JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

National Policy Passport to MSMEs Sustainability in Warship Building towards Aatmanirbhar Bharat

Rear Admiral V Balachandran AVSM NM VSM (Retd)

(Research Scholar - Sri Balaji University, Pune)

Dr Shubhra Aanand

(Professor - Sri Balaji University, Pune)

Abstract

The Defence procurement and Defence acquisition policies are totally aimed at achieving self-reliance through indigenisation efforts keeping in view the much needed boost to the MSMEs, towards Aatmanirbhar Bharat. The Ministry of Defence has promulgated Defence Acquisition Procedure document titled DAP 2020, which inter alia details exhaustive procedures to be followed for Defence Ship Building and the stringent compliance of exacting standards that are to be implicitly adhered to by the shipyards. The Micro, Small and Medium Enterprises have evolved into a major contributor to the national economy in multifarious sectors of operations. MSMEs can play a vital part in supplementing and complementing large industrial houses and dovetailing them will provide the requisite synergy and capitalization of efforts towards Aatmanirbhar Bharat.

This paper examines various aspects of National Policy and Sustainability and evolve measurement indicators towards involvement of MSMEs in warship building.

Key words

Warship building, MSMEs, National Policy, Sustainability, Aatmanirbhar Bharat, Measurement indicators, Cronbach alpha, canonical correlation, Wilks Statistic

I. Introduction

- 1.1 The warship building programmes is totally dictated by the national policy on Maritime interests of India and the projection of a Maritime power of the country. A Maritime Capability Perspective Plan (MCPP) has been drawn envisaging a 200 strong combat fleet by 2027. The present Maritime Capability Perspective Plan (MCPP) covers 15 years period up to the XIV Plan i.e., till 2027. MCPP is based on a capability dominant and threat cum mission based approach,' which is driven by national interests. In consonance with this perspective plan, "Indian Naval Indigenisation Plan(INIP) 2015-2030" has been drawn. "The INIP 2015-2030 document is aimed to enable indigenous development of equipment and systems over the next 15 years. It attempts to formulate the requirements of the Indian Navy and lists out the equipment which can be taken up for indigenisation in the coming years. It is expected that release of this plan would further synergise Indian Navy's relationship with the industry and encourage all sectors of industry to come forward and participate in indigenous development of weapons, sensors, and other high end equipment for the Indian Navy, thereby making the nation self-reliant in this vital domain of Defence technology."
- **1.2** MSMEs , the backbone of any nation, must meet highest standards of Technology dictated in warship building, with Research & Development as a continuum in order to keep the combat systems abreast of the technology meeting the exacting operational requirements. This indeed is a major challenge for MSMEs to be engaged in warship building. This paper examines various aspects of National Policy and evolve indicators for ensuring National Policy for the MSMEs to be involved and remain sustainable.

II Literature Review

2.1 The Annual Report 2022-2023 of MSMEs cites that

"National policy is given adequate impetus and thrust on technology upgradation with focus on implementing new age technology through better awareness, adopting best practices, developing indigenous technology as well as collaboration with global partners, Create an environment for MSME joint ventures for Indian MSMEs to partner with their global businesses and evolve to global levels of innovation adapting to new technologies and attention to quality and Develop a focused institution encouraging technology development and R&D activities in MSMEs in a coordinated manner. MSME Ministry with the World bank assistance is implementing Technology Centre Systems Programme (TCSP) to establish new tool rooms and Technology Development Centres and upgrading existing centres to bring MSMEs onboard to digital platform" (MSME Ministry, 2022-2023).

2.2 In the Union Budget (2022-23),

"Allocation to the Defence Research and Development Organization (DRDO) has been enhanced by 9 percent, with a total allocation of Rs 23,264 crores. The defence budget has also focused on a technology development fund. "The MoD has specified its funding for the Innovations for Defence Excellence (iDEX) and the Defence Testing Infrastructure Scheme (DTIS) which is Rs 116 crore and Rs 45 crore respectively, representing an enhancement of 93 percent for iDEX and 95 percent for DTIS over 2022-23. Also, the government had announced an allocation of 25 percent of the defence R&D budget to Industry, startups and academia in the 2022-23 budget."

III Research Methodology

3.1 The aim of the study is to establish and confirm the relationship between National Policy necessitated in warship building by MSMEs and their Sustainability.

3.2 Variables and Measurement

National Policy is an unobserved latent variable also called construct. Since it is multi-dimensional in nature, eight measured indicators have been used to measure the National Policy in warship building. Balachandran and Aanand (2023) have formulated the eight measurement indicators for the National Policy as:-

- 1. Ease of Registration of MSMEs (NP1)
- 2. Adoption of modern Technology with cost element (NP2)
- 3. Infrastructure development of MSMEs with cost factor (NP3)
- 4. Promoting competitiveness of MSMEs about cost factor(NP4)
- 5. Conduciveness towards cost of Procurement of product for warship building(NP5)
- 6. Promoting "Research & Development" taking cost factors into account (NP6)

- 7. Helpfulness In collaborative efforts with Public Sector Undertakings(NP7)
- 8. Catering to marketing & distribution platforms (NP8)

Independent variable - National Policy

Dependent variable - Sustainability

Sustainability is an outcome variable and multi-dimensional in nature. The measured indicators of Sustainability are as follow:-

- 1. Does your company have a formal sustainability programme?
- 2. Does your product meet International standards?
- 3. What percentage of Business work is conducted Internationally?
- 4. To what extent Global Economy affected business you are engaged in?
- 5. Our company utilise the Credit Linked Capital Subsidy Scheme (CLCSS) instituted by the Government of India providing upfront capital subsidy for Technology upgradation.
- 6. Our company participates in the National Competitiveness Manufacturing Programmes (NMCP) on Entrepreneurial and Managerial development.
- 7. Our company participates in the National Competitiveness Manufacturing Programmes (NMCP) on Intellectual Property Rights (IPR).
- 8. Our company participates in the National Competitiveness Manufacturing Programmes (NMCP) on Design Expertise in manufacturing sector.
- 9. Our company participates in the National Competitiveness Manufacturing Programmes (NMCP) on providing marketing assistance.
- 10. Our company participates in the National Competitiveness Manufacturing Programmes (NMCP) on Technology upgradation and Quality upgradation support.
- 11. Our company utilise the ISO 9000/ ISO 14001 certification reimbursement scheme provided by the Government of India under the National Competitiveness Manufacturing Programme (NMCP).

3.3 Hypothesis

H₀: There is no correlation between National Policy and Sustainability in warship building (R=0)

H₁: There is a significant relationship between National Policy and Sustainability in warship building (R≠0)

Level of significance for testing hypothesis $\alpha = .05$

3.4 Data analysis

3.4.1 In order to establish reliability and validity of measurement indicators, a pilot study was undertaken by farming out the questionnaires to the MSMEs registered with the shipyards PAN India. Cronbach Alpha and Average Variance Extracted (AVE) were determined to establish reliability and validity of measurements respectively.

3.4.2 Reliability Tests

Statistical results on reliability tests conducted with pilot data (N = 70) are appended.

Reliability

Scale: NP

Case Processing Summary

		N	%
Cases	Valid	70	100.0
	Excludeda	0	.0
	Total	70	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.858	8

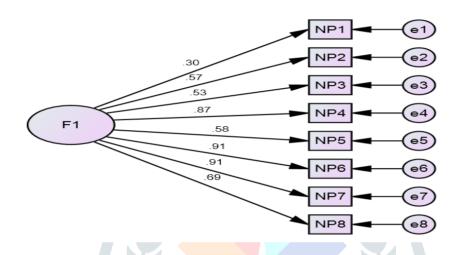
Reliability

Scale: SBL

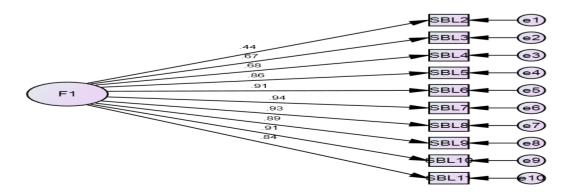
Case Processing Summary

		N	%
Cases	Valid	70	100.0
	Excludeda	0	.0
	Total	70	100.0

Reliability Statistics


Cronbach's	
Alpha	N of Items
.953	10

Cronbach Alpha of .858 was achieved for National Policy (NP) and 0.953 for Sustainability (SBL) and all measurements are positively contributing.; alpha value ranges between 0 and 1; the threshold being 0.7 and above (Nunelly,1994). As Cronbach Alpha is more than 0.7, reliability of measurement indicators of national Policy and sustainability has been established.


3.4.3 Validity

The minimum acceptable value of AVE is 0.5 because value of 0.5 and above means that the construct explains more than half of the variance of its measurement indicators. (Hair et al., 2014). Statistical results on validity tests conducted with pilot data (N = 70) are appended.

Factor Loading – National Policy

Measured Indicators	Path	construct	FL	FL squared	AVE	AVE after deletion of weak indicator
NP1	<	F1	0.296	0.087616		/
NP2	<	F1	0.573	0.328329		
NP3	<	F1	0.533	0.284089		
NP4	<	F1	0.868	0.753424	0.49	0.547
NP5	<	F1	0.579	0.335241	0.49	0.347
NP6	<	F1	0.911	0.829921		
NP7	<	F1	0.907	0.822649		
NP8	<	F1	0.692	0.478864		

measured indicators		Construct	FL	FL squared	AVE
SBL2	<	F1	0.442	0.195364	
SBL3	<	F1	0.667	0.444889	
SBL4	<	F1	0.683	0.466489	
SBL5	<	F1	0.863	0.744769	
SBL6	<	F1	0.908	0.824464	
SBL7	<	F1	0.94	0.8836	0.675
SBL8	<	F1	0.927	0.859329	
SBL9	<	F1	0.892	0.795664	
SBL10	<	F1	0.91	0.8281	
SBL11	<	F1	0.842	0.708964	
			IK		

Factor loading of less than 0.5 is considered as a weak indicator. Average Variance Extracted was found to be 0.547 for national Policy construct, after removal of the weak indicator and 0.675 for Sustainability construct, both well above the threshold of 0.5, proving the validity of the measurements. Having found that the measurement indicators evolved are reliable and valid, 160 responses from MSMEs were collated and statistically analysed by canonical correlations.

3.4.4 Canonical Correlations

Canonical Correlation Analysis (CCA) is a multivariate statistical technique used to identify and measure the relationship between two sets of variables by finding linear combinations of variables from each set that are correlated with each other maximally. By Canonical Correlation Analysis, the canonical correlation coefficients are found out. The correlation coefficients reflect the strength of the association between the linear combinations of variables in the two datasets. The value of canonical correlation coefficients ranges from 0 (indicating no correlation) to 1 (indicating perfect correlation). CCA is used to answer questions such as: How are two sets of variables related to each other? What variables are most important in predicting outcomes in one dataset based on variables in the other dataset?

3.4.4.1 Canonical Correlations Test Results

Canonical Correlations

[DataSet1]

Canonical Correlations Settings

	Values
Set 1 Variables	NP1 NP2 NP3
	NP4 NP5 NP6
	NP7 NP8

Set 2 Variables	SBL2 SBL3
	SBL4 SBL5
	SBL6 SBL7
	SBL8 SBL9
	SBL10 SBL11
Centered Dataset	None
Scoring Syntax	None
Correlations Used for	8
Scoring	

Canonical Correlations

			Wilks			Denom	
	Correlation	Eigenvalue	Statistic	F	Num D.F	D.F.	Sig.
1	.714	1.039	.160	3.433	80.000	820.399	<.001
2	.592	.539	.327	2.556	63.000	732.643	<.001
3	.466	.277	.503	2.012	48.000	643.717	<.001
4	.428	.224	.642	1.758	35.000	553.497	.005
5	.361	.149	.786	1.375	24.000	461.703	.112
6	.236	.059	.903	.919	15.000	367.556	.543
7	.193	.039	.957	.750	8.000	268.000	.648
8	.078	.006	.994	.278	3.000	135.000	.841

H0 for Wilks test is that the correlations in the current and following rows are zero

Set 1 Standardized Canonical Correlation Coefficients

Variable	1	2	3	4	5	6	7	8
NP1	263	293	673	612	544	305	.010	490
NP2	331	.499	.776	295	770	051	350	.432
NP3	010	652	078	187	.636	.615	.740	.933
NP4	.238	.186	.034	.473	996	.459	.900	551
NP5	302	740	.342	.540	.076	879	688	012
NP6	325	.246	011	825	.900	481	.519	-1.202
NP7	319	.025	318	062	.077	1.222	830	251
NP8	1.403	170	.453	.341	.061	514	510	.652

Set 2 Standardized Canonical Correlation Coefficients

Variable	1	2	3	4	5	6	7	8
SBL2	411	.030	036	307	127	789	.184	208
SBL3	469	536	170	.103	.185	.303	.101	180
SBL4	.186	.558	.517	.042	.085	.039	049	429
SBL5	048	.290	252	413	.681	511	225	059
SBL6	.478	373	.277	.997	952	563	384	667
SBL7	.454	145	508	-1.036	.032	.235	1.081	.377
SBL8	.123	289	.592	1.091	1.147	174	.026	.545
SBL9	423	.186	.619	323	575	012	319	.726

SBL10	113	097	227	-1.222	.260	.526	308	918
SBL11	026	049	169	.316	188	102	681	.409

Set 1 Unstandardized Canonical Correlation Coefficients

Variable	1	2	3	4	5	6	7	8
NP1	317	353	811	738	655	367	.012	590
NP2	443	.666	1.037	394	-1.028	069	467	.577
NP3	011	730	087	209	.711	.688	.827	1.044
NP4	.275	.215	.039	.548	-1.152	.531	1.041	637
NP5	291	714	.330	.521	.073	848	664	012
NP6	305	.230	011	773	.843	451	.486	-1.126
NP7	294	.023	294	057	.071	1.128	766	231
NP8	1.192	145	.385	.290	.052	436	434	.554

Set 2 Unstandardized Canonical Correlation Coefficients

Variable	1	2	3	4	5	6	7	8
SBL2	496	.036	043	371	153	953	.222	252
SBL3	519	593	188	.114	.205	.335	.112	199
SBL4	.222	.668	.619	.051	.102	.047	059	513
SBL5	056	.336	292	479	.789	592	261	068
SBL6	.593	462	.343	1.236	-1.180	698	476	827
SBL7	.582	186	652	-1.329	.041	.301	1.387	.483
SBL8	.145	341	.698	1.286	1.352	205	.031	.643
SBL9	644	.282	.941	492	875	018	485	1.104
SBL10	129	110	257	-1.385	.295	.597	349	-1.041
SBL11	029	054	185	.347	206	112	747	.448

Set 1 Canonical Loadings

Variable	1	2	3	4	5	6	7	8
NP1	.166	509	306	624	456	100	088	058
NP2	115	121	.747	540	315	.125	068	.055
NP3	.028	709	.416	386	.020	.308	.260	.112
NP4	.210	452	.496	.088	325	.314	.281	463
NP5	217	744	.513	.179	048	036	118	294
NP6	.171	288	.613	440	.200	.120	.072	508
NP7	.153	411	.323	220	.000	.595	391	385
NP8	.710	373	.364	376	069	.115	176	187

Set 2 Canonical Loadings

Variable	1	2	3	4	5	6	7	8
SBL2	513	177	.243	087	095	628	.295	173
SBL3	537	499	.049	.009	.078	.214	056	249
SBL4	.094	.416	.586	045	.033	.159	056	383
SBL5	.268	.099	279	291	.392	443	415	.048
SBL6	.543	597	.287	165	146	324	220	166
SBL7	.583	517	.253	429	018	142	.078	.164
SBL8	.268	591	.597	101	.379	176	052	.128
SBL9	019	333	.667	459	133	086	240	.335
SBL10	.245	577	.406	462	.147	.045	359	199
SBL11	.214	274	112	091	083	032	735	.220

Set 1 Cross Loadings

Variable	1	2	3	4	5	6	7	8
NP1	.119	301	142	267	165	024	017	005
NP2	082	072	.348	231	114	.029	013	.004
NP3	.020	419	.194	165	.007	.073	.050	.009
NP4	.150	268	.231	.038	117	.074	.054	036
NP5	155	440	.239	.077	017	008	023	023
NP6	.122	171	.286	188	.072	.028	.014	040
NP7	.110	243	.151	094	.000	.141	076	030
NP8	.506	221	.170	161	025	.027	034	015

Set 2 Cross Loadings

Variable	1	2	3	4	5	6	7	8
SBL2	366	105	.113	037	034	148	.057	014
SBL3	384	295	.023	.004	.028	.050	011	019
SBL4	.067	.246	.273	019	.012	.037	011	030
SBL5	.192	.059	130	125	.141	105	080	.004
SBL6	.388	353	.134	071	053	076	043	013
SBL7	.416	306	.118	184	007	033	.015	.013
SBL8	.192	350	.278	043	.137	042	010	.010
SBL9	014	197	.311	197	048	020	046	.026
SBL10	.175	341	.189	198	.053	.011	069	016
SBL11	.153	162	052	039	030	007	142	.017

Proportion of Variance Explained

•	1 Toportion of Variation Explained								
Canonical	Set 1 by	Set 1 by Set	Set 2 by	Set 2 by Set					
Variable	Self	2	Self	1					
1	.086	.044	.145	.074					
2	.241	.084	.196	.068					
3	.243	.053	.161	.035					
4	.157	.029	.075	.014					
5	.058	.007	.038	.005					
6	.075	.004	.083	.005					

7	.045	.002	.105	.004
8	.095	.001	.051	.000

Canonical correlation results show a strong and significant relationship exist between National Policy and Sustainability (r = 0.714, p < .001).

IV. Inference

- 4. The following inferences are drawn, meeting the Research objectives:-
 - (a) As F test value of F(80,820) being 3.433 and p value is less than 0.001 well below .05, it is concluded that there is a significant relationship between National Policy and Sustainability in warship building by MSMEs to achieve Aatmanirbhar Bharat.
 - (b) A direct strong relationship between variables National Policy and Sustainability is indicated; value of R being 0.714. In other words, if National Policy is enforced substantially, MSMEs involvement in warship building will also be enhanced and Sustainability will also move upwards.
 - (c) Wilks statistics shows 0.16. Hence, the unexplained variation is around 16 %, which indicates that there is much more explained variance compared to unexplained variance.
 - (d) A strong significant relationship exists between National Policy and Sustainability.

V. Conclusion

5. Evolving reliable and valid measurement indicators for the National Policy that ought to be ensured by the MSMEs and their Sustainability in turn is a unique study by itself.. The measurements reveal that the National Policy indicators evolved and statistically tested supports the MSMEs in warship building ensuring their sustainability. The number of MSMEs participating in the warship building programme is rather limited compared to a mammoth number of MSMEs sprawled across the country. The National Policy indicators certainly would help the Government agencies and the MSMEs alike to promote highest quality standards, with a view to have a larger participation in the warship building programme. The Public sector undertakings and the large industrial houses should collaborate with the MSMEs to achieve the exacting technology standards by the MSMEs and the transfer of technology by the R & D organisations of the Government should be continuously perpetuated to the MSMEs to actively partake in the warship building programme.

BIBILOGRAPHY

- Balachandran, V., Aanand, S. (2023). MSMEs in Warship Building towards Atmanirbhar Bharat- National Policy Perspective. *IOSR Journal of Business and Management* (*IOSR_JBM*), 25(4), 32-38.
- Balachandran, V., Aanand, S. (2023). MSMEs in Warship Building towards Atma Nirbhar Bharat Technological Perspective. *Journal of Emerging Technologies and Innovative Research (JETIR)*, 10(4),323-337.
- Balachandran, V., Aanand, S. (2023). Sustainability of MSMEs in Warship Building towards Atma Nirbhar Bharat. Journal of Emerging Technologies and Innovative Research (JETIR), 10(4),67-76.

Balachandran, V., Aanand, S. (2023). Quality Assurance Key to MSMEs in Warship Building towards Atma Nirbhar Bharat. Journal of Emerging Technologies and Innovative Research (JETIR), 10(5), 287-298.

Balachandran, V., Aanand, S. (2023). Skill Levels Fulcrum of MSMEs in Warship Building towards AATMANIRBHAR BHARAT. Journal of Emerging Technologies and Innovative Research (*JETIR*), 10(6) pp 727-738.

Balachandran, V., Aanand, S. (2023). Technological Excellence in Warship Building towards AATMANIRBHAR BHARAT. Journal of Emerging Technologies and Innovative Research (JETIR), 10(7) pp 500-513.

Defence, M. o. (2020). Defence Procurement Procedure. Ministry of Defence.

MSME, M. o. (2022 - 2023). Annual Report. Ministry of MSME, Delhi .

