

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND

NNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

SOME SETS OF INTEGERS AND THEIR TRANSFORMATIONS

Dr. Arbind kumar, Ajay kumar, Anand kumar, Dr. L. B. Singh

Scholar, Assistant Professor, Research Scholar, Rtd, Associate prof.

Abstract

In this Paper integers have been divided modulo 5, [1] and classes A_1 , A_2 , A_3 , A_4 , A_5 have been defined. We consider sums and multiplication of these sets and get a ring $(R,+,\bullet)$. We consider some linear transformations on R and show that these transformations form a group as well as a ring, named K. This K is also a field [2].

Key words:- Group, Ring, Field, Modules, linear transformations

1. Definition of addition and its Consequences:-

Let us divide integers modulo 5. Thus all numbers of the form 5K+1.K bring any integer will be denoted by $\overline{1}$ or A_1 . Numbers of form 5K+2 will be denoted by $\overline{2}$ or A_2 and so on. Thus we get \overline{A}_3 and \overline{A}_4 . Finally numbers of form 5K will be denoted by $\overline{5}$ of $\overline{0}$ by A_5 .

Then clearly,

$$A_1 + A_2 = \overline{1} + \overline{2} = \overline{3} = A_3$$
, $A_1 + A_3 = \overline{1} + \overline{3} = \overline{4} = A_4$, $A_1 + A_4 = \overline{1} + \overline{4} = \overline{5} = A_5$,

$$A_1 + A_5 = \overline{1} + \overline{5} = \overline{1} = A_1$$

$$A_2 + A_2 = \overline{2} + \overline{2} = \overline{4} = A_4$$
, etc.

Thus in general,

$$A_i + A_j = A_{i+j} \pmod{5}$$

By These calculations, we can construct the following table,

+	A_1	A_2	A_3	A_4	A_5
\mathbf{A}_1	A_2	A_3	A_4	A_5	\mathbf{A}_1
A_2	A_3	A_4	\mathbf{A}_5	\mathbf{A}_1	A_2

A_3	A_4	A_5	\mathbf{A}_1	A_2	A_3
$\overline{A_4}$					
A_5	\mathbf{A}_1	A_2	A_3	A_4	A_5

In above table, A_5 behaves like an identity element for operation '+'. Also since $A_1 + A_4 = A_5$, we can say that additive inverse of A_1 is A_4 i.e.

$$-A_1 = A_4$$

Similarly
$$-A_2 = A_3$$
, $-A_3 = A_2$, $-A_4 = A_1$ and $-A_5 = A_5$

As we deal with real numbers, associative law can be easily checked e.g. $(A_1+A_2) + A_3 = A_3 + A_3$

 A_1

$$A_1 + (A_2 + A_3) = A_1 + A_5 = A_1$$
 Showing $(A_1 + A_2) + A_3 = A_1 + (A_2 + A_3)$

Hence $\{A_1, A_2, A_3, A_4, A_5\}$ with operation '+' is an abelian group with identity A_5 .

2. Definition of multiplication and its consequences:-

Now we define multiplication, e.g.

$$A_1A_{1=}(\overline{1})(\overline{1})=\overline{1}=A_1,$$

$$A_1A_2 = (\bar{1})(\bar{2}) = \bar{2} = A_2$$

Similarly
$$A_1A_3 = A_3$$
, $A_1A_4 = A_4$, and $A_1A_5 = A_5$, $A_2A_2 = (\overline{2})(\overline{2}) = \overline{4} = A_4$,

$$A_2A_3 = (\overline{2})(\overline{3}) = \overline{1} = A_1 \text{ etc.}$$

So in general,

$$A_i A_j = A_{ij \pmod{5}}$$

With these calculations we get the following table,

•	\mathbf{A}_1	A_2	A_3	A_4	A_5
\mathbf{A}_1	\mathbf{A}_1	A_2	A_3	A_4	A_5
A_2	A_2	A_4	\mathbf{A}_1	A_3	A_5
A_3	A_3	\mathbf{A}_1	A_4	\mathbf{A}_2	A_5
A_4	A_4	A_3	A_2	\mathbf{A}_1	A_5
A_5	A_5	A_5	A_5	\mathbf{A}_5	A_5

Here with operation '•' A_1 behaves as identity element. Since $A_1A_1 = A_1$,

$$A_2A_3 = A_1, A_4A_4 = A_1$$

We can write

$$A_1^{-1} = A_1, A_2^{-1} = A_3 A_3^{-1} = A_2 A_4^{-1} = A_4$$

We can check associative laws, e.g. $(A_1A_2)A_3 = A_2A_3 = A_1$, $A_1(A_2A_3) = A_1A_1 = A_1$ $(A_2A_3)A_4 = A_1A_1 = A_1$

$$A_1A_4 = A_4$$

$$A_2(A_3A_4) = A_2A_2 = A_4$$
 etc

Hence {A₁, A₂, A₃, A₄} together with '•' forms an abelian group of which

 $\{A_1, A_4\}$ is a subgroup.

Now we check distributive laws, e.g.

$$A_{1}(A_{1}+A_{2})=A_{1}A_{3}=A_{3},\ A_{1}A_{1}+A_{1}A_{2}=A_{1}+A_{2}=A_{3}\ A_{2}(A_{1}+A_{2})=A_{2}A_{3}=A_{1},\ A_{2}A_{1}+A_{2}A_{2}=A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}=A_{2}A_{2}+A_{4}+A_{2}A_{2}+A_{4}+A_{4}A_{2}+A_{4}+A_{4}A_{2}+A_{4}+A_{4}A_{4}+A$$

 A_1 etc

Hence considering previous result, we see that

 $(\{A_1, A_2, A_3, A_4, A_5\}, +, \bullet) = R(say)$ is an abelian ring with multiplicative identity $A_1 \neq A_5$ and A_5 being identity for '+'. Also R has no zero divisors, so it is an integral domain. We know that every finite integral domain is a field. Hence it is a field also.

Now we consider powers of the elements of R.

$$A_1^2 = A_1$$
, $A_2^2 = A_4$, $A_3^2 = A_4$, $A_4^2 = A_1$, $A_5^2 = A_5$, $A_1^3 = A_1^2$, $A_1 = A_1$, $A_1 = A_1$, $A_2^3 = A_2^2$, $A_2 = A_4$, $A_3 = A_2^2$, $A_3 = A_3^2$, $A_4 = A_3^2$, $A_5 = A_5^2$, $A_5 =$

$$A_3^3 = A_3^2 A_3 = A_4 A_3 = A_2$$
, $A_4^3 = A_4^2 A_4 = A_1 A_4 = A_4 A_5^3 = A_5^2 A_5 = A_5 A_5 = A_5$

$$A_1^4 = A_1$$
, $A_2^4 = (A_2^2)^2 = A_4^2 = A_1$, $A_3^4 = A_3^3$, $A_3 = A_2$, $A_3 = A_1$

$$A_4^4 = A_4^3 A_4 = A_4 A_4 = A_1$$
, $A_5^4 = A_5 A_1^5 = A_1$, $A_2^5 = A_2^4 A_2 = A_1 A_2 = A_2$, $A_3^5 = A_3^4 A_3 = A_1 A_3 = A_3$

$$A_4^5 = A_4^4 A_4 = A_1 A_4 = A_4$$

$$A_5^5 = A_5^4 A_5 = A_5 A_5 = A_5$$

So in general,
$$A_i^5 = A_i$$
 (i= 1,2,...,5)Also $A_i^6 = A_i^5 A_i = A_i A_i = A_i^2$ etc

So we conclude that $A_i^n = A_i^m$ where $n \equiv m \pmod{4}$ We get table for powers of A_i

Index	2	3	4	5
A_1	\mathbf{A}_1	\mathbf{A}_1	\mathbf{A}_1	\mathbf{A}_1
A_2	A_4	A_3	\mathbf{A}_1	A_2
A_3	A_4	A_2	\mathbf{A}_1	A_3
A_4	\mathbf{A}_1	A_4	\mathbf{A}_1	A_4
A_5	A_5	A_5	A_5	A_5

Next we consider integral multiples of A_i's.

$$2A_1 = A_1 + A_1 = A_2$$

$$2A_2 = A_2 + A_2 = A_4$$

$$2A_3 = A_3 + A_3 = A_1 \equiv A_6$$

$$2A_4 = A_4 + A_4 = A_3 \equiv A_8$$

$$2A_5 = A_5 \equiv A_{10}$$

$$3A_1 = 2A_1 + A_1 = A_2 + A_1 \equiv A_3$$

$$3A_2 = A_4 + A_2 \equiv A_1$$
, etc

So in general

$$mA_i = A_j$$
 where $j \equiv mi \pmod{5}$

we can make a table regarding integral multiples as following,

	and the same			1	
•	\mathbf{A}_1	A_2	A_3	A_4	A_5
2	\mathbf{A}_2	A_4	\mathbf{A}_1	A_3	A_5
3	A_3	\mathbf{A}_1	A_4	A_2	A_5
4	A_4	A_3	A_2	\mathbf{A}_1	A_5
5	A_5	\mathbf{A}_5	\mathbf{A}_5	\mathbf{A}_5	\mathbf{A}_5

We show that

$$(i+j)A_k = iA_k + jA_k$$
, e.g $(1+3)A_1 = 4A_1 = A_4$, $A_1 + 3A_1 = A_1 + A_3 = A_4$ etc

We have proprety such as

$$a(A_i+A_j)=aA_i+aA_j$$
, e.g.2 $(A_3+A_4)=2A_2=A_4$

$$2A_3+2A_4=A_1+A_3=A_4$$
 etc

We have property such as

$$(ab)A_i = a(bA_i), e.g.$$

$$(2\times3)A_1 = 6A_1 = A_1$$
, $2(3A_1) = 2A_3 = A_1$ etc.

Also
$$1.A_i = A_i$$

So the system ($\{A_1, A_2, A_3, A_4, A_5\}$, +,•) forms a system analogous to a vector space over the set of integers.

Let us call it V.

3. Some linear transformations on R:-

Define $S:R \rightarrow R$ by

 $S(A_i) = A_i A_2$ (i.e. multiplying by 2, 7,etc) Then $S(A_1) = A_1 A_2 = A_2$

$$S(A_2) = A_2A_2 = A_4S(A_3) = A_3A_2 = A_1S(A_4) = A_4A_2 = A_3S(A_5) = A_5A_2 = A_5$$

We show that S is linear, i.e.

$$S(A_i+A_j)=S(A_i)+S(A_j)$$
 and $S(\alpha A_i)=\alpha s(A_i)$ Now $S(A_i+A_j)=(A_i+A_j)A_2=A_iA_2+A_jA_2=$

$$S(A_i)+S(A_j)$$

And
$$S(\alpha A_i) = (\alpha A_i)A_2 = \alpha(A_iA_2) = \alpha S(A_i)$$
Where α varies from 1 to 5.

Also

$$S^2(A_i) = S(S(A_i)) = S(A_iA_2) = (A_iA_2)A_2 = A_i(A_2A_2) = A_iA_4$$

Hence

$$S^{3}(A_{i}) = S(S^{2}(A_{i})) = S(A_{i}A_{4}) = (A_{i}A_{4})A_{2} = A_{i}(A_{4}A_{2}) = A_{i}A_{3}$$

Then

$$S^4(A_i) = S(S^3(A_i)) = S(A_iA_3) = (A_iA_3)A_2 = A_i(A_3A_2) = A_iA_1 = A_i$$

So we conclude that

 $S^4=I$, identity transformation on RTherefore $S^5=S$

Next we define $T:R \rightarrow R$ by

 $T(A_i)=A_iA_3$ (or multiplication by 3, 8,...)

Then

$$T(A_1) = A_1A_3 = A_3$$
, $T(A_2) = A_2A_3 = A_1T(A_3) = A_3A_3 = A_4$, $T(A_4) = A_4A_3 = A_2$

And
$$T(A_5) = A_5 A_3 = A_5$$

As in case of S, we can easily see that T is linear.

Also

$$T^{2}(A_{i})=T(T(A_{i}))=T(A_{i}A_{3})=(A_{i}A_{3})A_{3}$$

= $A_{i}(A_{3}A_{3})=A_{i}A_{4}$

$$T^{3}(A_{i})=T(T^{3}(A_{i}))=T(A_{i}A_{4})=(A_{i}A_{4})A_{3}$$

$$= A_i(A_4A_3) = A_iA_2$$

$$T^4(A_i) = T(T^3(A_i)) = T(A_iA_2) = (A_iA_2)A_3$$

$$= A_i(A_2A_3) = A_iA_1 = A_i$$

 $T^4= I$ and $T^5= T$ Next we define U:R \rightarrow R by Hence

 $U(A_i) = A_i A_4$ (or multiplication by 4, 9,...)

Then

$$U(A_1) = A_1A_4 = A_4U(A_2) = A_2A_4 = A_3U(A_3) = A_3A_4 = A_2U(A_4) = A_4A_4 = A_1$$

$$U(A_5) = A_5 A_4 = A_5$$

We can easily see that U is linear

Also
$$U^2(A_i) = U(U(A_i)) = U(A_iA_4) = (A_iA_4)A_4A_i(A_4A_4) = A_iA_1 = A_i$$

 $U^2=I$ Hence

$$\Rightarrow$$
 U³= U i.e. U is a trijection.

$$\implies$$
 $U^4 = U^2 = I$

$$\Longrightarrow$$
 U⁵= U

Since
$$T^2(A_i) = A_i A_4$$
, hence $T^2 = U$(3.1)

We show that T and S commute, since

$$(TS)A_i = T((S(A_i)) = T(A_iA_2) = (A_iA_2)A_3 = A_i(A_2A_3) = A_iA_1 = A_iAnd$$
 $(ST)A_i = S((T(A_i)) = A_iA_1 = A_iA_$

$$S(A_iA_3) = (A_iA_3)A_2 = A_i(A_3A_2) = A_iA_1 = A_i \text{ So } TS = ST = I$$

We show that T commutes with U, since

$$(UT)(A_i) = U(T(A_i)) = U(A_iA_3) = (A_iA_3)A_4 = A_i(A_3A_4) = A_iA_2 = S(A_i) (TU)(A_i) = T(U(A_i)) = T(U(A_i)$$

$$T(A_1A_4) = (A_1A_4)A_3 = A_1(A_4A_3) = A_1A_2 = S(A_1)$$

Hence
$$TU = UT = S$$

Now we show that U commutes with S, since $US = U(UT) = U^2T = IT = T$

And
$$SU = (TU)U = TU^2 = TI = T$$

Also since
$$S^2(A_i) = A_i A_4 = U(A_i)$$
, hence $S^2 = U$(3.2)

Then

$$S^3 = SS^2 = SU = T, S^4 = (S^2)^2 = U^2 = I$$

We have due to (3.1) and (3.2) $S^2 = T^2 = U$

So combining above results,

We can verify associative laws, e.g.

$$T(US) = T.T = T^2 = U$$
, $(TU)S = SS = S^2 = U$ etc

Hence we make a table with I, S, T, U and multiplication as binary operation.

	1				/
1		I	S		U
	I	Ι	S	T	U
	S	S	U		T
	T	T	I	U	S
	U	U	T	S	

Thus set (I, S, T, U) form an abelian group with identity I where,

$$I^{-1}=I$$
, $S^{-1}=T$, $T^{-1}=S$ and $U^{-1}=U$

Associative law for multiplication has been also checked.

Now we consider sum of operators.

$$(S+S)(A_i)=S(A_i)+S(A_i)$$

$$= A_i A_2 + A_i A_2$$

$$= A_i(A_2 + A_2)$$

$$=A_iA_4$$

$$=U(A_i)$$

Hence
$$S+S=U$$

$$(T+T)(A_i) = T(A_i) + T(A_i)$$

$$= A_iA_3 + A_iA_3$$

$$= A_i(A_3 + A_3)$$

$$= A_i A_1$$

 $=A_i$

 $=I(A_i)$

So T+T=I

$$(U+U)(A_i)=U(A_i)+U(A_i)$$

$$= A_i A_4 + A_i A_4$$

$$= A_i(A_4 + A_4)$$

 $= A_i A_3$

 $= T(A_i)$

Therefore U+U= T

$$(I+I)(A_i)=I(A_i)+I(A_i)=A_i+A_i$$

So
$$(I+I)(A_1) = I(A_1) + I(A_1) = A_1 + A_1 = A_2 = S(A_1)$$
 $(I+I)(A_2) = I(A_2) + I(A_2) = A_2 + A_2 = S(A_1)$

$$A_4 = S(A_2), (I+I)(A_3) = I(A_3) + I(A_3) = A_3 + A_3 = A_1 = S(A_3) (I+I)(A_4) = I(A_4) + I(A_4) = A_4 + A_4 = A_3 = S(A_4)$$

$$(I+I)(A_5)=I(A_5)+I(A_5)=A_5+A_5=A_5=S(A_5)$$

Hence I+I=S

$$(S+T)A_i = S(A_i)+T(A_i) = A_iA_2+A_iA_3 = A_i(A_2+A_3) = A_iA_5=A_5=0(A_i)$$

Where 0 is zero operator such that $O(A_i) = A_5$, Hence S+T= 0

$$(S+U)(A_i)=S(A_i)+U(A_i)=A_iA_2+A_iA_4=A_i(A_2+A_4)=A_iA_1=A_i=I(A_i)$$

Hence S+U=I

$$(T+U)(A_i)=T(A_i)+U(A_i)=A_iA_3+A_4=A_i(A_3+A_4)=A_iA_2=S(A_i)$$

Hence T+U=S, Also

$$I+S=(S+U)+S=S+(U+S)=S+(S+U)=(S+S)+U=U+U=T$$
, Similarly $I+T=(S+U)+T=($

$$S+(U+T)=S+S=U$$

And
$$I+U=(S+U)+U=S+(U+U)=S+T=0$$

Hence when we consider {0, I, S, T, U} with '+', we obtain the following table.

+	0	I	S	Т	U
0	0	I	S	Т	U
I	I	S	T	U	0
S	S	Т	U	0	I
Т	T	U	0		S
U	U	0	I	S	T

Thus it is an abelian group with 0 as identity element. Also

$$-I=U$$
, $-S=T$, $-T=S$ and $-U=I$

Distributive laws with '+' and '•' can be verified e.g.

$$T(U+T)=TS=I$$
, $TU+TT=S+U=I$ etc

Also, since ({I, S, T, U},•) forms an abelian group, does not have zero divisorsand distributive laws hold, hence the system,

 $K = (\{0, I, S, T, U\}, +, \bullet)$ forms an abelian ring with identity I, zero 0 and no zerodivisors. Thus it forms an integral domain. Since every finite integral domain is a field, it is also a field.

Reference:-

[1] Simmons, G.F,

"Introduction To Topology And Modern Analysis" McGraw-Hillbook Company, Inc., New York, (1963). PP.181-193

[2] Simmons, G.F,

"Introduction To Topology And Modern Analysis", McGraw-Hillbook Company, Inc., New York, (1963), PP.200-206

[3] Penney, Richard C.:

"Linear Algebra" Second Edition, John Wiley & Sons, Inc.,

Hoboken, New Jersey

[4] Pinter Charles C:

"A Book Of Abstract Algebra" Second Edition Dover PublicationInc, Mineola, New York (2013)

[5] Pundir S.K.:

"Functional Analysis" CBS Publisher And Distributors India(2016)

