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Abstract 
The term backtracking search is used for depth-first search that elects values for a single variable at once and backtracks 

when the same has no appropriate values left to designate. This study sheds light on the strengths, weaknesses, and nuances 

of backtracking as an essential problem-solving methodology. It is easy to implement and understand as it follows a neutral 

trial-and-error approach. It is complete it can find a solution if one exists or prove that none exists by exploring the entire 

solution space. Backtracking can be described as a general algorithm technique which searches every possible solution for 

solving a computational equation. 

I. Introduction 
Backtracking is a problem-solving algorithmic technique that is used to find every single one (or few) solutions to a problem by 

exploring all possible candidates and eliminating those that do not satisfy the problem's constraints or requirements [5].  

It is a recursive approach that involves a systematic trial and error method for solving a problem by incrementally building 

candidates to the solution, and when one of the candidate solutions fails to meet the constraints, the algorithm backtracks and tries 

a new candidate solution. Backtracking follows the Brute Force methodology [3], [4].It follows the Depth-first search approach. 

More than one solution can exist for a particular problem solved using backtracking [9]. The Backtracking process begins by 

initiating a search from a starting point and proceeds by iteratively constructing a potential solution. At each step, the algorithm 

evaluates the feasibility of the current candidate by checking if it satisfies the problem's constraints. If the candidate solution is 

valid, the algorithm continues its exploration further, incrementing towards the solution. However, if the constraints are not met, 

the algorithm backtracks to the previous step and explores a different candidate solution. This cycle repeats until a valid solution is 

found or all possible candidates have been examined. 

 

Index terms: Constraint Satisfaction, Data Structure, Optimization, Problem Formulation 

 

II. Related work
A method for structuring and utilising information effectively to make it understandable [3], [6], [5]. The approach involves 

sequentially positioning queens in distinct columns, commencing with the leftmost columns. As each queen is placed, we assess for 

conflicts with queens already in place [17], [15]. To position N-queens on an n * n Chessboard in such a way that they don’t threaten 

each other by sharing the diagonal [21], [10], [16]. The chess board is progressively populated with queens, one by one, and reversed 

if a valid solution isn’t discovered. At each stage, the algorithm verifies whether the newly positioned queen clashes with the queens 

placed earlier, and if it does, it performs a backtrack [25], [23]. We utilise a 2-D array with N line and N columnar, and since recursion 

is employed, the recursive stack space grows linearly. Consequently, the total space complexity amounts to O(N^2) [23]. The Queens 

problem is tackled using the backtracking algorithm, which systematically attempts to position the queens of the chessboard columns 

to columns. It verifies the validity of each placement and reverts if it proves to be invalid [10], [11], [17]. The algorithm of 

backtracking is executed by creating a tree structure of decisions referred to as the “search tree “or “state space tree” [27], [16], [15]. 

A broad algorithm approach that involves exploring all potential combinations to address a computational problem [7], [3], [6]. 

Solves problems incrementally through a step-by-step process, gradually advancing complexity by employing recursive calls [9]. In 

this context, we seek a workable solution. In optimization problems, we aim to find the perfect or most favourable solution [1], [2], 

[3], [4]. Position N- queens on an N * N chessboard in a way that ensures none of the queens can threaten each other, whether 

horizontally, vertically, or diagonally [12], [16], [28]. 
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solutions to a 

problem 
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testing 
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IEEE 
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problem 
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and 
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Abidine, B. Z. 2023 ●  Step-by-step 

construction 

● Potential and 

optimization 

● Simplifies  

● debugging 

● Don’t guarantee a 

polynomial time 

solution 

● Often relies on the 

choice of heuristics 

● Limited 

applicability 

III. Brute Force methodology 
In backtracking, the brute force methodology requires calculating all possible candidates for the solution and then 

testing each candidate for validity. This methodology leads to an exponentially high number of candidates to be 

checked, making it impractical for large problems. However, in certain cases, brute force methodology may be 

the ideal approach, especially when there are no clear constraints or requirements.   

One universal example of the Brute Force methodology is the problem of detecting the shortest path in a maze. 

The Brute Force methodology in backtracking would involve exploring all possible paths from the starting point 

to the destination point and then selecting the path with the shortest distance [23] [25]. However, this approach 

would require exploring all possible paths, which can be computationally expensive and impractical for larger 

mazes.

IV. Application of Backtracking

N-queens puzzle
The N-Queens puzzle which involves constraint satisfaction can be dealt by designating N chess queens on N×N 

chessboard [25]. Thus, in this solution no two queens pose issues for one other. A backtracking algorithm is ideal 

for solving such a problem. 

Algorithm:- 

N-Queens puzzle is solved by using Backtracking algorithm by taking following steps: 

1. Leftmost column is where we start the process. 

2. If the value = true when all queens are on the board. 

3. Try every row in the active column. Following steps has to be taken for each row. 

a. If the queens can be parked in that row, identify that cell and place the queen. 

b. Make the same recursive call for the next column. 

c.  If the recursive call returns true, then return true. 

d. If the recursive call returns false, unmark this cell. Move to the next row. 

      4. Value is equal to false if nothing worked after vetting all the rows. Backtracking is thus triggered

In the N-Queens puzzle, start by placing a queen in left column of the chessboard. Then try to park the next queen 

in the subsequent column, but not in the same row or diagonal as the previously placed queens. If we find a safe 

position for the queen, we mark the cell and recursively park the next queen. 

If there comes a scenario of no safe positions left in the active column, Backtrack to the column minus one position 

(previous column) and try to park the queen into the previous column. This logic is followed till all the queens are 

parked on the board.

 

Pseudo Code for N-Queens Problem 
Algorithm Place(k, i) 

// returns true if Q is placed at the k-th row and i-th column otherwise returns false.  

// x[] = global array  

{  

 

   for j=1 to (k-1) do  

   { 

      if(x[j]=i) //in the same column  

      or (Abs(x[j]-i)+(Abs(j-k))) then //in the same diagonal  
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       return false 

    } 

 return true 

 } 

 

 Algorithm NQueens(k, n)  

// Using backtracking, this procedure prints all combinations of solutions  

{  

     for i=1 and iterates up to the value of “n” do  

     {  

             if (Place(k, i)) then  

             {  

                     x[k]=i  

                     if(k==n) then  

                               print(x[1:n])  

              else  

                     Nqueens(k+1, n) 

               }  

      }  

} 

"Brute force" solution is one of the many ways to resolve the N-Queen puzzle. Since this model runs through each 

and every possible combination, the N-queen puzzle will have O(n^n) complexity, which means the solution will 

run every combination on an NxN board, N sets, for N queens.

The N-Queens puzzle is an everyday indication of a constraint satisfaction puzzle solved by using the backtracking 

algorithm. The backtracking algorithm provides an efficient way to search through all possible solutions while 

pruning the search space by eliminating invalid candidates. By using the backtracking algorithm, we can 

efficiently calculate all possible combinations for the N-Queens puzzle, and also other similar problems that 

require the placement of objects on a board or grid, subject to certain constraints, can be solved using the 

backtracking algorithm.

 

V. Future works
In the future, we will try to enhance the work of backtracking Parallelization, Machine Learning Integration, 

Heuristic Selection, GPU Acceleration, and Constraint Propagation. These ideas can help modernise backtracking  

techniques and make them more effective and applicable in various domains. Depending on the specific 

application or problem, we may choose to focus on one or more of these approaches.

VI. Conclusion
Backtracking is a widely employed algorithmic approach utilised in data structures to recursively explore potential 

solutions while backtracking or reverting when they prove to be unsuccessful. This method involves trying out 

different alternatives and retracting those that do not result in a solution. Backtracking constructs a solution 

incrementally, step by step, discarding those attempts that fail to meet the problem’s constraints at any given 

moment. It is a versatile algorithmic technique used in various problem-solving scenarios.
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