

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Formulation and evaluation of Delayed release tablet of esomeprazole magnesium – Research Paper

Poonam Mishra¹, Archna Rautela², Reetu Papola³, Praveen Kumar Ashok⁴

Gyani Inder Singh Institute of Professional studies Dehradun Uttarakhand

Abstract

In study of Esomeprazole delayed release tablet was prepared by using Eudragit RL/PO to provide desired effect at specific time in maintained drug concentration without any side effects at certain time and improve their bioavailability by decreasing the expose to gastric acid. Esomeprazole is used in the treatment of peptic ulcer disease gastroesophageal disease. A delayed release dosage form is designed to release at a time other than promptly after administration, thus, a pharmaceutically equivalent robust formulation of Esomeprazole delayed release tablet was developed.

KEYWORDS: Esomeprazole Enteric, Delayed release tablet, Bioavailability.

Introduction

Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals.

The most preferred route of drug administration for systemic delivery of drugs is orally. More than 50% of drug delivery systems available in the market are oral drug delivery systems. These systems have the obvious advantages of case of administration and patient acceptance. Several oral drug delivery technologies have come and gone, and new systems still emerge even today.

One would always like to have ideal drug delivery systems that will possess two main properties:

- It will be a single dose for the whole duration of treatment,
- It will deliver the active drug directly at the site of action.

Most of the marketed products currently available are immediate release products. To achieve and maintain the concentration of an administered drug within therapeutically effective range, it is often necessary to take drug dosage several times and this result in a fluctuating drug level in plasma [3].

- Controlled drug delivery is one which delivers the drug at a predetermined rate, for locally or systemically, for a specified period of time.
- Continuous oral delivery of drugs at predictable & reproducible kinetics for predetermined period throughout the course of GIT.
- Targeting systems are either releasing drug in controlled manner or in one burst at the specific area.
- Advantages of TODDS are:
- 1.Reduced dosing frequency
- 2.Better patient convenience and compliance
- 3. Reduced GI side effects and other toxic effects.
- 4. Less fluctuating plasma drug level
- 5. More uniform drug effect
- 6. Better stability of the drug.

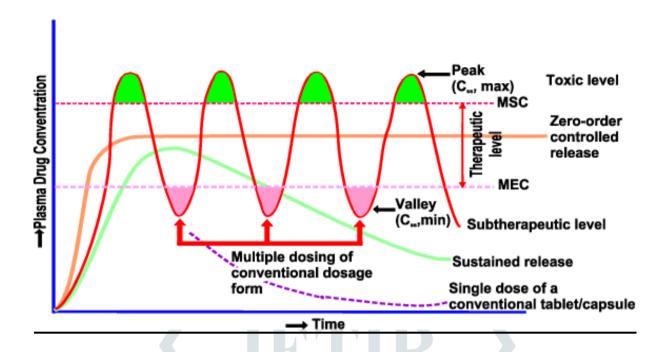


Figure -Plasma Concentration time profile

Esomeprazole:

Description

Esomeprazole is a proton pump inhibitor used to treat GERD, reduce the risk of NSAID associated gastric ulcers, eradicate H. pylori, and to treat conditions causing gastric acid hyper secretion.

Chemical Structure

Chemical Name -

5-methoxy-2-[(R)-[(4-methoxy-3,5-dimethylpyridin-2-yl) methane] sulfinyl]-1H-1,3-benzodiazole

Molecular formula $C_{17}H_{19}N_3O_3S$ Molecular weight 345.11 g/mol

Pharmacokinetics and Drug Metabolism

Absorption: 90%

Distribution: 16 L in healthy volunteers

Material & Method

Selection of material

Preformulation study of Esomeprazole

- Melting point
- FT-IR study to confirm identity by comparing with reference FTIR of Esomeprazole.
- Solubility
- Calibration curve preparation.
- **Preparation of various formulations**
- Characteristics of the bulk drug
- **Bulk** density
- Tapped density
- Compressibility index
- Hausner's ratio

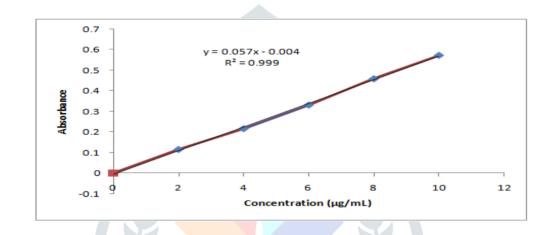
Evaluation of the tablets

- Hardness
- Thickness
- Friability
- Weight variation
- Drug content
- *In vitro* release
- Swelling index

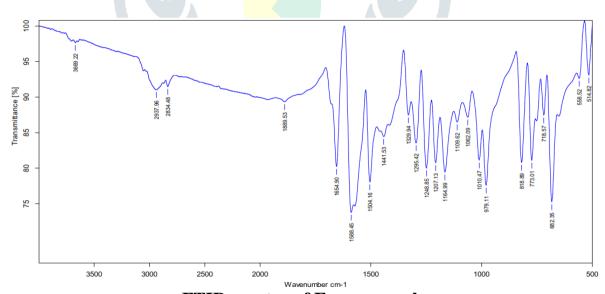
Result and discussion

Organoleptic properties of esomeprazole

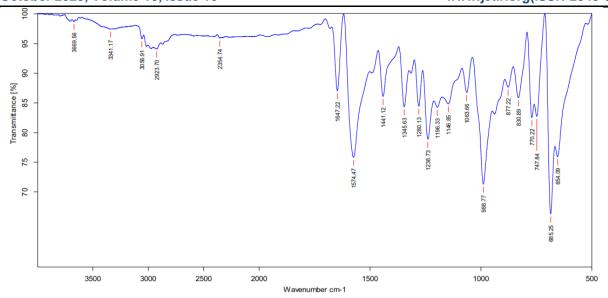
Test	Specification	Observation
Color	White to off white	White
Odor	Odorless	Odorless
Taste	Bitter	Bitter
Appearance	Amorphous	Amorphous


Loss on drying

observed for Esomeprazole pure drug. It was determined by drying the pure drug in an oven at 100°C to 105°C for 3 h. The percent loss of moisture was calculated by the difference between the initial and final weight of the drug.


Test	Test Specification Ol	
LOD	NMT 0.5%	0.21%

Calibration curve data


Concentration (µg/mL)	Absorbance
0	0
2	0.115
4	0.216
6	0.331
8	0.459
10	0.573

Calibration curve data

FTIR spectra of Esomeprazole

FTIR spectra of physical mixture (Drug + polymers)

Composition of matrix tablets

Ingredient mg	F1	F2	F3	F4	F5	F6	F7
Esomeprazole	50	50	50	50	50	50	50
HPMC	- /	50		20	7	20	50
Carbapol 940	13		50	20	3/1	-	20
Eudrgit RL/PO					50	20	20
Magnesium stearate	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Quality parameters of Delayed Release Tablets of Esomeprazole

Formulatio n code	Thickness (mm)	Hardness (Kg/cm²)	Weight variation (%)	Friability (%)	Swelling Index	Drug content (%)
F1	4.9	4.4	2.3	0.53	1.29	98.7
F2	4.8	4.1	1.8	0.42	2.16	98.1
F3	4.9	4.3	2.2	0.52	2.31	98.6
F4	4.9	4.3	1.9	0.48	3.18	99.1
F5	4.8	4.4	2.1	0.52	3.22	98.9
F6	4.9	4.2	3.1	0.58	3.46	98.7
F7	4.9	4.3	2.9	0.54	4.44	99.1
F8	4.8	4.4	2.6	0.62	5.03	99.1

REFERENCES

- 1. Vyas SP and RK Khar are 1. innovations in controlled medication delivery. New Delhi: Vallabh Prakashan, 2002, first edition.
- 2. Chien YW. Innovative drug delivery techniques. 1982 second edition, Marcel Dekker, New York.
- 3. A Treatise on Biopharmaceutics and Pharmacokinetics by Brahmankar DM and Jaiswal SB. Vallabh Prakashan, 10th edition, New Delhi, 2007; 399.
- 4. Design of Controlled Release Drug Delivery Systems by Xiaoling Li and Jasti BR. First edition, 2005, McGraw-Hill Professional
- 5. Robinson JR and Jantzen GM. technologies for the controlled and sustained release of drugs. 1995; 121(4): 501-502 in Modern Pharmaceutics.
- 6. Sustained-Release Technology in Rathbone MJ, Hadgraft J, and Robert MS by Altaf AS, Friend DR, MASRx, and COSRx. Drug Delivery Technology with Modified Release, Marcel Dekker Inc., New York, 2003; 126: 996.
- 7. Gwen MJ and Joseph RR, Modern Pharmaceutics, Marcel Dekker Inc., New York, 1996; 72(3): 575. Banker GS and Rhodes CT, Eds.
- 8. Borguist P, Larsson A, Korner A. A simulation of the swelling and dissolution associated with the drug release from polymeric matrix tablets. Journal of Controlled Release 113 (2006) 216-225. 9. Saudagar RB, Zalte HD. Review of the matrix tablet with sustained release. 2013; 3(4): 17-29 Int. J. Pharm. Biol Sci 10. Published in the 21st edition of The Science and Practise of Pharmacy by Remington.
- 9. Review of a sustained release matrix tablet by Zalte HD and Saudagar RB. Int. J. Pharm. Biol Sci. 2013; 3(4): 17-29
- 10. Remington, The Science and Practise of Pharmacy, 21st Edition, Vol. 1, Wolter Kluwer Health (India), 2006, p. 939-964.
- 11. Chugh I., Seth N., Rana A.C., and Gupta S., "Oral sustain release drug delivery system: an overview," International Research Journal of Pharmacy.3(5):57-62, (2012)
- 12. Bhargava A., Rathore R.P.S., Tanwar Y.S., Gupta S., Bhaduka G., oral sustained release dosage form: an opportunity to extend the release of medicine, International journal advanced research in pharmaceutical and bio science.3(1):7-14,(2013)
- 13. Modi S.A., Gaikwad P.D., Banker V.H., and Pawar S.P., Sustained Release Drug Delivery System, International Journal of Pharma Research and Development, 2(12):147-160, 2011.
- 14. Gupta M.M., Ray B., A Review On: Sustained Release Technology, International Journal Of Therapeutic Applications. (8):1-23,2012
- 15. Al-Zidan RN, Majeed SM, Al-Shaheen MK. Fabrication and Evaluation of Oral Multi-Particulate Tablets of Proton Pump Inhibitors: Esomeprazole as a Model. Sys Rev Pharm 2020;11(11):487-492