
© 2023 JETIR October 2023, Volume 10, Issue 10                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2310457 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f471 
 

Design and Evaluation of Algorithms on 

Backtracking 
1Mayuri Sahay, 2Purnima Gupta 

1Student of Bachelor of Computer Application, 2Assistant Professor of Bachelor of Computer Application 
1,2Institute of Management Studies, Ghaziabad (University Courses Campus) 

Uttar Pradesh, India 

                                                              

Abstract 
The term backtracking search is used for depth-first search that elects values for a single variable at once and backtracks 

when the same has no appropriate values left to designate. This study sheds light on the strengths, weaknesses, and nuances 

of backtracking as an essential problem-solving methodology. It is easy to implement and understand as it follows a neutral 

trial-and-error approach. It is complete it can find a solution if one exists or prove that none exists by exploring the entire 

solution space. Backtracking can be described as a general algorithm technique which searches every possible solution for 

solving a computational equation. 

I. Introduction 
Backtracking is a problem-solving algorithmic technique that is used to find every single one (or few) solutions to a problem by 

exploring all possible candidates and eliminating those that do not satisfy the problem's constraints or requirements [5].  

It is a recursive approach that involves a systematic trial and error method for solving a problem by incrementally building 

candidates to the solution, and when one of the candidate solutions fails to meet the constraints, the algorithm backtracks and tries 

a new candidate solution. Backtracking follows the Brute Force methodology [3], [4].It follows the Depth-first search approach. 

More than one solution can exist for a particular problem solved using backtracking [9]. The Backtracking process begins by 

initiating a search from a starting point and proceeds by iteratively constructing a potential solution. At each step, the algorithm 

evaluates the feasibility of the current candidate by checking if it satisfies the problem's constraints. If the candidate solution is 

valid, the algorithm continues its exploration further, incrementing towards the solution. However, if the constraints are not met, 

the algorithm backtracks to the previous step and explores a different candidate solution. This cycle repeats until a valid solution is 

found or all possible candidates have been examined. 

 

Index terms: Constraint Satisfaction, Data Structure, Optimization, Problem Formulation 

 

II. Related work
A method for structuring and utilising information effectively to make it understandable [3], [6], [5]. The approach involves 

sequentially positioning queens in distinct columns, commencing with the leftmost columns. As each queen is placed, we assess for 

conflicts with queens already in place [17], [15]. To position N-queens on an n * n Chessboard in such a way that they don’t threaten 

each other by sharing the diagonal [21], [10], [16]. The chess board is progressively populated with queens, one by one, and reversed 

if a valid solution isn’t discovered. At each stage, the algorithm verifies whether the newly positioned queen clashes with the queens 

placed earlier, and if it does, it performs a backtrack [25], [23]. We utilise a 2-D array with N line and N columnar, and since recursion 

is employed, the recursive stack space grows linearly. Consequently, the total space complexity amounts to O(N^2) [23]. The Queens 

problem is tackled using the backtracking algorithm, which systematically attempts to position the queens of the chessboard columns 

to columns. It verifies the validity of each placement and reverts if it proves to be invalid [10], [11], [17]. The algorithm of 

backtracking is executed by creating a tree structure of decisions referred to as the “search tree “or “state space tree” [27], [16], [15]. 

A broad algorithm approach that involves exploring all potential combinations to address a computational problem [7], [3], [6]. 

Solves problems incrementally through a step-by-step process, gradually advancing complexity by employing recursive calls [9]. In 

this context, we seek a workable solution. In optimization problems, we aim to find the perfect or most favourable solution [1], [2], 

[3], [4]. Position N- queens on an N * N chessboard in a way that ensures none of the queens can threaten each other, whether 

horizontally, vertically, or diagonally [12], [16], [28]. 

 

 

 

 

 

 

 

 

http://www.jetir.org/


© 2023 JETIR October 2023, Volume 10, Issue 10                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2310457 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f472 
 

Literature survey 

 
Data 

Integration 

Scheme 

Proposed By Year Strength Weakness 

Artificial 

Intelligence 

A Modern 

Approach" 

Third 

Edition[3] 

 

Stuart j. Russell, 

Peter Norvig   

1995 ● Increases 

accuracy and 

precision 

● Reduces error 

● Automating 

repetitive tasks 

● Costly implemented  

● Anticipated 

reduction in human 

employment 

● Absence  of 

emotion and 

creativity 

"Backtrackin

g 

Introduction 

"[9] 

 

Abdul Bari  

 

 

1962 ● Solves 

constraint 

satisfaction 

problems 

● Helps to avoid 

infinite 

recursion  

 

● Complex execution 

● Sophisticated 

● Antiquated 

A 

multipurpose 

backtracking                                            

algorithm. 

Journal of 

Symbolic 

Computation

[1] 

Priestley, H. A., & 

Ward, M. P. 

1994 ● Very intuitive 

to code 

● Easy to 

implement 

● Contains less 

LOC 

● Very time 

inefficient 

● Large space 

complexity 

● Function 

information is 

stored in stacks 

"A 

Multipurpos

e 

Backtrackin

g 

Algorithm"[

7] 

Martin Ward, 

Hilary Priestley   

1994 ● Straightforwar

d to 

understand 

● Avoids the 

need for 

complex data 

structures or 

algorithm 

 

● High computational 

cost 

● Uses a lot of 

memory and the 

CPU 

Efficient 

local search 

with conflict 

minimizatio

n: A case 

study of the 

n-queens 

problem. 

IEEE 

Transactions 

on 

Knowledge 

and Data 

Engineering

[12] 

Sosic, R., & Gu, J.   1994 ● Conflict 

minimization 

● Parallelization 

 

●  This leads to 

suboptimal 

solutions 

● Rely on heuristics 

and probabilistic 

methods 

An 

Exhaustive 

study of 

essential 

constraint 

satisfaction 

problem 

techniques 

based on the 

N-Queens 

problem. In 

2017 20th 

International 

Ayub, M. A., 

Kalpoma, K. A., 

Proma, H. T., 

Kabir, S. M., & 

Chowdhury, R. I. 

H. (). 

2017, 

December 

● Theoretical 

foundation 

● Provides 

benchmark 

problems for 

evaluating and 

comparing 

CSP 

algorithms 

● Problems need to be 

specified 

● Complex 

● Outdated 

 

http://www.jetir.org/


© 2023 JETIR October 2023, Volume 10, Issue 10                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2310457 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f473 
 

Conference 

of Computer 

and 

Information 

Technology 

(ICCIT) (pp. 

1-6). 

IEEE[11] 

N-Queens 

solving 

algorithms 

by sets and 

backtracking

. In 

SoutheastCo

n 2016 (pp. 

1-8). 

IEEE.[10] 

 

Güldal, S., Baugh, 

V., & Allehaibi, 

S. 

2016, March ● Efficiency 

● Scalable 

● Optimizable 

● Exponentially time 

complex 

● Deterministic in 

nature 

● Complex 

debugging 

A 

Multipurpos

e 

Backtrackin

g Algorithm 

(Doctoral 

dissertation, 

Ph. D. thesis, 

Mathematica

l Institute 

24/29, St. 

Giles Oxford 

OX1 

3LB).[27] 

Priestley, H. A., & 

Ward, M. P 

2003 ● Versatile 

● Highly 

efficient 

● Improves 

efficiency and 

effectiveness 

● Complex 

implementation 

●  Search space may 

be extensive 

N-Queens 

solving 

algorithms 

by sets and 

backtracking

. In 

SoutheastCo

n 2016 (pp. 

1-8). 

IEEE[25] 

Güldal, S., Baugh, 

V., & Allehaibi, 

S. (). 

2016, March ● Efficiency 

● Scalable 

● Optimizable 

● Exponentially time 

complex 

● Deterministic 

nature 

● Complex 

debugging 

N-queens 

pattern 

generation: 

An insight 

into space 

complexity 

of a 

backtracking 

algorithm.[2

3] 

Bozinovski, A., & 

Bozinovski, S. 

2004, June ● Visualise and 

explore 

different 

solutions to a 

problem 

● Algorithmic 

testing 

● Variability 

● Exponential growth 

● Lack of 

optimization 

information 

● Limited 

generalisation 

Efficient 

local search 

with conflict 

minimizatio

n: A case 

study of the 

n-queens 

problem. 

IEEE 

Transactions 

on 

Knowledge 

and Data 

Engineering, 

Sosic, R., & Gu, J. 

(). 

1994 ● Efficient for 

large problem 

spaces 

● Heuristic 

nature 

● Easy 

implementation 

● Local optima 

● Solution quality 

variability 

● Difficulty in 

handling constraints 

http://www.jetir.org/


© 2023 JETIR October 2023, Volume 10, Issue 10                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2310457 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f474 
 

6(5), 661-

668.[21] 

An 

incremental 

approach to 

the n-queen 

problem 

with 

polynomial 

time. Journal 

of King Saud 

University-

Computer 

and 

Information 

Sciences, 

35(3),1-7 

[17] 

 

Abidine, B. Z. 2023 ●  Step-by-step 

construction 

● Potential and 

optimization 

● Simplifies  

● debugging 

● Don’t guarantee a 

polynomial time 

solution 

● Often relies on the 

choice of heuristics 

● Limited 

applicability 

III. Brute Force methodology 
In backtracking, the brute force methodology requires calculating all possible candidates for the solution and then 

testing each candidate for validity. This methodology leads to an exponentially high number of candidates to be 

checked, making it impractical for large problems. However, in certain cases, brute force methodology may be 

the ideal approach, especially when there are no clear constraints or requirements.   

One universal example of the Brute Force methodology is the problem of detecting the shortest path in a maze. 

The Brute Force methodology in backtracking would involve exploring all possible paths from the starting point 

to the destination point and then selecting the path with the shortest distance [23] [25]. However, this approach 

would require exploring all possible paths, which can be computationally expensive and impractical for larger 

mazes.

IV. Application of Backtracking

N-queens puzzle
The N-Queens puzzle which involves constraint satisfaction can be dealt by designating N chess queens on N×N 

chessboard [25]. Thus, in this solution no two queens pose issues for one other. A backtracking algorithm is ideal 

for solving such a problem. 

Algorithm:- 

N-Queens puzzle is solved by using Backtracking algorithm by taking following steps: 

1. Leftmost column is where we start the process. 

2. If the value = true when all queens are on the board. 

3. Try every row in the active column. Following steps has to be taken for each row. 

a. If the queens can be parked in that row, identify that cell and place the queen. 

b. Make the same recursive call for the next column. 

c.  If the recursive call returns true, then return true. 

d. If the recursive call returns false, unmark this cell. Move to the next row. 

      4. Value is equal to false if nothing worked after vetting all the rows. Backtracking is thus triggered

In the N-Queens puzzle, start by placing a queen in left column of the chessboard. Then try to park the next queen 

in the subsequent column, but not in the same row or diagonal as the previously placed queens. If we find a safe 

position for the queen, we mark the cell and recursively park the next queen. 

If there comes a scenario of no safe positions left in the active column, Backtrack to the column minus one position 

(previous column) and try to park the queen into the previous column. This logic is followed till all the queens are 

parked on the board.

 

Pseudo Code for N-Queens Problem 
Algorithm Place(k, i) 

// returns true if Q is placed at the k-th row and i-th column otherwise returns false.  

// x[] = global array  

{  

 

   for j=1 to (k-1) do  

   { 

      if(x[j]=i) //in the same column  

      or (Abs(x[j]-i)+(Abs(j-k))) then //in the same diagonal  

http://www.jetir.org/


© 2023 JETIR October 2023, Volume 10, Issue 10                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2310457 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f475 
 

       return false 

    } 

 return true 

 } 

 

 Algorithm NQueens(k, n)  

// Using backtracking, this procedure prints all combinations of solutions  

{  

     for i=1 and iterates up to the value of “n” do  

     {  

             if (Place(k, i)) then  

             {  

                     x[k]=i  

                     if(k==n) then  

                               print(x[1:n])  

              else  

                     Nqueens(k+1, n) 

               }  

      }  

} 

"Brute force" solution is one of the many ways to resolve the N-Queen puzzle. Since this model runs through each 

and every possible combination, the N-queen puzzle will have O(n^n) complexity, which means the solution will 

run every combination on an NxN board, N sets, for N queens.

The N-Queens puzzle is an everyday indication of a constraint satisfaction puzzle solved by using the backtracking 

algorithm. The backtracking algorithm provides an efficient way to search through all possible solutions while 

pruning the search space by eliminating invalid candidates. By using the backtracking algorithm, we can 

efficiently calculate all possible combinations for the N-Queens puzzle, and also other similar problems that 

require the placement of objects on a board or grid, subject to certain constraints, can be solved using the 

backtracking algorithm.

 

V. Future works
In the future, we will try to enhance the work of backtracking Parallelization, Machine Learning Integration, 

Heuristic Selection, GPU Acceleration, and Constraint Propagation. These ideas can help modernise backtracking  

techniques and make them more effective and applicable in various domains. Depending on the specific 

application or problem, we may choose to focus on one or more of these approaches.

VI. Conclusion
Backtracking is a widely employed algorithmic approach utilised in data structures to recursively explore potential 

solutions while backtracking or reverting when they prove to be unsuccessful. This method involves trying out 

different alternatives and retracting those that do not result in a solution. Backtracking constructs a solution 

incrementally, step by step, discarding those attempts that fail to meet the problem’s constraints at any given 

moment. It is a versatile algorithmic technique used in various problem-solving scenarios.

References
1. Priestley, H. A., & Ward, M. P. (1994). A multipurpose backtracking algorithm. Journal of Symbolic Computation, 18(1), 

1-40. 

2. Van Beek, P. (2006). Backtracking search algorithms. In Foundations of artificial intelligence (Vol. 2, pp. 85-134). 

Elsevier. 

3. j. Russell, Peter Norvig "Artificial Intelligence A Modern Approach" Third Edition 

4. Backtracking Algorithm "GeeksforGeeks" 2023 https://www.geeksforgeeks.org/backtracking-algorithms/ 

5. Introduction to Backtracking " GeekForGeeks" 2023  https://www.geeksforgeeks.org/introduction-to-backtracking-data-

structure-and-algorithm-tutorials/ 

6. Backtracking Algorithm "Huihoo.com"  https://book.huihoo.com/data-structures-and-algorithms-with-object-oriented-

design-patterns-in-c++/html/page446.html 

7. Priestley, H. A., & Ward, M. P. (1994). A multipurpose backtracking algorithm. Journal of Symbolic Computation, 18(1), 

1-40. 

8. "Constraints Satisfaction Problem backtracking algorithm" https://www.cs.miami.edu/home/visser/csc545-files/csp.pdf 

9. Abdul Bari's "Backtracking Introduction " 2021 DAA UNIT-4 (Backtracking) 

10. Güldal, S., Baugh, V., & Allehaibi, S. (2016, March). N-Queens solving algorithms by sets and backtracking. 

In SoutheastCon 2016 (pp. 1-8). IEEE. 

11. Ayub, M. A., Kalpoma, K. A., Proma, H. T., Kabir, S. M., & Chowdhury, R. I. H. (2017, December). An exhaustive study 

of essential constraint satisfaction problem techniques based on the N-Queens problem. In 2017 20th International 

Conference of Computer and Information Technology (ICCIT) (pp. 1-6). IEEE. 

http://www.jetir.org/
https://www.geeksforgeeks.org/backtracking-algorithms/
https://www.geeksforgeeks.org/introduction-to-backtracking-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-backtracking-data-structure-and-algorithm-tutorials/
https://book.huihoo.com/data-structures-and-algorithms-with-object-oriented-design-patterns-in-c++/html/page446.html
https://book.huihoo.com/data-structures-and-algorithms-with-object-oriented-design-patterns-in-c++/html/page446.html
https://www.cs.miami.edu/home/visser/csc545-files/csp.pdf
https://youtube.com/playlist?list=PL-Y5_GYVx275I87vW3LUzEJ-g7TDgn0Ts&si=rfpDScwr0qOUYu9T


© 2023 JETIR October 2023, Volume 10, Issue 10                                                   www.jetir.org (ISSN-2349-5162) 

JETIR2310457 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f476 
 

12. Sosic, R., & Gu, J. (1994). Efficient local search with conflict minimization: A case study of the n-queens problem. IEEE 

Transactions on Knowledge and Data Engineering, 6(5), 661-668. 

13. Jana, S., Mallik, M., Khan, A., Maji, A. K., & Pal, R. K. (2023). Design and Analysis of a Modified 3D Sudoku Solver. 

IEEE Access, 11, 27352-27368. 

14. El Abidine, B. Z. (2023). An incremental approach to the n-queen problem with polynomial time. Journal of King Saud 

University-Computer and Information Sciences, 35(3), 1-7. 

15. Arteaga, A., Orozco-Rosas, U., Montiel, O., & Castillo, O. (2022). Evaluation and Comparison of Brute-Force Search and 

Constrained Optimization Algorithms to Solve the N-Queens Problem. In New Perspectives on Hybrid Intelligent System 

Design based on Fuzzy Logic, Neural Networks and Metaheuristics (pp. 121-140). Cham: Springer International 

Publishing. 

16. Wang, Z., Huang, D., Tan, J., Liu, T., Zhao, K., & Li, L. (2015). A parallel algorithm for solving the n-queens problem 

based on an inspired computational model. BioSystems, 131, 22-29. 

17. El Abidine, B. Z. (2023). An incremental approach to the n-queen problem with polynomial time. Journal of King Saud 

University-Computer and Information Sciences, 35(3), 1-7. 

18. Uehara, R., & Uehara, R. (2019). Backtracking. First Course in Algorithms through Puzzles, 111-127. 

19. Sherine, A., Jasmine, M., Peter, G., & Alexander, S. A. (2023). Algorithm and Design Complexity. CRC Press. 

20. Edelkamp, S. (2023). Programming Primer. In Algorithmic Intelligence: Towards an Algorithmic Foundation for Artificial 

Intelligence (pp. 3-33). Cham: Springer International Publishing. 

21. Sosic, R., & Gu, J. (1994). Efficient local search with conflict minimization: A case study of the n-queens problem. IEEE 

Transactions on Knowledge and Data Engineering, 6(5), 661-668. 

22. Sosic, R., & Gu, J. (1994). Efficient local search with conflict minimization: A case study of the n-queens problem. IEEE 

Transactions on Knowledge and Data Engineering, 6(5), 661-668. 

23. Bozinovski, A., & Bozinovski, S. (2004, June). N-queens pattern generation: An insight into space complexity of a 

backtracking algorithm. In Proceedings of the 2004 International Symposium on Information and Communication 

Technologies (pp. 281-286). 

24. Sosic, R., & Gu, J. (1994). Efficient local search with conflict minimization: A case study of the n-queens problem. IEEE 

Transactions on Knowledge and Data Engineering, 6(5), 661-668. 

25. Güldal, S., Baugh, V., & Allehaibi, S. (2016, March). N-Queens solving algorithms by sets and 

backtracking.In SoutheastCon 2016 (pp. 1-8). IEEE. 

26. Lijo, V. P., & Jose, J. T. (2015). Solving N-Queen Problem by Prediction. Int. J. Comput. Sci. Inf. Technol, 6, 3844-3848. 

27. Priestley, H. A., & Ward, M. P. (2003). A Multipurpose Backtracking Algorithm (Doctoral dissertation, Ph. D. thesis, 

Mathematical Institute 24/29, St. Giles Oxford OX1 3LB). 

28. Lutati, B., Gontmakher, I., Lando, M., Netzer, A., Meisels, A., & Grubshtein, A. (2014). Agentzero: A framework for 

simulating and evaluating multi-agent algorithms. Agent-Oriented Software Engineering: Reflections on Architectures, 

Methodologies, Languages, and Frameworks, 309-327.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.jetir.org/

