lists the most popular datasets that

are used as benchmarks in SDP. In addition, it discusses the

approaches to overcome the class imbalance problem, which

usually occurs in the benchmark datasets for SDP problems. This

paper can be helpful for researchers in software engineering and

other related areas by using machine learning algorithms. We use

naïve bayes and random forest algorithms for software defect

prediction.

Keywords—Software Defect Prediction, Machine

Learning, Random Forest, Naïve Bayes, NASA Promise

Repository

 I. INTRODUCTION

Usage of devices in our day-to-day lives has increased our
dependency on various software systems. Any disruption in the
working of software requiring high dependency can have serious
consequences. To ensure error-free working of the systems,
software must undergo a thorough testing process.
 In the process of developing software, testing process of the
software plays a crucial role. However, experienced a developer
is, there is always a chance that there might be unforeseen
defects. Software can also fail if defects get introduced during
maintenance phases. This makes software testing a very
significant stage in the software development life cycle. Due to
this reason, it is highly desirable to use the testing resources
efficiently so that quality of the software is improved. Software
Defect Prediction provides a mechanism for effective and
efficient usage of testing resources by early prediction of

modules in software as defect prone or non-defect prone. It’s an
essential and continuous activity to improve the software quality.
The primary purpose of software defect prediction is to deliver
an error free product and assure the software quality. It is helpful
to identify the defect or error at the earliest and contribute to the
quality assurance mechanism to make a reliable software
application. In recent research works, machine learning is being
used extensively to create defect prediction models. Various
techniques have been recommended to solve the task of software
defect prediction. These techniques made predictions on the
grounds of the historical defect data, the software metrics as well
as the algorithm using which predictions are to be done.
Classification, clustering and regression are the frequently used
techniques for Machine learning algorithms such as random
forest and naïve bayes.
 Therefore, the aim of this work is to design machine learning
models that provide more accurate results in detecting if a
software module is defect prone or not and help in finding the
undiscovered defects. This can be achieved by extensive analysis
of the software metrics and the features of the dataset. Useful
features need to be filtered from the feature set to have clean data
that can be analyzed properly. This research work focuses on
combining feature extraction and feature selection method with
an aim to get more accurate results. The prediction of software
defects can minimize the effort, time, and cost of software
development.

http://www.jetir.org/

© 2023 JETIR September 2023, Volume 10, Issue 9 www.jetir.org(ISSN-2349-5162)

JETIR2309482 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e673

II. LITERATURE SURVEY

A survey for detecting and predicting of diabetes using machine
learning techniques. This paper focuses on machine learning
promising the improving accuracy of perception and diagnosis of
the diseases. The various machine learning techniques that are
used to classify the
datasets include supervised, unsupervised, reinforcement, semi-
supervised, and deep learning, evolutionary learning algorithms.
It also shows the comparison of the two methods namely, Naïve
Bayes and Random Forest (RF). The Bayesian Network applies
the Naïve Bayes theorem which firmly assumes that the presence
of any attribute in a class is not related to the presence of any
other attribute, making it much more advantageous, efficient and
independent. The paper starts with the introduction section,
which contains four subsections detailing the significance,
evolution timeline, motivation for writing this paper, and
background of defect identification and the prediction. The
background section provides common defect identification and
prediction practices using manual testing, automation testing,
and prediction approaches. The prior research section discusses
a few significant studies on Software Defect Prediction and states
the research goals and the study’s contribution. The terminology
section briefly describes commonly used terms in Software
Defect Prediction. The research methodology section describes
the SLR process. We followed the Kitchenham (Kitchenham et
al., 2009) guidelines.
The research methodology section contains the keywords used
for searching the research studies in various databases. Selection
criteria talk about how the papers are selected for this SLR.
Inclusion and Exclusion criteria discuss the criteria used to select
and filter the papers. The selection of the paper is made based on
the various parameters and the score count of the paper. The
literature outcome section describes the analysis of the previous
studies against the formulated research questions. The discussion
section summarizes the literature outcome on formulated
research questions. The limitation of the study section discusses
possible limitations present in this SLR. The conclusion section
concludes the findings as per the analysis. Finally, the future
work and opportunity section discusses the proposed research
work based on the limitation found in the earlier research.
The existing literature is lacking on systematic literature reviews
for Software Defect Predictions. Earlier research is mainly
focused on defect classification using publicly available datasets.
Prediction outcome is limited, and there are no actionable items
for the software development team. There is a lack of a survey
that focuses on the legacy versus modern approaches for
identifying software defects. Earlier surveys did not cover the
existing tools. Before using the data to train the classifiers, the
adequate focus was not given to the data validation techniques.
Hence, a comprehensive survey needs to focus on datasets, data
validation methods, defect detection and prediction approaches,
tools, and recommendations for further research.
This Systematic Literature Review focuses on datasets, methods
for data validation, defect detection and prediction approaches,
tools, and recommendations for future researchers. According to
a bibliometric review (Pachouly et al., 2020), there is a lot of
interest in the field of Software Defect Prediction among
researchers a worldwide.

III. SOFTWARE DEFECT PREDICTION USING MACHINE

LEARNING Algorithms

Machine learning is a sub-field of artificial intelligence that
learns the patterns in the data to develop performance prediction
and classification tasks. Statistical and machine-learning
techniques have been used by many researchers to predict the
defective prone software modules. The machine-learning
methods have been proven to be effective at identifying the
defective modules.

 As software defect prediction project can be most interesting and
most organizations want to predict the number of defect-prone
modules in software systems before they are deployed. This can
be managed by numerous statistical methods and artificial
intelligence techniques have been employed in order to predict
defects that a software system will reveal in operation or during
testing. This is a temporary and unique endeavor designed to
produce a product, service or result with a defined begging and
end. Time, cost and quality are the building blocks of every
project.
Requirement specification is the application of processes,
methods, skills, knowledge and experience to achieve specific
project objectives according to the project acceptance criteria
within agreed parameters.

Introduction to NAÏVE BAYES

The Bayesian Network plays an important part of machine
learning in classification or prediction of defects. The most
commonly used type of Bayesian Network for classification
is the Naïve Bayesian’s, which has the highest accuracy value
of up to 99.51% respectively. The Bayesian Network applies
the Naïve Bayes theorem which firmly assumes that the
presence of any particular attribute in a class is not related to
the presence of any other attribute, making it much more
advantageous, efficient and independent.
The Bayesian Network is one of the most used techniques in
the classification of software defects, which has an accuracy
in the range of 71% to 99.51%. The Naïve Bayesian is based
on the conditional probability (given a set of features, the
probability of a certain results occurrence).
Since this method is mainly used in text classification, this
algorithm is found to have a huge success rate when compared
to another algorithm. This success rate makes it a very
efficient algorithm for the prediction of diabetes and gives
good percentages of accuracy while performing analysis. It
can be used for the purpose of spam filtering where all the
spam emails in our inbox are stored in the spam folder. This
helps in separating the important
messages from messages that are sent for the intent of phishing,
virus, etc.
Naïve Bayes is a very fast algorithm, so it can be used for the
purpose of real time predictions. When it comes to diabetes
prediction, the dataset is used to analyse and also predict if a
person has diabetes or not.

http://www.jetir.org/

© 2023 JETIR September 2023, Volume 10, Issue 9 www.jetir.org(ISSN-2349-5162)

JETIR2309482 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e674

Fig.: Naïve bayes formula

INTRODUCTION TO RANDOM FOREST

The Random Forests algorithm is a powerful classification
algorithm that can classify large amounts of data with high
accuracy. Random Forest is a group learning method (it’s a form
of the nearest neighbour predictor) for classification and
regression that build a number of decision trees at training time
and display the class that is the mode of the classes output by
individual trees.

They are a combination of tree predictors where each tree
depends on the values of a random vector sampled independently
with the same distribution for all trees in the forest. Random
Forests solves this problem of high variance and high bias by
finding a natural balance between the two extremes.

They also have a mechanism to estimate the error rates (Out of
the Bag error). Many machine learning models, like linear and
logistic regression are easily impacted by the outliers in the
training data. Outliers are changes in the system behaviour and
can also be caused by human error, instrument error. There are
chances for a given sample to be contaminated. These outliers or
extreme values do not impact the model performance/accuracy.
RF Algorithm overcomes and solves this problem. The decision
treasures are generated by a selection indicator for each attribute,
such as information gain, gain ratio and Gini index. The
independent sample size depends on each tree. Each tree voting
and the most popular class is considered the optimal result in a
classification problem.

Fig: Random Forest Architecture

 IV. DATASET

For our project software defect prediction, we taken our datasets
from the NASA repository, The NASA PROMISE Repository is
a public dataset repository that provides a collection of software
engineering datasets for research purposes. The repository was
established in 2006 as part of the NASA Software Engineering
Laboratory’s research activities and contains datasets from
various domains of software engineering. The datasets are
designed to support the development and evaluation of software
engineering techniques, including software defect prediction,
software effort estimation, software quality assurance, and

software maintenance.

The PROMISE repository currently contains over 50 datasets
from various software engineering domains. The datasets are
collected from publicly available sources, such as open-source
software repositories, bug tracking systems, and software
development projects. Each dataset includes a set of features,
such as lines of code, number of developers, and complexity
metrics, and a target variable, such as the number of defects, the
effort required, or the quality of the software.

The details of projects from the NASA/PROMISE and other
relevant datasets repository used for the experimentation (http:
promise.site.uotawa.ca, Repository, datasets-page.html.) We
have experimented on the 11 state-of-art projects, namely

PC1, PC2, PC3, KC1, KC2, CM1, ANT, CAMEL, IVY, LOG4J
and TOMCAT. The features selected from PC1, PC2, PC3, KC1,
KC2, CM1, ANT, CAMEL, IVY, LOG4J and TOMCAT data
sets are

described. The features listed above are the software metrics
computed for analyzing the quality of software systems based
on state-of-art quality metrics.
In our project we are using KC1, KC2, PC1, JM1, and CM1 and
those are all software defect prediction datasets.

SPLITTING THE DATASET

Splitting the data into training and test data, is one of the most
crucial steps in the analysis. The split of the training data is more
than the training data. The training data undergoes through
learning. This data which trained is later generalized on the other
data, based on which the prediction is made. The dataset in our
case, is split into multiple variants and prediction is performed
accordingly. The dataset has multiple column that are medical
predictors and one target column, that of the diabetes outcome.
The medical predictors are given as inputs to a variable and the
target variable is input to another variable.

http://www.jetir.org/

© 2023 JETIR September 2023, Volume 10, Issue 9 www.jetir.org(ISSN-2349-5162)

JETIR2309482 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e675

Using the inbuilt function, train_test_split, the dataset is split into
arrays and is mapped to training and test subsets. In our case, we
are performing splits of 80/20,70/30,75/25,60/40 and the
accuracy of each is recorded. It was noticed that the dataset
contained values that were null, hence in order to streamline the

analysis and the prediction, the null values were filled with the
mean values of the respective columns.

Classifiers are grouped into two categories, Statistical Approach
and rf and nb. Data is selected according to classifiers need, so
as to achieve balance between techniques. Each dataset is
partitioned randomly into two sets: a) Training set; b) Test set.
Partitioning is done by means of split sample setup, using 2/3rd

and1/3rd of data values, respectively. This is done to protect the
class allotment and for performance estimation. It is assumed
that spilt-sample setup is the key to calculate accuracy in fault
prediction models.

Data preprocessing:

Data preprocessing is a crucial step in software defect prediction,
which involves transforming raw data into a format suitable for
analysis. The aim of data preprocessing is to improve the quality
of data and to remove any inconsistencies, errors, or
redundancies in the data that might affect the accuracy of the
predictions. The preprocessing phase is an important part of the
overall data mining process and includes several techniques to
extract meaningful insights from the data.

To predict values using the training data, we use the predict
function. A class prediction is given the finalized model and
one or more data instances, predict the class for the data
instances. We do not know the outcome classes for the new
data. That is why we need the model in the first place. We can
predict the class for new data instances using our finalized
classification model in scikit-learn using the predict ()
function.

 .

http://www.jetir.org/

© 2023 JETIR September 2023, Volume 10, Issue 9 www.jetir.org(ISSN-2349-5162)

JETIR2309482 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e676

VI. TABULATED RESULTS

After performing the Random Forest and Naive Bayes
algorithms, we are generating the following results for the
different splits of training and testing data:

In the above table, we can see that for the four different splits,
we get results that are close to 75% in the training set and 74-
77% in the test results.

This depicts that the training set has been trained up to 75%
accuracy which means that the data that has been trained has
been used to predict the test results which have a 75% average
accuracy in the analysing of the dataset. For each split, the
percentage of test results depicts that 74-77% of the dataset
prediction is accurate and rest of the 25% approx. cannot be
predicted due to various other reasons.

Table: Prediction Using Random Forest

In the above table, we can see that for the four different splits,
we get results that are close to 98% in the training set and 72-
77% in the test results. This depicts that the training set has
been trained up to 98% accuracy which means that the data that
has been trained has been used to predict the test results which
have a 75% average accuracy in the analysing of the dataset.
For each split, the percentage of test results depicts that 72-77%
of the dataset prediction is accurate and rest of the 25% approx.
cannot be predicted due to various other reasons.
While analysing both the tables, we can understand that the
Random Forest algorithm has a better training set result which
in turn gives a better accuracy of the prediction and analysis.
The dataset is trained to the maximum accuracy where all
variables are taken into aspect without excluding missing data
as Random Forest algorithm will make sure that there is no
missing data in large datasets. Naïve Bayes algorithm tends to
ignore missing data which does not provide accurate results
while performing analysis. From the tables, we can find out that

the best prediction result is giving by the 60/40 split while
performing Random Forest.

COMPARISON GRAPHS

The training result of Naïve Bayes is very low compared to that
of Random Forest as there are errors that occur in the Naïve
Bayes algorithm while performing training. Sometimes, it
cannot detect missing data so there are fluctuations and errors
in the accuracy of the result,

Fig: Comparison of Training results for various
splits The above graph depicts the comparison graph for the
training results for both Naïve Bayes and Random Forest for
various splits. We can understand that the Random Forest
training results are more accurate when compared to that of
Naïve Bayes as it gives a 98% accuracy when it comes to
training the dataset.
The training result of Naïve Bayes is very low compared to
that of Random Forest as there are errors that occur in the
Naïve Bayes algorithm while performing training.
Sometimes, it cannot detect missing data so there are
fluctuations and errors in the accuracy of the result, but in the
case of Random Forest, it gives the proper accuracy even
when it comes to large datasets like NASA dataset.

Fig.: Comparison of Test results for various splits

The above graph depicts the comparison graph for the testing
results for both Naïve Bayes and Random Forest for various

http://www.jetir.org/

© 2023 JETIR September 2023, Volume 10, Issue 9 www.jetir.org(ISSN-2349-5162)

JETIR2309482 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e677

splits. We can understand that the Random Forest and Naïve
Bayes test results are almost the same and they differ by 2-
3%. Even though the Naïve Bayes testing results are greater
compared to the Random Forest results, the training result for
Naïve Bayes was lesser than that of Random Forest, so the
accuracy of the results when compared, is greater for Random
Forest since the training data was much more accurate when
compared to Naïve Bayes.
After analysing the results, we can come to the conclusion that
the Random Forest algorithm is a
more efficient method to analyse the dataset using means of
splitting it into training and testing sets. It serves as a more
accurate method of prediction of software defects.

VII. CONCLUSION

Software metrics are often used for evaluating and improving
software quality. We studied the using of object-oriented metrics
in applying different machine learning techniques for predicting
fault. Our experimental study was conducted on seven popular
machine learning techniques for predicting defects by using the
PROMISE datasets at both method-level and class-level. The
obtained results conclude that Naïvebayes has the highest
performance for class-level datasets and Random Forest
performs other techniques for method-level datasets.

This paper reviewed the existing datasets and methods that are
used in SDP. This is because software quality assurance is a
critical but expensive portion of the lifecycle of software.
Identifying software defects prior to the testing stage can reduce
both maintenance costs and time. Predicting software defects
helps with identifying the defect-prone modules using software
metrics. Future works will focus on proposing a software defect
prediction scheme based on the machine learning algorithm to
study the impact of feature selection with oversampling
technique. The ML algorithms are combination of the feature-
selection technique and machine learning classifiers. It yields
the most effective and reliable results. The two major issues of
software defect prediction are the data imbalance and reduced
dimensionality. The oversampling and feature-selection methods
aim to resolve these two issues. In the future work, we will
study the classification techniques in order to deal with the
imbalance issue of datasets for defect prediction.

REFERENCES

1. Hauer F, Pretschner A, Schmitt M, Gro¨tsch M (2017)
Industrial evaluation of search-based test generation techniques
for control systems. In: The 28th international symposium on
software reliability
engineering (ISSRE)

2. Yalc ı̧ner B, O¨ zdes ̧ M (2019) Software defect
estimation using machine learning algorithms. In: 4th
international conference on computer science and engineering
(UBMK), Samsun, Turkey, pp 487–491.
https://doi.org/10.1109/UBMK.2019.8907149

3. Shirabad JS, Menzies TJ (2005) The PROMISE
repository of software engineering databases. School of
Information Technology and Engineering, University of Ottawa,
Ottawa

4. Shenvi AA (2009) Defect prevention with orthogonal
defect classification. In: Proceeding ISEC ’09 proceedings of the
2nd India software engineering conference

5. Caglayan B, Tosun A et al (2010) Usage of multiple
prediction models based on defect categories. In: Proceeding
PROMISE ’10 proceedings of the 6th international conference
on predictive models in software engineering 6. Wang S, Yao X
(2013) Using class imbalance learning for software defect
prediction.
IEEE Trans Reliab 62(2):434–443

7. Bennin KE, Keung J, Monden A, Phannachitta P,
Mensah S (2017) The significant effects of data sampling on
software defect prioritization and classification. In: Proceedings
of the 11th ACM/IEEE international symposium on empirical
software engineering and measurement, IEEE Press, pp 364–373

8. Malhotra R (2015) A systematic review of machine
learning techniques for software defect prediction. Appl
Soft Comput J 27:504–518

9. Reddivari S, Raman J (2019) Software quality
prediction: an investigation based on machine learning. In: IEEE
20th International conference on information reuse and
integration for data science (IRI), Los Angeles, CA, USA, pp
115–122. https://doi.
org/10.1109/IRI.2019.00030

10. Yang X, Lo D, Xia X, Zhang Y, Sun J (2015) Deep
learning for just-in-time defect prediction. In: IEEE international
conference on software quality, reliability and security,
Vancouver, BC, pp 17–26. https://doi.or

http://www.jetir.org/

