JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

National Policy & Technology catapults Sustainability of MSMEs in Warship Building towards Aatmanirbhar Bharat

Rear Admiral V Balachandran AVSM NM VSM (Retd)

(Research Scholar - Sri Balaji University, Pune)

Dr Shubhra Aanand

(Professor - Sri Balaji University, Pune)

Abstract

Warship building in the country has witnessed a phenomenal change with in house design and construction of stealth ships. Construction of Aircraft carrier INS Vikrant by Cochin Shipyard, a Public sector Undertaking has heralded a new dimension to our indigenous capabilities. Though, considerable headway has been made in the float and move categories in design and development of systems, it is lacking in the vital fight category, with continued dependency on foreign sources.

MSMEs are aptly poised to bridge the gap by inhouse design, development and supply of systems to equip the modern warships. The Government has unleashed a slew of measures to support the MSMEs making provisions in the Defence Procurement Procedures (DPP 2020) for "Make in India" programmes to bolster their involvement in the warship programme. A congenial National policy is of veritable necessity to partake and sustain the MSMES in business with the shipyards. Warships are potent platforms calling for equipment and systems with in date technology. It therefore devolves on MSMEs to be abreast with the technology, providing life cycle support towards operation and maintenance of systems. The domino effect of National policy and Technological prowess will ultimately lead to self-reliant Navy. This paper examines National Policy and Technology perspectives towards ensuring sustainability of MSMES in warship building.

Key words

National Policy, Technology, Sustainability, Aatmanirbhar Bharat, Cronbach alpha, Average Variance Extracted, Factor loadings, Canonical correlation, Wilks Statistic, Hypothesis testing

The third P15B destroyer INS Imphal (D68)

I. Introduction

- 1.1 Modern India is emerging with economy posted well over 7% GDP growth, being the fifth largest economy in the world, poised towards \$5 trillion economy by 2030, as per World Bank and IMF reports. It is a clarion call from the Government of India to attain total self sufficiency achieving Aatmanirbhar Bharat. Indigenous shipbuilding capabilities including design and construction of Aircraft carriers are witnessed to achieve total maritime domain capability. Though, considerable headway has been made in the float and move categories in design and development of systems, it is lacking in the vital fight category, with continued dependency on foreign sources.
- 1.2 MSMEs are aptly poised to bridge the gap by inhouse design, development and supply of systems to equip the modern warships. The Government has unleashed a slew of measures to support the MSMEs making provisions in the Defence Procurement Procedures (DPP 2020) for "Make in India" programmes to bolster their involvement in the warship programme. A congenial National policy is of veritable necessity to partake and sustain the MSMES in business with the shipyards. Warships are potent platforms calling for equipment and systems with in date technology. It therefore devolves on MSMEs to be abreast with the technology, providing life cycle support towards operation and maintenance of systems. The domino effect of National policy and Technological prowess will ultimately lead to self-reliant Navy. This paper examines National Policy and Technology perspectives towards ensuring sustainability of MSMES in warship building.

II Research Design

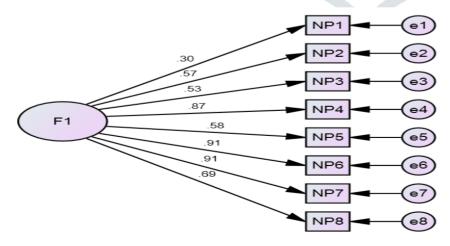
2.1 Research design is centred on establishing the relationship between the National policy, and Technology with Sustainability of MSMEs. Analysis of data is done by calculating Pearson correlation coefficient using the canonical correlation, a multivariate correlation technique. National Policy and Technology are independent variables and Sustainability is a dependent variable.

2.2 Hypothesis

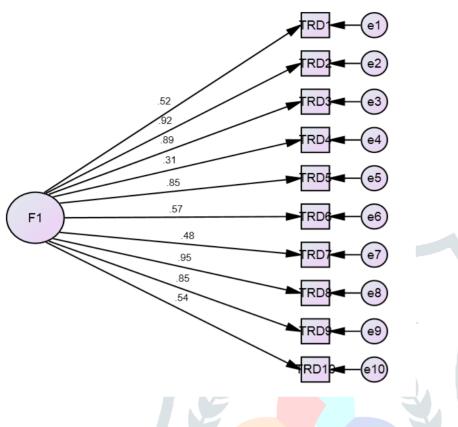
H₀: No correlation exists in Technology and National Policy with Sustainability in warship building (R=0)

 H_1 : Technology and National Policy has a significant and positive relationship with Sustainability in warship building $(R \neq 0)$

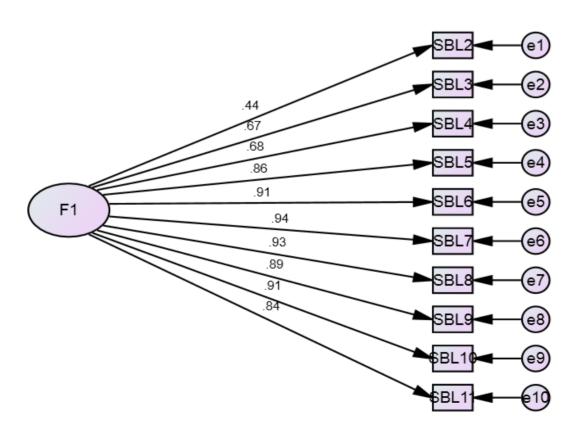
 α = .05 is used as significance level for testing the hypothesis.


III Data analysis

3.1 Prior to undertaking data analysis, confirmation on the reliability and validity of the measurement indicators for all the constructs will have to be undertaken. A pilot study was therefore undertaken by farming out the questionnaires to 70 MSMEs by stratified sampling involved in float, move and fight categories as well as in Auxiliary services and also dealing with system, sub system, module and ancillary items in the arena of warship building. The questionnaires were sent to Government owned shipyards located across the country and also to a private ship yard owned by Larsen & Toubro Ltd. Reliability test was conducted using Cronbach Alpha and validity of measurement indicators was done by factor loading and Average Variance Extracted (AVE). All constructs reliability found to be above 0.7; the minimum acceptable level for Cronbach Alpha.


3.2 Validity

Validity is measured by AVE. AVE value should be at least 0.5 so that the majority of the variance is confirmed to occur due to the observed values only. Statistical tests on the validity conducted with 70 samples, as a pilot study, using AMOS software, indicating the factor loadings of each measurement indicator on the respective constructs, are appended.


Factor Loading – National Policy

Factor Loading - Technology

Factor Loading - Sustainability

f705

"Factor loading signifies the extent to which the variable is related to an underlying factor and how well it represents that factor. Factor loading ranges from -1 to 1; closer to 0 shows that the factor exerts a low influence on the variable. Factor loading of each and every indicator should be at least 0.5; otherwise, it is considered as a weak indicator and not included in the model. For all the constructs Average Variance Extracted should be above the threshold value of 0.5" (Balachandran and Aanand, 2023). AVE is 0.55 for national Policy, 0.57 for Technology and 0.68 for Sustainability, supporting validity. On successful completion of pilot study, canonical correlation was undertaken by collecting 160 responses from MSMEs"

3.4 Canonical Correlations

National Policy and Technology with Sustainability

Settings

Variables in set 1 - Measurement indicators of National Policy and Technology

Variables in set 2 - Measurement indicators of sustainability

correlations used - 9

Canonical Correlations

	Correlation	Eigenvalue	Wilks Statistic	F	Num D.F	Denom D.F.	Sig.				
1	<mark>.662</mark>	<mark>.782</mark>	<mark>.172</mark>	<mark>1.420</mark>	<mark>162.000</mark>	<mark>948.622</mark>	<mark>.001</mark>				
2	.532	.394	.307	1.111	136.000	858.776	.198				
3	.475	.292	.428	.960	112.000	766.092	.597				
4	.435	.234	.552	.829	90.000	670.199	.867				
5	.358	.147	.681	.684	70.000	570.641	.975				
6	.296	.096	.782	.590	52.000	466.869	.990				
7	.273	.081	.857	.535	36.000	358.236	.988				
8	.247	.065	.926	.436	22.000	244.000	.988				
9	.119	.014	.986	.176	10.000	123.000	.998				

H0 for Wilks test is that the correlations in the current and following rows are zero

Set 1 Standardized Canonical Correlation Coefficients

Variable	1	2	3	4	5	6	7	8	9
NP1	066	303	.130	229	113	.150	324	.001	.435
NP2	712	155	227	.375	.121	231	.109	913	.696
NP3	.372	.272	407	738	.488	.540	.644	.958	183
NP4	.330	314	486	.835	353	.002	.164	082	.457
NP5	890	.271	.479	230	742	091	359	.422	428
NP6	.770	.038	.937	.291	.595	.433	774	041	.227
NP7	256	549	301	.005	.557	122	.588	.176	228
NP8	.061	.700	196	.259	407	314	193	266	550
TRD1	.083	091	.113	377	423	117	.294	283	259
TRD2	795	.317	.331	106	.520	-1.327	.138	1.225	629
TRD3	1.007	255	.331	.093	329	.849	.011	-1.396	.345
TRD4	241	174	.556	.144	160	081	.271	410	.204
TRD5	.482	223	184	175	.203	462	.076	.261	.845

TRD6	152	.113	.105	.687	.028	.788	.393	.435	456
TRD7	.237	.816	417	103	235	195	172	154	.015
TRD8	624	250	.677	315	423	.416	.161	.168	.842
TRD9	.597	014	538	.088	.072	.166	036	257	289
TRD10	480	.649	580	390	.532	.060	249	.366	568

Set 2 Standardized Canonical Correlation Coefficients

Variable	1	2	3	4	5	6	7	8	9
SBL2	458	.181	.182	401	885	149	125	098	354
SBL4	.599	308	.272	.557	297	274	1.099	.076	155
SBL5	.066	231	.569	-1.264	.639	-1.088	332	.176	.747
SBL6	.534	803	.337	.485	-1.100	1.120	119	.461	1.262
SBL7	156	1.128	-1.208	1.299	076	-1.494	606	430	206
SBL8	.912	.928	1.516	407	.547	.708	697	.541	865
SBL9	-1.744	179	001	.733	.645	.280	.344	.435	.382
SBL10	.115	.178	-1.537	-1.254	.020	.270	.985	.225	086
SBL11	026	163	.260	.094	.014	.627	.021	-1.682	291

Set 1 Unstandardized Canonical Correlation Coefficients

Variable	1	2	3	4	5	6	7	8	9
NP1	078	357	.152	270	132	.177	382	.002	.512
NP2	873	190	278	.460	.149	283	.133	-1.118	.852
NP3	.398	.291	436	790	.522	.579	.690	1.026	195
NP4	.375	357	552	.949	401	.002	.186	093	.519
NP5	844	.257	.454	217	703	086	340	.400	406
NP6	.735	.036	.894	.278	.568	.413	739	039	.217
NP7	237	507	278	.004	.514	112	.543	.163	210
NP8	.052	.594	167	.220	345	266	164	226	467
TRD1	.081	089	.111	370	415	115	.289	278	255
TRD2	727	.290	.302	097	.475	-1.214	.126	1.121	575
TRD3	.892	226	.293	.082	291	.752	.010	-1.236	.305
TRD4	170	122	.391	.102	112	057	.191	289	.143
TRD5	.473	218	181	171	.199	454	.074	.256	.829
TRD6	169	.126	.117	.766	.031	.879	.438	.485	508
TRD7	.231	.796	407	101	230	190	168	150	.015
TRD8	545	219	.591	275	369	.363	.141	.146	.735
TRD9	.577	013	521	.085	.070	.160	035	248	279
TRD10	366	.496	443	297	.406	.046	190	.279	434

Variable	1	2	3	4	5	6	7	9
SBL2	290	.115	.115	254	560	094	079	224
SBL4	.495	254	.225	.460	246	226	.908	128
SBL5	.045	157	.387	860	.435	741	226	.509
SBL6	.388	583	.245	.352	799	.814	087	.917

SBL7	107	.769	823	.885	052	-1.018	413	140
SBL8	.603	.614	1.003	269	.362	.469	461	573
SBL9	-1.195	123	.000	.502	.442	.192	.236	.261
SBL10	.078	.121	-1.043	852	.013	.183	.669	059
SBL11	015	096	.153	.055	.008	.367	.012	171

Set 1 Canonical Loadings

Variable	1	2	3	4	5	6	7	8	9
NP1	.046	.205	251	051	005	.327	157	010	.190
NP2	271	.339	080	.372	.372	.139	.230	139	.287
NP3	.112	.196	125	.059	.287	.402	.227	.283	.231
NP4	.018	.148	127	.479	037	.158	.142	.318	.340
NP5	189	.210	.040	.167	206	.320	036	.290	.128
NP6	.095	.379	.298	.348	.387	.245	106	.147	.248
NP7	011	.158	057	.163	.284	.309	.186	.009	.100
NP8	.274	.446	009	.276	.177	.096	.029	010	.112
TRD1	.075	.336	.245	063	227	162	.602	084	052
TRD2	.076	.455	.372	.103	.242	228	.503	.037	040
TRD3	.203	.402	.320	064	.155	.123	.463	213	013
TRD4	220	.275	.187	165	.011	.013	.373	267	.257
TRD5	.213	.436	.121	078	108	273	.425	.115	.445
TRD6	027	.471	.163	.320	168	.151	.531	.032	063
TRD7	.001	.804	064	.020	230	.069	.181	081	.268
TRD8	107	.415	.318	136	.028	.165	.341	.032	.325
TRD9	018	.371	003	054	.059	.154	.383	100	008
TRD10	284	.530	.027	267	.268	.106	.189	152	.149

Set 2 Canonical Loadings

Variable	1	2	3	4	5	6	7	8	9
SBL2	390	.441	.305	249	670	116	.183	053	.016
SBL4	.117	.394	.366	.135	120	200	.753	081	.226
SBL5	025	.494	.310	237	.042	220	.260	207	.665
SBL6	.068	.563	.132	.031	245	.207	.166	082	.723
SBL7	.024	.800	.039	.123	094	078	.179	182	.512
SBL8	.055	.833	.309	041	.029	.195	.251	016	.322
SBL9	383	.614	.247	.065	.082	.136	.411	036	.465
Variable	1	2	3	4	5	6	7	8	9
SBL10	.008	.708	097	233	033	.198	.444	093	.434
SBL11	043	.515	.208	055	.021	.176	.297	620	.428

Set 1 Cross Loadings

Variable	1	2	3	4	5	6	7	8	9
NP1	.031	.109	119	022	002	.097	043	002	.023
NP2	179	.180	038	.162	.133	.041	.063	034	.034
NP3	.074	.104	060	.026	.103	.119	.062	.070	.027
NP4	.012	.079	060	.208	013	.047	.039	.078	.040
NP5	125	.112	.019	.073	074	.095	010	.072	.015
NP6	.063	.201	.142	.151	.138	.072	029	.036	.029
NP7	007	.084	027	.071	.102	.091	.051	.002	.012
NP8	.182	.237	004	.120	.063	.028	.008	003	.013
TRD1	.049	.179	.117	027	081	048	.165	021	006
TRD2	.050	.242	.177	.045	.087	067	.138	.009	005
TRD3	.135	.214	.152	028	.055	.036	.126	052	002
TRD4	146	.146	.089	072	.004	.004	.102	066	.031
TRD5	.141	.232	.058	034	039	081	.116	.028	.053
TRD6	018	.251	.078	.139	060	.045	.145	.008	007
TRD7	.001	.428	031	.009	082	.020	.049	020	.032
TRD8	071	.221	.151	059	.010	.049	.093	.008	.039
TRD9	012	.197	002	023	.021	.046	.105	025	001
TRD10	188	.282	.013	116	.096	.031	.052	038	.018

Set 2 Cross Loadings

Variable	1	2	3	4	5	6	7	8	9
SBL2	258	.235	.145	108	240	034	.050	013	.002
SBL4	.077	.210	.174	.059	043	059	.206	020	.027
SBL5	017	.263	.147	103	.015	065	.071	051	.079
SBL6	.045	.299	.063	.013	088	.061	.045	020	.086
SBL7	.016	.425	.018	.054	033	023	.049	045	.061
SBL8	.036	.443	.147	018	.010	.058	.069	004	.038
SBL9	254	.326	.117	.028	.029	.040	.112	009	.055
SBL10	.005	.376	046	101	012	.059	.121	023	.052
SBL11	028	.274	.099	024	.007	.052	.081	153	.051

Proportion of Variance Explained

		TO Variance Explain		
Canonical Variable	Set 1 by Self	Set 1 by Set 2	Set 2 by Self	Set 2 by Set 1
1	.025	.011	.036	.016
2	.158	.044	.377	.106
3	.038	.009	.061	.014
4	.049	.009	.024	.005
5	.046	.006	.060	.008
6	.047	.004	.031	.003
7	.109	.008	.138	.010
8	.027	.002	.054	.003
9	.048	.001	.219	.003

JETIR2310487 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

f708

3.5 Hypothesis Testing

H₀: No correlation exists in Technology and National Policy with Sustainability in warship building (R=0)

H₁: Technology and National Policy has a significant and positive relationship with Sustainability in warship building $(R \neq 0)$

 $\alpha = .05$ is used as significance level for testing the hypothesis.

Canonical correlation test results show that R = 0.662, p = .001. "The Pearson correlation coefficient value ranges between 0.6 - 0.79; indicating a strong relationship exists between National Policy, Technology and Sustainability" (Evans,1996). P value being .001, shows that the relationship is significant. It is inferred that there is a strong and significant relationship exists between National Policy, Technology and Sustainability.

IV. Inference

- **4.** The following inferences are drawn:-
 - (a) National Policy and Technology exhibits a strong and significant relationship with Sustainability (r =0.662, p = .001).
 - (b) Due to the significant and positive relationship, conducive national policies and technological trajectory will ensure sustainability of MSMEs in warship building, moving towards Aatmanirbhar Bharat.
 - (c) The Wilks statistics indicates that the unexplained variation is around 17 %, which implies that there is much more explained variance compared to unexplained variance.

V. Conclusion

5. Conducive national policies and adherence to technological standards and advancements will propel the MSMEs for a larger partake in warship building. The transfer of technology from the Government research centres should flow to the MSMEs to develop critical systems for warships. Large scale industries also need to collaborate with the MSMES to provide the necessary thrust and impetus in developing critical technologies by the MSMEs. This would certainly obviate in the long run from dependency on foreign sources. The maritime domain and strategy demands ships being built indigenously and equipping with indigenous combat systems with the ulterior objective of achieving Aatmanirbhar Bharat.

BIBILOGRAPHY

Balachandran, V., Aanand, S. (2023). MSMEs in Warship Building towards Atmanirbhar Bharat- National Policy Perspective. *IOSR Journal of Business and Management* (*IOSR_JBM*), 25(4), 32-38.

Balachandran, V., Aanand, S. (2023). MSMEs in Warship Building towards Atmanirbhar Bharat - Technological Perspective. *Journal of Emerging Technologies and Innovative Research (JETIR)*, 10(4),323-337.

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. *Journal of the academy of marketing science*, 16, 74-94.

Cronbach, L.J. (1951). Coefficient Alpha and internal structure of tests. *Psychometrics*, 297-334.

Defence, M. o. (2020). Defence Procurement Procedure. Ministry of Defence.

Fornell, C.G., Larcker, D.F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50.

Hair, J.F., Black, W.C., Babin B.J., & Anderson, R., E. (2017). Multivariate Data Analysis (7th ed.). Pearson.

Nettleton, D. (2014) Commercial data mining: Processing analysis and modeling for predictive analysis projects. Elsevier.

Nunnally, J.C. (1994). Psychometric Theory. McGraw Hill, New York.

MSME, M. o. (2022 - 2023). Annual Report. Ministry of MSME, Delhi.

