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Abstract: - Around 470 million people in the globe have diabetes, a chronic metabolic condition. Digital health has been developed with 

the goal of bettering the care of diabetic patients. Recent years' broad usage has produced a lot of data that may be utilised to inform 

next initiatives to end this chronic illness. Deep learning, a relatively new kind of machine learning with intriguing prospective 

applications, is one approach that has benefited from this transition. In this study, we assess the status of deep learning applications 

currently used in the study of diabetes. The phases of diabetes treatment that this approach is most often employed in include diagnosis, 

glucose control, and complication identification, according to a study of the literature. We have emphasised the most important 

information from the 40 original research publications we selected based on our search about the learning models used, the development 

process, the major results, and the baseline methodologies for performance measurement. 

According to the reviewed literature, it is now feasible to accomplish numerous tasks related to diabetes with state-of-the-art accuracy by 

using deep learning frameworks and algorithms, which perform better than more conventional machine learning approaches. In the 

meanwhile, we draw attention to a number of gaps in the existing research, such as a dearth of readily available data and uncertainty in 

model interpretation. Rapid advancements in deep learning and an abundance of data suggest that these issues may soon be resolved, 

enabling further use of this technology in therapeutic settings. 
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INTRODUCTION: - 

Chronic metabolic illnesses characterised by inadequate insulin production or diminished insulin activity are 

collectively referred to as diabetes. Due to the disease's complicated origins, the International Diabetes Federation 

predicts that in 2019, 463 million individuals throughout the world will have diabetes. However, experts believe that 

as many as half of these patients will go undetected. The 95% confidence interval for this estimate is 369-601 million. 

In the next ten years, diabetes is projected to become epidemic. Therefore, particularly in low- and middle-income 

countries, the prevention and treatment of diabetes has been a significant drain on national economies, healthcare 

systems, and individual medical expenses [1]. 
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Clinical classifications of diabetes may be broken down into three groups according to their etiopathology: type 1 

diabetes (T1D), type 2 diabetes (T2D), and gestational diabetes mellitus (GDM). Adult-onset diabetes from latent 

autoimmunity and juvenile-onset diabetes that improves with age are two more subcategories with a different an 

etiology. When the pancreatic cells that produce insulin are attacked and destroyed by the immune system, the result 

is type 1 diabetes [2, 3]. People with T1D need exogenous insulin therapy due to inadequate endocrine insulin 

synthesis. Insulin resistance or inadequate insulin production leads to the development of type 2 diabetes (T2D), the 

most prevalent form of the disease. Diagnosis of gestational diabetes mellitus (GDM) may need dietary adjustments 

and, in certain cases, the administration of exogenous insulin to ensure the health of the growing child. Early diagnosis 

and categorization of diabetes are challenging due to increased variability and a lack of continuous surveillance [2]. 

Most diabetics who need exogenous insulin stick to a schedule of MDI using an insulin pen or an insulin pump 

(continuous subcutaneous insulin infusion, or CSII), all while keeping a constant check on their blood sugar levels 

using a metre. It is crucial for diabetics to keep their blood glucose (BG) levels within a safe range at all times. 

Neuropathy, nephropathy, retinopathy, stroke, cardiovascular disease, and peripheral vascular disease are all 

examples of microvascular and macrovascular problems that may result from either hyperglycemia or hypoglycemia. 

However, because to the vast range of everyday activities (eating, exercising, drinking alcohol, being unwell, and 

stress) that may effect BG levels, it may be difficult for diabetics to maintain stable BG levels. Self-management 

practises, such as prompt blood glucose (BG) monitoring, hormone supply, and adherence to prescribed lifestyle 

recommendations, are thus crucial, but they need interdisciplinary clinical practise expertise, particularly for children 

and adolescents. The issue of establishing an effective treatment technique for an individual patient is further 

complicated by the high degrees of inter- and intra-population variation in the glucose kinetics process and 

pharmacokinetics. [4] 

The artificial pancreas (AP), also known as closed-loop hormone delivery systems and continuous glucose monitoring 

(CGM) systems [4], has been the subject of much research in recent years. The research' objectives are to achieve 

automated glycemic control and reduce the workload associated with managing glucose levels. An AP system uses 

CSII by means of an insulin pump, closed-loop control algorithm, and continuous glucose monitoring (CGM). Several 

T1D support organisations advocate it since it has been shown to significantly improve glycemic control [5]. With 

the development of smart pens and smart metres that can communicate wirelessly with a smartphone, basal-bolus 

insulin therapy with a capillary blood glucose metre and MDI continues to be a cost-effective alternative for managing 

diabetes. When it comes to insulin distribution, the AP is state-of-the-art. 
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Figure 1: The illustration of diabetes management. The data is processed by healthcare providers to develop deep 

learning algorithms for novel therapies. 

Improvements in smartphone apps and CGM integration for diabetes management have made it possible for users to 

keep tabs on daily activities and make educated treatment choices. Using resistance bands for BG management [6]. 

Wearables, digital tools, and electronic health records (EHRs) generate a great deal of information. The use of AI in 

this context may result in better care for diabetics. 

It's possible that high-dimensional, sparse, multi-source medical datasets are underutilised in clinical practise. It is 

possible that machine learning may detect nonlinear relationships in high-dimensional data. Machine learning refers 

to the process whereby computers may pick up new skills without any human input. In a number of health-related 

areas, state-of-the-art was bested by deep learning, a state-of-the-art machine learning approach [7]. Without the use 

of feature engineering, deep neural networks (DNNs) can accurately portray raw data [8]. 

There is a lack of research in the literature on the use of deep learning in the field of diabetes. Particularly for the 

treatment of diabetic eye disorders, deep learning has demonstrated to be a promising tool [9]. Therefore, the purpose 

of this study is to explore cutting-edge deep learning approaches to diabetes care. 

II. DEEP LEARNING OVERVIEW 

Healthcare and diabetes deep learning approaches are reviewed. Deep learning started with brain-like ANNs [10]. 

Fig. 2 shows an ANN's nodes and three layers: input, hidden, and output. These layers simulate neurones using 

arithmetic. Back-propagation can teach ANNs perceptions, but they can't generalise beyond supervised tasks. Hidden 

layers help DNNs generalise, collect data, and learn representations with hundreds of thousands of parameters. Over 

the previous two decades, computer technology and software have made DNN models more complicated [10]. Fig. 2 

displays five diabetes research DNN topologies with nodes, cells, and connections. Deep learning libraries include 

Theano, Caffe, TensorFlow, CNTK, and PyTorch. Supporting many languages and hardware acceleration, these 

frameworks simplify DNN model creation. 
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Supervised, unsupervised, and reinforcement deep learning algorithms exist. Supervised learning classifies and 

regresses labelled input data during iterative model optimisation and backwards propagation. Diabetes research uses 

supervised learning-based DNNs such DMLPs, CNNs, and RNNs. 

 

Figure 2: The visualization of ANNs and DNNs.  

DMLP, a feed-forward-only (FC) neural network, is used in several DNN models. "Deep" modes have more than 

three layers since multilayer perceptrons are ANNs or DNNs. Nonlinear weight vectors, bias scalars, sigmoid, tanh, 

and ReLU activation functions [10] are all features of DMLPs. Multi-dimensional array data may be visualised by 

CNNs thanks to their convolutional layers. Most CNNs have a mapping capability for subsampling pools. Figure 2 

shows how back-propagation helps train better convolutional models. In the ImageNet database and in industrial 

image identification applications, GPUs and TPUs have employed CNN-based models. AlexNet, VGGNet, Inception, 

and ResNet are all common CNN architectures. 

Time-related data from successive signals is where RNNs really shine. During back-propagation, vanilla RNNs 

experience gradient vanishing and explosion [11]. Innovative RNN cells including long short-term memory (LSTM) 

and gated recurrent units (GRUs) [12] benefit from gate functions and long-term information persistence. Prediction 

and regression issues in natural language processing and speech identification were solved by RNN-based models. 

RNN models benefit from attention because it allows them to zero in on input sequences and map dependencies 

independently of physical distance. 

Classless models are produced through unsupervised learning. Hidden structures and representations in input datasets 

are automatically revealed. Preprocessing, clustering, density estimation, and dimensionality reduction are all 

possible with unsupervised learning. Minimal Boltzmann machines and autoencoders. Adverse effects change. In 

probability theory, RBMs are used to create maps of probability distributions. Only training using bipartite 

connections between RBM neurones is more efficient. DBNs are the result of stacking RBMs [16]. Unsupervised 

learning may be spotted using DBNs. To improve performance on learning tasks, supervised learning may be used to 
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fine-tune network weights [17]. When deep neural networks (DNNs) simulate policy, value-function, or system 

models, DRL outperforms humans. Networking instruction in a simulated environment [18]. 

III. METHODOLOGY 

Deep learning for diabetes research was evaluated using PubMed, DBLP, and IEEEXplore. PubMed focuses on 

medical and biological studies, whereas DBLP is dedicated to computer science. Technical and scientific journals 

may be found in the IEEE Xplore database. These three databases do not need institutional subscriptions to use their 

search tools and user interfaces, unlike Ovid, Scopus, and Web of Science. We utilised freely available search engines 

to ensure the accuracy of our findings. 

 

 

Figure 3: PRISMA flow of selection process. 

A. Search Strategies 

The keywords "diabetes," "glucose," and "artificial pancreas" were combined with the deep learning concepts using 

the Boolean operators AND and OR in our paper search. A specific search was conducted using the following terms: 

((diabetes OR glucose OR artificial pancreas) AND (deep learning OR deep neural network OR convolution neural 

network OR convolutional neural network OR recurrent neural network OR LSTM OR autoencoder OR boltzmann 

machine OR deep belief network)). After amassing the results of a preliminary collection of relevant articles, we 

removed duplicates from multiple sources and then personally evaluated the remaining to evaluate them based on 

inclusion criteria. 
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B. Inclusion and Exclusion Criteria 

This analysis synthesises primary, open-access research on the use of deep learning for diabetes management. The 

articles were organised according to three topics: diabetes diagnosis, glucose control, and complication diagnosis. 

Selected studies were able to conduct at least one of the following: give datasets and data processing details; provide 

detailed descriptions of technique; assess model performance using widely used metrics; and provide examples of 

the structure of DNNs. 

The prevalence of diabetes-related retinopathy in published works is noteworthy. Therefore, we focused on research 

that either used large clinical data sets or revealed novel findings on DNNs. All posters, abstracts, methods reports, 

and reviews were rejected. 

C. Information Extraction 

We thoroughly examined the articles to get the information we need to assess deep learning systems. Each research 

was given a visual inspection before being included into one of the three tables below. 

One Potential Scenario We initially synthesised the many application situations for each research in order to 

determine the distinct foci of each. To distinguish between studies involving persons with type 1 and type 2 diabetes, 

we've put y for type 1 diabetes research and z for type 2 diabetes research. 

Examples, Part 2: In Part II, we examine the most popular model topologies and discuss the various DNN layer types. 

Additionally explored are ensemble approaches and hybrid designs. 

The performance of deep learning algorithms depends on how accurate the data is. The generalizability of DNN 

models has been the subject of several studies utilising a variety of datasets (both public and private). The datasets 

utilised are thus briefly described in this section, together with information about their suppliers, categories, and file 

formats. To make it easier for future researchers interested in investigating these data scarcity issues to locate them, 

we have annotated publically available datasets with a question mark (?). 

The fourth part, which is devoted to the development process, discusses the testing and validation stages as well as 

the initial construction of deep learning models. Deep learning is excellent at extracting representations from 

unstructured data, but the need for precise planning throughout the development stages compromises the models' 

utility and reproducibility. 

Critical Findings No. 5: Below, we go through some key discoveries as well as the metrics and standards that will be 

used to judge how well we accomplished those goals. In comparison to sensitivity, specificity, and AUC, root mean 

square error (RMSE) is more often used in glucose control to diagnose diabetes and its effects. The results of the 

Cases are often congruent with the suggested explanations. 
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A Word About Baselines The bulk of these studies evaluated DNN algorithms using various benchmarking 

methodologies. Common statistical and machine learning methods include logistic regression (LR), autoregression 

(AR), autoregressive integrated moving average (ARIMA), supporting vector machines (SVM), random forests (RF), 

naive Bayes (NB), k-nearest neighbours (KNN), latent variable model (LVX), principal component analysis (PCA), 

and decision trees (DT). Additionally supplied for evaluation is the maximum baseline performance as measured by 

the Main Outcomes-aligned indicators. 

 

Figure 4: Number of articles included in the collection grouped by the year of publication and 

application filed.  

As a review for a developing strategy like deep learning, Category 7 summarises the restrictions discovered in the 

selected research. These restrictions might motivate greater study aimed at enhancing the efficiency with which 

learning is applied across all fields. 

IV. RESULTS 

In Figure 3, we can see the sum of the articles found in the three databases used in the primary search: PubMed (307), 

DBLP (31) and IEEE Xplore (272). When all the duplicates were taken out, there were just 362. 

We then categorised the papers using the standards we'd set. Forty articles made the cut after we carefully examined 

their complete texts to ensure they met our inclusion criteria. Our remaining dataset was partitioned into three groups 

based on the use cases: (n = 11) diabetes diagnosis, (n = 14) glucose control, and (n = 15) complications diagnosis. 

Figure 4 shows that majority of the articles under consideration for inclusion were published during the preceding 

two years, proving that deep learning research for diabetes is a relatively new field that is attracting a growing amount 

of attention. Google Scholar citation counts as of October 2020 were also computed and shown next to each of the 

featured works. Tables I, II, and III list the chosen works in reverse chronological order. 
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A. Diagnosis of Diabetes 

Diabetes patients who get early diagnosis and treatment may profit considerably. Clinicians often utilise glucose-

based haemoglobin A1c (HbA1c) testing to confirm diabetes [3]. Due to rural population and medical shortages, 

undiagnosed cases are common and predicted to grow [22]. T2D individuals without diabetic symptoms may develop 

chronic organ failure. 

Population screening and noninvasive techniques are required to detect or predict diabetes. Table I shows the latest 

deep learning diabetes diagnostic decision-support algorithms. DMLP models are the most popular supervised and 

unsupervised learning approach applications. DMLP's feed-forward architecture and simple connections help binary 

classifiers on EHRs, while AEs and RBMs reveal data patterns unsupervised. Several studies have utilised UCI's 

Pima Indian Diabetes (PID) dataset [23]. 768 instances had eight traits and a binary diabetes classification. illustrates 

this dataset. Machine learning research uses the Pima Indians (PID) dataset because they have the highest T2D rate. 

This dataset with uniform measurements makes it easy to compare machine learning research. Table I includes Mount 

Sinai Data Warehouse and Practise Fusion dataset diabetes diagnostic EHR datasets. [23]  

These datasets have an ICD-9 and ICD-10 diagnostic coding scheme despite their different sources. These 

technologies let researchers identify electronic health data of diabetics and their comorbidities. Deep learning on the 

PID dataset is limited by the lack of patients and characteristics. DNN generalisation must be proven using a large 

population dataset. Miott et al. used Deep Patient, a stack of denoising AEs, to learn representations from a big 

dataset. Area under the curve showed 0.907 diabetes classification accuracy [11]. A recent Ryu et al. study included 

11,456 individuals [21]. A DMLP model screened for undiagnosed diabetes with an AUC of 80.11%. These studies 

extracted patient-specific traits using feature analysis and data normalisation. 

Non-invasive diabetes detection is also promising. Lekha et al. [14] built a 1-D CNN architecture for real-time breath 

biomarker analysis for diabetes diagnosis and categorisation. MOS sensors collected breath samples for VOC 

measurement. The sensor array scanned a small gas chamber every 1000 seconds. After that, the signals were 

processed by the CNN classifier, which, unlike PCA, SVM, and SVD, may remove feature selection and maximise 

performance. Diabetes was diagnosed using ECG heart rate variability. Forty people responded in 10 minutes. 

Table 1: Summary of selected articles from the literature on diabetes diagnosis. 

Ref. Cases Models Main Outcomes 

[11] Classification of 

diabetes 
Denosing AE AUC: 0.907 

[12] Prediction of diabetes 
Modified LSTM, 

attention pooling layer 

Precision of diagnosis, intervention, unplanned 

readmission: 66.2%, 78.7%, 79.0% 

[13] Detection of diabetesy RBM and RNN Sensitivity and precision: 90.66%, 75% 
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[14] Prediction of diabetesy 
Modified 1-D CNN and 

FC layers 

AUC of T1D, T2D, healthy subjects: 0.9659, 

0.9625, 0.9644 

[15] Detection of diabetes 
5-layer CNN, LSTM, and 

SVM 
Validation accuracy: 95.70% 

[16] Detection of diabetes DMLP with dropout Accuracy: 88.41% 

[17] Prediction of diabetes DMLP AUC without and with HbA1c: 0.703, 0.840 

[18] 
Prediction of the onset 

T2D 
DMLP and a linear model Sensitivity: 31.17%, AUC: 84.13% 

[19] Detection of diabetes 
2 layer AE and a softmax 

layer 

Sensitivity: 87.92%, specificity: 83.41%, 

accuracy: 86.26% 

[20] Prediction of diabetes DBN Sensitivity: 100%, F1 score: 0.808 

[21] 
Detection of 

undiagnosed diabetes 

2 hidden layer DMLP 

with dropout 
AUC: 80.11% 

The ECG data were gathered at a frequency of 500 Hz and then processed using digital bandpass filtering and 

thresholding for real-time detection. Researchers employed the Pan-Tompkins method to get the heart rate time, and 

then combined CNN, LSTM, and SVM into a single hybrid deep learning model. They achieved a validation accuracy 

of 95.7% using this model. 

B. Glucose Management 

Managing glucose in diabetes means avoiding low and high blood sugar, or hypo- and hyperglycemia, respectively. 

As can be seen in Figure 1, the rapid progress of deep learning has been greatly aided by the digitisation of diabetic 

self-management. Blood glucose prediction, abnormal blood glucose detection, insulin administration control, and 

decision assistance are all subfields within the larger topic of glucose management. 

Predicting blood glucose levels is a hot issue right now. By doling out the right amounts of insulin and/or glucagon 

based on an accurate BG forecast, sensor-enhanced insulin pumps (like predictive low-glucose insulin suspension) 

and AP systems (like model predictive control) may help reduce the likelihood of BG abnormalities (like 

hypoglycemia and hyperglycemia). Smartphone apps may help people with diabetes monitor the factors in their 

surroundings that impact their blood sugar levels. A multimodal time series may be constructed and examined by 

deep learning algorithms by linking CGM measurements with other self-reported events, such as meal composition 

and insulin administration. In general, forecasts with a PH of 30 minutes are considered to be short-term, while those 

with a PH of 60 minutes or more are considered to be long-term. 

The RNN-based architecture is useful here because of its shown success in temporal sequence processing and 

regression. Table II demonstrates that RNNs supplemented with LSTM cells are superior at predicting glucose levels. 

For better 30- and 60-minute prediction than the engineering physiological model (EPM), Mirshekarian et al. [25] 

used support vector regression (SVR). The EPM is a continuous dynamic model that identifies system states by 

considering digestion dynamics, insulin digestion dynamics, and glucose-insulin dynamics. Memory-based case-

based prediction was modelled using a neural attention layer [32]. 

TABLE II: Summary of selected articles from the literature on glucose management. 

Ref. Cases Models Main Outcomes 

http://www.jetir.org/


© 2023 JETIR September 2023, Volume 10, Issue 9                                                                 www.jetir.org(ISSN-2349-5162) 

JETIR2309571 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f587 
 

[24] 
Detection of 

hypoglycemia 
DBN by stacking RBMs Sensitivity: 79.70%, specificity: 50.00% 

[25] 
Prediction of BG 

levels 
LSTM and a linear layer RMSE for 30, 60-min PH: 21.4, 38.0 mg/dL 

[26] 
Prediction of BG 

levels 

LSTM, Bidirectional LSTM 

and 3 FC layers 

RMSE for 30, 45, 60-min PH: 11.63, 21.75, 36.92 

mg/dL 

[27] 
Prediction of BG 

levels 

Deep sequential polynomial 

multi-output model (RNN) 
Absolute percentage error for 30-min PH: 4.87 

[28] Glycemic control CNN (Inception-v3) 
Time in rage (TIR) of 70-180 mg/dL: 91.76%, top-1 

accuracy of the image classification: 81.65% 

[29] 
Prediction of BG 

levels 

LSTM with dynamic time 

warping 

Clark Error Grid zones of next-day PH (A: 84.12, 

B: 15.16, C: 0, D: 0.72, E: 0)% 

[30] 
Prediction of BG 

levels 
CNN, LSTM and 2 FC layers 

RMSE for 30, 60-min PH: 9.38, 18.87 (1); 21.07, 

33.27 (2) mg/dL 

[31] 
Prediction of BG 

levels 
LSTM and a FC layer 

RMSE for 30, 45, 60-min PH: 19.47, 26.47, 32.38 

mg/dL 

[32] 
Prediction of BG 

levels 

Memory- Augmented LSTM 

with neural attention weights 

RMSE for 30, 60-min PH: 18.74, 30.63 (1); 1.23, 

2.27 (2); 2.93, 4.92 (3) with input of CGM, insulin 

and meal events 

[33] 
Prediction of BG 

levels 

Dilated CNN (residual and 

parameterized skip 

connections) 

RMSE for 30, 60-min PH: 8.88, 19.90 (1); 19.19, 

31.78 (2); 19.28, 31.83 (3) 

[34] Glycemic control 
Deep Q-network with GRU or 

1-D CNN 
Average risk index for the virtual subject: 9.26 

[35] 
Prediction of BG 

levels 

2 branches of LSTM cells 

(past and future information) 

Average RMSE for PH of 60 minutes: 11.72 (1), 

21.09 (2) 

[36] 
Prediction of 

HbA1c 

1-D CNN, Inception module, 

FC layers 

Mean absolute error: 4.80, the coefficient of 

determination: 0.71 

[37] 
Prediction of BG 

levels 
LSTM and 2 FC layers RMSE for 30, 60-min PH: 18.867, 31.403 

 

CNNs assess meal macronutrients for human nutrition [28]. The Food-101 dataset of food photos may be used to 

train a CNN model for decision support and AP systems to calculate meal bolus insulin. The UVA/Padova type 1 

diabetes simulator was used to assess the algorithm's dependability under realistic conditions including meal size and 

carbohydrate content. The FDA has authorised the UVA/Padova T1D simulator, a glucose-insulin dynamics 

simulator created by the University of Virginia (US) and Padova (Italy). Due to the high costs and safety issues of 

clinical trials on people and animals, many research organisations have turned to computer simulation, or in silico, to 

test algorithms in various virtual conditions. 

Fox et al. investigated GRU and 1-D CNN DRL algorithms for basal insulin management using the UVA/Padova 

T1D simulator [27]. Recent studies have studied modern DRL algorithms for glucagon and bolus insulin, two 

important hormones involved in glycemic control [87, 88]. Glucose forecasting relies on the simulator to create 

population data sets for preliminary verification. The 2018 BG level prediction challenge used the OhioT1DM 

dataset, which was updated for 2020 [38]. Despite most research tests on their own proprietary clinical databases. 

Twelve type 1 diabetics provided eight weeks of multi-modal data (continuous glucose monitor, diet, insulin, and 
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physical activity). An unsupervised learning system using DBNs and ECG data identified hypoglycemia in T1D 

children [24]. CNN-LSTM models were used to identify sleep-related hypoglycemia in electrocardiograms [39]. 

C. Diagnosis of Complications 

Table III shows that most research has concentrated on medical imaging's potential for identifying diabetes-related 

problems at an early stage. Monitoring diabetes is a time-consuming ordeal that requires regular, individualised visits 

to the doctor's office [55]. Diabetes therapy increases healthcare expenses and wait times. For widespread monitoring 

and surveillance, communities need automated methods of screening for, detecting, and diagnosing issues related to 

diabetes. Diabetic retinopathy (DR) is the most common cause of blindness in people with diabetes. Diagnosis of DR 

before to blindness is very uncommon. 

The good news is that deep learning algorithms can compete with humans in DR problem solving [9]. After the 

success of the CV, several more models were developed utilising convolutional neural networks (CNNs) to 

characterise retinal fundus pictures. In 2015, the Kaggle DR screening competition was won by CNNs trained on a 

publicly accessible dataset. Databases like Messidor-2 and E-Ophtha have DR inspection images. Table III 

demonstrates that, throughout 11 tests, 91% of the time, CNNs successfully detected DR. ElTanboly et al. [42] used 

a multistage deep fusion classification network with a stack of non-negativity-constrained AEs to identify DR in 

retinal OCT images that seemed normal at first glance. The AE model performed well when applied to a dataset 

consisting of 52 people. The two most popular CNN research architectures are VGGNet (used by 4% of researchers) 

and Inception (used by 5%). 

VGGNet-s performed best on the Kaggle dataset in [47]. While VGGNet, developed at the University of Oxford 

(UK), enhances ImageNet recognition performance using a moderate kernel size and deep networks, Inception uses 

sparse connections between activation functions in an Inception module to maximise GPU computing efficiency. 

Both approaches have a high degree of success in detecting DR. With a 96% sensitivity for referable DR, Abramoff 

et al. [40] used a VGGNet-based model to identify many types of DR on Messidor-2. Two large datasets [44, 49] 

with people of varying racial and ethnic backgrounds verified the VGG-adapted structure. They found that deep 

learning systems were able to detect the DR with more accuracy and speed than humans. Gulshan et al.'s Inception-

based architecture accurately identified cases of referable DR with a sensitivity of 96.8 and a specificity of 87.0. 

These systems have been studied in outpatient settings using a variety of assessment criteria. The Inception-like 

strategy tried and true by Ruamviboonsuk et al. [48] is now being used on a countrywide scale. When compared to 

human professionals, deep learning is more insightful, but it can't match their level of accuracy. Their efforts have 

been acknowledged as comparable to those of humans in the 2019 publication of the Artificial Intelligence Index 

[56]. 

TABLE III: Summary of selected articles from the literature on diagnosis of complications. 
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Ref. Cases Models Main Outcomes 

[40] 
Referable DR 

detection 
CNN (Inspired by AlexNet, 

VGGNet) 
Sensitivity: 96.8%, specificity: 87.0%, AUC: 0.980 

[41] 
Referable DR 

detection 

CNN (Inception-v3), an 

ensemble of 10 networks 

Sensitivity: 97.5% (1), 96.1% (2), specificity: 93.9% (1), 

93.4% (2), AUC: 0.990 (1), 0.991 (2) 

[42] DR detection 
A stack of non-negativity- 

constrained AEs 
Sensitivity: 92%, specificity: 83%, accuracy: 100% 

[43] DR detection 

Customized CNN: (5 

residual blocks), DT 

classifier 

Sensitivity: 94% (1), 93% (2), 90% (3), specificity: 98% 

(1), 87% (2), 94% (3), AUC: 0.97 (1), 0.94 (2), 0.95 (3) 

[44] 
Referable DR 

detection 
CNN (Adapted VGGNet) Sensitivity: 90.5%, specificity: 91.6%, AUC: 0.936 

[44] 
Referable DR 

detection 
CNN (Inception-v3)  

Sensitivity: 92.3%, specificity: 93.7%, 96% of participants 

satisfied with the model 

[46] 
Moderate or worse 

DR detection 

CNN (Inception-v4), an 

ensemble of 10 networks 
Sensitivity: 97.1%, specificity: 92.3%, AUC: 0.986 

[47] DR detection CNN (VGGNet-s) 
Sensitivity: 86.47%, specificity: 97.43%, AUC: 0.9786, 

accuracy: 95.68% 

[48] 
Referable DR 

detection 

CNN (Inception-v4), an 

ensemble of 10 networks 
Sensitivity: 96.8%, specificity: 95.6%, AUC: 0.987 

[49] 
Referable DR 

detection 
CNN(Adapted VGGNet) 

The estimation of DR prevalence: 16.1%, the AUC for 

referable DR: 0.863, the time taken to diagnose: 10.4h, risk 

factor: 0.743 

[50] 
Estimation of DR 

severity scale 

CNN pillars (Inception-v3) 

and RF 
AUC at month 6, 12, 24: 0.68, 0.79, 0.77 

[51] 
Prediction of 

mortality in ICU 
1-D CNN and 2 FC layers AUC: 0.885 

[52] 
Prediction of 

myocardial infarction 
DMLP AUC: 0.767, with hazard ratio: 0.81 and 0.63 

[53] 
Classification of 

diabetic foot 
Customized 9-layer CNN Sensitivity: 0.9167, AUC: 0.8533 

[54] 
Detection of diabetic 

neuropathy 
U-Net CNNs (5 ensembles) 

Fibre length 0.933, length/segment: 0.656, branch points: 

0.891, nail points: 0.623 

The research also highlights deep learning's flexibility in addressing different problems. With an AUC of 0.885, 

Wittler et al. [51] developed a CNN-based model to predict mortality from ICU patient data. The MIMIC-III ICU 

dataset used in this analysis is publicly available and may be downloaded for free [57]. Using a U-Net convolutional 

neural network (CNN) trained on a publicly available dataset was recommended by Williams et al. [54] to aid in the 

identification of diabetic neuropathy. The researchers suggest that this approach might be used in therapeutic contexts, 

and their findings demonstrate excellent localisation performance for quantitative assessment. Using a publically 

available dataset, a CNN was developed in [53] to detect plantar ulcers in thermographic images of diabetic feet. 

In addition, Yamada et al. [52] used a DMLP model that outperformed standard LR analysis to evaluate the risk of 

cardiovascular disease in order to do a comparison of three anti-diabetic medicines. Finally, it's worth noting that 

almost all studies looked at microvascular outcomes including DR [40– 50], diabetic foot [53], and diabetic 

neuropathy [54], whereas just one looked at macrovascular concerns such cardiovascular illnesses [52]. 

D. Summary of Deep Learning Techniques 

The field of diabetes research has taken to using both supervised and unsupervised deep learning architectures. 

http://www.jetir.org/


© 2023 JETIR September 2023, Volume 10, Issue 9                                                                 www.jetir.org(ISSN-2349-5162) 

JETIR2309571 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f590 
 

Clinical imaging challenges are a common application of convolutional neural network-based systems. When it 

comes to feature extraction from raw data, CNNs shine [8]. Previously, this would have needed either specialised 

knowledge in the field of image processing or a custom-built solution. Medical image and scan interpretation for the 

purpose of detecting diabetes-related problems is where CNNs have so far seen the most widespread use. Another 

potential use of CNN-based systems that might be useful to patients with diabetes is the prediction of macronutrients 

from food photos. The CV community is always looking at new methods to boost model efficiency while simplifying 

the system. With the advent of more sophisticated CNN configurations (VGGNet, Inception), more robust methods 

have been developed. In addition, 1-dimensional convolutional neural networks (CNNs) have been investigated for 

their potential to analyse sequential signals by using convolutional filters with a wide receptive field to extract data 

features. The convolutional RNN (CRNN) [30] and the CNN-LSTM [15], [39] are two examples of hybrid models 

that take use of the superior sequence processing skills of RNNs by using LSTM layers to interpret the input and 

calculate the temporal connections. In particular, RNN-based designs are currently considered state-of-the-art in BG 

prediction within the context of diabetes management apps. A real-time glucose map may be generated from CGM 

data using modern recursive algorithms and intricate cell topologies. Recent developments in natural language 

processing (NLP) have been the subject of several academic investigations. Neuronal attention mechanisms [21, 32] 

and bidirectional LSTM [26] are two such examples. 

Diabetic diagnosis often employs unsupervised learning algorithms like DMLP. Due to the variety of record formats 

included in EHR datasets, however, performing such tasks generally requires meticulous feature selection and 

normalisation in pre-processing. The most important characteristics are isolated using standard machine learning 

methods. 

For each data characteristic, scores were calculated using principal components analysis with weights and coefficients 

as shown in [20]. By evaluating correlations between non-invasive measurements and person traits, LR analysis was 

used to identify key factors in diabetes diagnosis [21]. 

Due to its adaptability and modular structure, DNN layers may be included into a variety of different models. In 

addition to recurrent neural networks [50], deep turings [43], and recurrent neural networks [50], the linear model 

[18], support vector machines [15], and deep turings [18] all incorporate data features at the input or perform a second-

level analysis at the output, making them hybrid learning models. References [41, 46, 48, 50] and [54] further detail 

deep learning ensemble models. The ensemble is used to generate test results by linearly averaging the outputs of 

many individually trained CNNs on the same dataset. In order for each CNN to learn its own representation and 

enhance accuracy and generalisation, it is seeded with a different set of data at the beginning of training. 

Since millions of parameters in the DNN units must be fine-tuned during training, doing so from start is a time-

consuming process. A time-saving technique that might be utilised to deal with this is pre-training, also known as 

transfer learning. There is evidence in [28, 41] that the ImageNet database is used as a supplementary portion of CNN 
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pre-training, especially for medical imaging applications. Convergence on target datasets may be accelerated by fine-

tuning the weights in accordance with the ImageNet principles, provided adequate computing resources are available 

[58]. When it comes to pretraining for glycemic control tasks [25, 26, 32], we employ in silico datasets obtained from 

simulators in addition to some real clinical data. Efficient in accommodating the massive data needs of DNN training. 

To perform the discriminative fine-tuning described in [20], DBNs first conduct an unsupervised pre-training phase 

to determine suitable starting weights. Data augmentation is described in depth in [47, 53] as an alternate strategy for 

enhancing model performance with sparse data. These experiments rotated, flipped, and rearranged the photos they 

used to create bigger training datasets. 

V. DISCUSSION 

A. Limitations and Challenges 

While deep learning has made significant strides in many diabetes-related fields, it still lacks definitive proof of safety 

and efficacy for widespread use in healthcare systems. Prior to its widespread implementation in actual therapeutic 

settings, deep learning still faces a number of hurdles. 

Table IV provides a summary of the restrictions placed on the data in terms of quantity, variation, quality, feature 

processing, and interpretability. Real-world data from diabetic patients is likely to be erroneous because to human 

error and sensor distortions. 

It might be expensive and time-consuming to gather reliable information. It's possible that data privacy restrictions 

may hinder collaboration between academic institutions when sharing information. As a result, many research suffer 

from a too-small sample size. The complexity of glucose dynamics makes it hard to analyse the data available to 

characterise people with diabetes. 

TABLE IV: Summary of the limitations and challenges identified by the selected articles. 

Category Description References 

Data Volume 

Training a deep model for complicated tasks requires a high volume of 

data. Collecting data from people with diabetes is often time-consuming 

and expensive, compared to other tasks in CV and NLP. Consequently, 

many studies face a shortage of data during their research cycles. 

[12], [17], [29], 

[37], [40], [50], 

[53] 

Data 

Variability 

The variability among people with diabetes is large due to the complex 

glucose dynamics. To obtain better generalization for deep learning 

models, the training data needs to cover a diverse range of individuals, 

such as people of different ages and comorbidities. However, many 

[11], [21], [24], 

[28], [36], [46], 

[48], [50], [52] 
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datasets are often collected from a specific cohort of people, which lacks 

diversity and could bring bias to the learning. 

Data Quality 

Similar to many other problems in healthcare, most of the diabetes datasets 

are heterogeneous, sparse, and noisy with some missing values. It is not 

realistic to collect perfect data from either clinical practice or daily self-

management, e.g. the unavoidable errors from CGM sensors. 

[11], [29], [36], 

[37], [40], [51] 

Feature 

Processing 

The major challenge in feature processing is to find the most effective 

features for models to learn the representations. Manually screening and 

analyzing each feature in a diabetes dataset could require a lot of 

engineering work, but using automated data-driven methods, such as PCA, 

would ignore some physiological knowledge and rely too much on the 

characteristics of the data. A more comprehensive analysis of additional 

factors and features is needed with the advances in data collecting and 

physiological models. 

[18], [25], [26], 

[41], [49], [52] 

Interpretability 

The interpretability, i.e. explainability, stands for how the model obtains 

the corresponding output based on a set of inputs. It is an important goal 

for AI applications in healthcare to convince clinicians to adopt such 

systems. In many cases, deep learning models are regarded as” black 

boxes” with a lack of model transparency due to complex nonlinear layers. 

As a consequence, if the model performance degrades in certain 

circumstances, it might be difficult to explain why. 

[30], [40], [44], 

[48], [50] 

In addition, deep learning algorithms tend to be secretive. When making potentially fatal judgements, doctors must 

have full confidence in the accuracy of the models they're using. In order to learn efficient patterns from non-linear 

data, DNN layers have complicated structures, however this comes at the expense of the model's interpretability. 

Therefore, it is important to assess the trade-off between performance and interpretability when investigating deep 

learning for diabetes. 

The efficiency with which deep learning models may be trained is expected to improve as a result of new algorithmic 

and hardware developments [13, 53]. 

B. Opportunities and Future Work 

To make sense of the medical applications of deep learning technologies, the AI community has recently focused on 

increasing model openness and gaining an understanding of model working. In particular, a unified framework, the 

SHapley Additive exPlanations (SHAP), has been proven by various data-driven applications in the healthcare sector 

to characterise the input features that contribute to the final output [59]. 
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This method may also be used to choose input qualities by ranking them in order of importance. The outcomes of a 

CNN research credited with SHAP analysis are shown in Table III [50]. To better comprehend the learned properties 

of CNN layers, t-distributed stochastic neighbour embedding (t-SNE) was used to show the clusters of heartbeat data 

according to glucose levels in [39]. Qualitative study of the produced feature maps using t-SNE may also be useful 

for other CNN applications, such as DR detection. The dynamics of glucose and insulin have recently been studied, 

and the results have been shown to be congruent with neural network models [60]. DNN performance may be 

evaluated and interpretability can be enhanced using similar approaches. 

If data-driven models are reinforced with expert knowledge during the learning process, it may be possible to get a 

deeper understanding of the underlying mechanisms of a health issue like diabetes. In specifically, two strategies 

might be feasible options. 

One is to factor in previously acquired knowledge as a training aid, and the other is to use physiological parameters 

as a model input. Expertise is also necessary for the creation of safety restrictions and the computation of confidence 

in model outcomes. 

The necessity for further confirmation of their findings in real-world conditions was a major factor in the selection of 

many publications [35, 36, 44, 50, 54]. One Google team has made some headway in this area. Research focused on 

patients with diabetic eye problems was conducted in 11 clinics using deep learning [61]. The research indicates that 

a number of social and environmental conditions must be satisfied before such automated systems may be extensively 

used. 

VI. CONCLUSION 

In this research, we examine how scientists are actively using deep learning methods to further their investigation of 

diabetes. We conducted a comprehensive literature search, selected a sample of relevant papers, and synthesised the 

most significant data across three domains: diabetes diagnosis, glucose management, and repercussions. Experiments 

conducted on these challenges utilising various DNN architectures and learning strategies have shown better results 

than those possible using conventional machine learning techniques. However, many challenges have been identified 

in the literature. These include data accessibility, feature processing, and model interpretability. Applying state-of-

the-art deep learning technology to massive, multi-modal data sets linked to diabetes treatment shows tremendous 

potential for addressing these difficulties in the future. We believe that deep learning technologies will soon become 

widespread in clinical settings, vastly improving diabetes treatment overall. 
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