JETIR.ORG ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR) An International Scholarly Open Access, Peer-reviewed, Refereed Journal

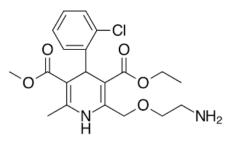
DEVELOPMENT AND VALIDATION OF ANALYTICAL METHODS FOR THE SIMULTANEOUS ESTIMATION OF AMLODIPINE BESYLATE AND PIOGLITAZONE HYDROCHLORIDE

Snehal P Nirmal^{1*}, Dr. Vaibhav Changedia², Dr. Vikas Rajurkar³ ¹Student, ²Professor, ³Principal

Dr. Vedprakash Patil Pharmacy College, Georai Tanda, Paithan Road, Ch. Sambhajinagar.

Abstract:

Amlodipine Besylate and Pioglitazone Hydrochloride in bulk and pharmaceutical dosage form were estimated using a simple to utilize, accurate, and economical UV and RP-HPLC approach that was developed and validated. The method was validated as per ICH guidelines by using various validation parameters such as Linearity, accuracy, precision, specificity and robustness. This present work provides a very simple and accurate method for simultaneous estimation of Antihypertensive drug and anti-diabetic drugs. Pharmaceutical drugs studies, standardization, and quality control all use precise and subtle analytical techniques. Quality is essential because the medicinal product involves human life. Strong primary healthcare programs must concentrate on proper drug production and quality management on a global basis. The methods are validated according to ICH guidelines and all validation parameters were studied for the proposed method like linearity, precision, range.


Keywords: HPLC, UV, Validation, Amlodipine Besylate and Pioglitazone Hydrochloride.

Introduction:

In the discovery of drugs, analytical methods development and validation for impurities, active pharmaceutical ingredients, etc. are important aspects. The quality of the analytical data play very critical and important role as analytical methods for the success of drugs and formulation development programs. Therefore, it is necessary that when performing quantitative determination of any drug forms the tablet formulations or dosage forms, exact quantity of known drug to be added during the process of analysis to ensure accurate determination of unknown drug determined in the tablet formulations. Therefore, the objective of the work is to develop the simultaneous analysis method with internal standard, which is economical, logical, simple, and precise and to validate the method in terms of specificity, precision, linearity, ruggedness, robustness, solution stability, stability studies.

Amlodipine Besylate:

Amlodipine Besylate (AB), 2-[(2-aminoethoxy)-methyl]-4-(2-chlorophenyl) 1,4-dihydro-6-methyl-3,5-pyridinedicarboxylic acid-3 ethyl-5 methyl ester, is a calcium channel blocker. It is used in the treatment of hypertension and angina.

Fig. 1 Structure of Amlodipine Besylate

Pioglitazone Hydrochloride:

Pioglitazone hydrochloride, (\pm) -5-{[[4-2-(5-ethyl-2-pyridinyl) ethoxy] phenyl]methyl}-2,4-thiazolidinedione monohydrochloride, is an oral anti-hyperglycemic agent which acts primarily by decreasing insulin resistance and was developed by Takeda chemicals. It is used in the treatment of type-II diabetes.

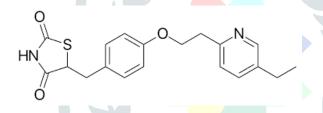


Fig. 2 Structure of Pioglitazone Hydrochloride

Material & Methods:

Determination of Λ Max (Selection of Wavelength)

The standard solutions were scanned separately between 400nm to 200nm. From the spectrum show high absorbance.

Simultaneous Equation Method

From the overlain spectra of the two drugs Amlodipine and Pioglitazone shows absorbance at 234nm and 285 nm which is the λ max of Amlodipine and Pioglitazone respectively. Working standard solutions were analyzed in concentration range 5-30µg/ml for both Amlodipine and Pioglitazone respectively, concentration was selected 20 µg/ml to measure the wavelength.

Cx = (A2 ay1 - A1 ay2) / (ax2 ay1 - ax1 ay2)

 $Cy = (A_1 ax_2 - A_2 ax_1) / (ax_2 ay_1 - ax_1 ay_2)$

Selection of Solvent

The solubility of drugs was determined in a variety of polar and non-polar solvents as per IP specification. The common and stable solvent was found to be Water: methanol and dilutions were made with same Water: methanol 120:80 v/v for the analysis of Amlodipine and Pioglitazone for the proposed method.

Preparation of Amlodipine Standard stock solution

An accurately weighed quantity about 20 mg of Amlodipine standard was transferred to 200 mL volumetric flask. Add 150 mL of diluent, sonicate to dissolve and dilute up to the mark with diluent and mixed. Further transferred 5ml of above solution in a 25 ml volumetric flask added diluent up to the mark and mixed well.

Preparation of Pioglitazone Standard stock solution

An accurately weighed quantity about 20 mg of Pioglitazone standard was transferred to 200 mL volumetric flask. Add 150 mL of diluent, sonicate to dissolve and dilute up to the mark with diluent and mixed. Further transferred 5ml of above solution in a 25 ml volumetric flask added diluent up to the mark and mixed well.

Preparation of sample solution

A sample was prepared by taking 5ml of each Amlodipine and Pioglitazone from stock solution in 10ml volumetric flask, mix well & make up volume up to mark then measure the absorbance of this sample solution at respective wavelength using double-beam Uv-visible.

Method Validation:

The following parameters were considered for the analytical method validation of title ingredients.

- System Suitability.
- Specificity.
- Linearity.
- Accuracy.
- Precision.
- System Precision.
- Method Precision.
- Intermediate Precision.
- Robustness.

SYSTEM SUITABILITY:

System suitability test is a Pharmacopoeial requirement and is used to verify, whether the resolution and reproducibility of the chromatographic system are adequate for analysis to be done.

Table 1 System suitability test of Amlodipine and Pioglitazone

	Amlodipine	Pioglitazone
Symmetry factor	1.2	1.0
Theoretical plates	10207	16825
S. No.	Area	Area
1	441287	38756874
2	435394	39336548
3	434464	38226258

© 2023 JETIR October 2023, Volume 10, Issue 10

%RSD	0.8	1.0
Mean	438745	38940440
6	437547	39265475
5	440435	39100240
4	443345	38957249

The tests were performed by collecting data from Single injection of blank (Diluent) and six replicate injections of Standard solution were injected into the chromatograph. The data obtained is summarized in Table 1.

Specificity: (Identification, Interference & Peak Purity)

Inject Blank (Diluent), standard solution, and sample solution. The data obtained is summarized in Table 2.

Component	Retention	Theoretical	Tailing	Purity	Purity
-	time (min)	plates	factor	angle	threshold
Blank	-			-	-
Standard	6.911	11157	1.2	1.32	3.27
solution					0.27
Sample Solution	6.917	11003	1.2	1.49	3.76

Table 2 Specificity of Amlodipine (Identification and Interference)

Table 3 Specificity of Pioglitazone (Identification and Interference)

Component	Retention	Theoretical	Tailing	Purity	Purity
Component	time (min)	plates	factor	angle	threshold
Blank	-		-	-	-
Standard	11.693	16239	1.0	1.84	4.00
solution	11.075		1.0	1.01	1.00
Sample Solution	11.716	16530	1.1	1.90	3.62

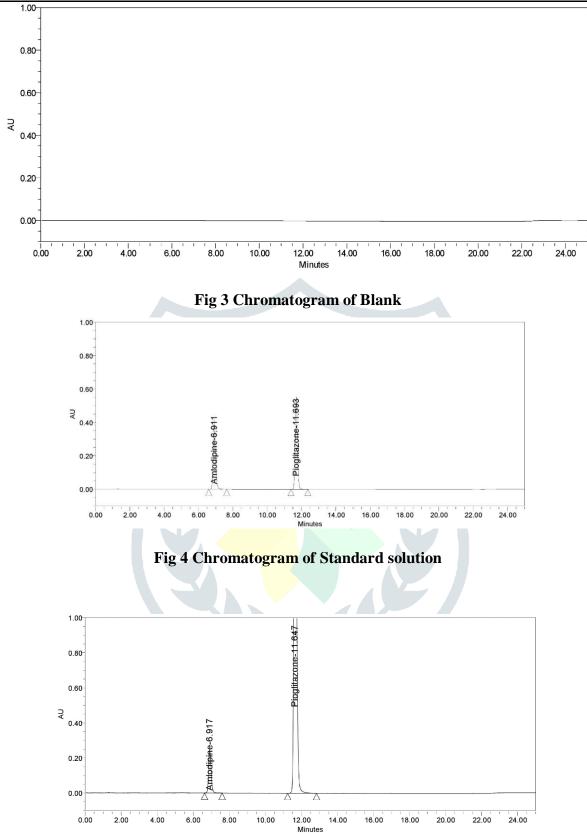


Fig 5 Chromatogram of Amlodipine Sample

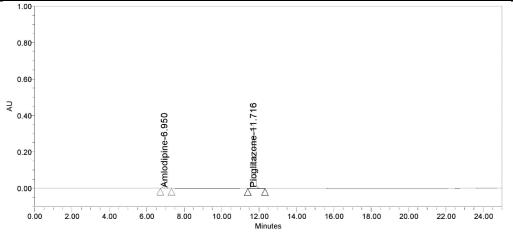


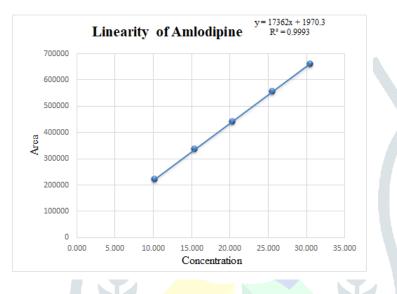
Fig 6 Chromatogram of Pioglitazone Sample

LINEARITY

Linearity was evaluated in the range of 50% to 150% of the working concentration level. As the working concentration level of Amlodipine is $20\mu g/mL$ and Pioglitazone is $40\mu g$ /mL. The range proposed is 50% to 150% of 20 mg/mL for Amlodipine and 50% to 150% of 40 mg/mL for Pioglitazone.

	Amlodipine	Pioglitazone
Symmetry factor	1.3	1.0
Theoretical plates	10057	16027
S. No.	Area	Area
1	445802	39000987
2	440156	38740568
3	438625	38965811
4	439254	39012225
5	437681	38752666
6	438468	38669588
Mean	439998	38856974
%RSD	0.7	0.4

Table 4 System suitability for Amlodipine and Pioglitazone


Table 5 : Linearity of Amlodipine

Level	Concentration (ppm)	Amlodipine Area			
(%)		Injection- 1	Injection- 2	Mean	
50	10	219990	220624	2203	
75	15	335962	336410	336186	

© 2023 JETIR October 2023, Volume 10, Issue 10

www.jetir.org (ISSN-2349-5162)

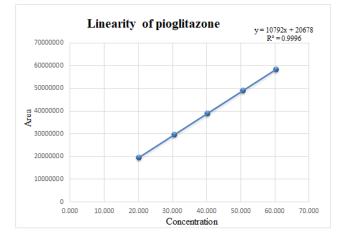

100	20	440568	441257	440913		
125	25	555814	556327	556071		
150	30	659858	661207	660533		
Co-relat	ion coefficient (R)	I		0.9993		
SLOPE		21666.38				
SLUI E		Y-INTERCEPT				
	RCEPT			885.8		
Y-INTE	RCEPT ING LEVEL AREA			885.8 440913		

Fig 7 Linearity plot of Amlodipine

Table 6: Linearity of Pioglitazone

Level	Concentration (ppm)	Pioglitazone an	zone area		
(%)		Injection- 1	Injection- 2	Mean	
50	20	19395489	19468475	19431982	
75	30	29635414	29496880	29566147	
100	40	38914752	38742899	38828826	
125	50	49000528	48865045	48932787	
150	60	58336945	58215624	58276285	
Co-relati	0.999				
SLOPE				963813.1	
Y-INTE	29445.4				
WORKI	38828826				
%LIMI7	%LIMIT OF Y-INTERCEPT (± 2 OF WORKING LEVEL)				

Fig 8 Linearity plot of Pioglitazone Accuracy (Recovery)

Accuracy was evaluated three levels 50%, 100% and 150% of the working concentration level for Amlodipine and Pioglitazone. As the working concentration level of Amlodipine is about 20 μ g/mL, Pioglitazone is 40 μ g/ml. Each level prepared in triplicates.

	Amlodipine	Pioglitazone
Symmetry factor	1.2	1.0
Theoretical plates	11264	17094
S. No.	Area	Area
1	442368	38667892
2	<mark>44102</mark> 3	38785200
3	439137	38510463
4	439999	38232230
5	441800	38323369
6	439752	38946205
Mean	440680	38577560
%RSD	0.3	0.7

Table 7 System suitability Amlodipine and Pioglitazone

Table 8 % Recovery for Amlodipine

Level	Injection-1	Injection-2	Average Peak	% Recovery	Mean recovery
(%)			Area		%
50	219859	220638	220248	99.4	99.4
	221026	220462	220744	99.9	
	221364	221027	221195	100.3	
100	442356	442156	442256	100.1	100.1
	441580	442657	442118	100.1	

© 2023 JETIR October 2023, Volume 10, Issue 10

www.jetir.org (ISSN-2349-5162)

	Overall mea	99.9			
	661574	661020	661297	100.0	
	659871	660962	660416	99.8	
150	662159	663245	662702	100.2	100.2
	439998	440625	440311	99.7	

Table 9 % Recovery for Pioglitazone

Level	Injection-1	Injection-2	Average Peak	% Recovery	Mean recovery
(%)			Area		%
50	19083657	19175300	19219479	99.0	99.0
	19252021	19190255	19221138	99.3	
	19008697	19076329	19042513	98.6	
100	38683888	38596387	38640138	100.0	100.0
	38523625	38475489	34499557	99.7	
	38495325	38456855	38476590	99.7	
150	58000684	57995882	57749772	100.1	100.1
	57706980	57792563	<mark>57</mark> 749772	99.7	
	58023687	57942386	<mark>5</mark> 7983037	100.1	
	Overall mean	recovery			99.7

Precision

System Precision

Single injection of Blank (Diluent) and six replicate injections of Standard solution were injected into the chromatographic system. The data obtained is summarized in Table 7.7

5

Table 10: System suitability for Amlodipine and Pioglitazone

	Amlodipine	Pioglitazone
Symmetry factor	1.2	1.1
Theoretical plates	10268	16350
S. No.	Area	Area
1	435697	38569528
2	425638	38266984

%RSD	1.1	0.7
Mean	433537	38441566
6	432598	38452876
5	435126	38096895
4	440005	38374837
3	432156	38888276

Method Precision

Single injection of blank (Diluent), Standard solution (six replicates) and sample solution (six preparations) was injected on the system.

Sample No.	Mean	% Assay
1	438563	100.7
2	439006	100.4
3	440238	101.1
4	436921	100.3
5	439520	100.7
6	440124	101.2
Mean		100.7
% RSD		0.4

Table 11: Method precision Amlodipine

Table 12 Method precision Pioglitazone

Sample No.	Mean	% Assay	
1	38512895	100.4	
2	38405684	100.3	
3	38485715	100.3	
4	38384004	100.2	
5	38499981	100.4	
6	38480014	100.3	
Mean		100.3	
% RSD		0.1	

Intermediate Precision:

Six independent sample preparations were prepared on different day and by different analyst and injected on the HPLC.

	Amlodipine	Pioglitazone
Symmetry factor	1.2	1.0
Theoretical plates	11964 16574	
S. No.	Area	Area
1	443690	39238745
2	446660	39056058
3	451190	38754200
4	449080	38996995
5	452355	39200069
6	453946	39128740
Mean	449487	39062468
%RSD	0.8	0.4

Table 13: System suitability of Amlodipine and Pioglitazone

Table 14 Intermediate precision for Amlodipine

Sample No.	Mean	% Assay
1	452555	99.8
2	453206	99.5
3	454287	100.5
4	453335	99.8
5	452930	99.9
6	455637	100.7
Mean		100.0
% RSD		0.5

Sample No.	Mean	% Assay
1	39415605	100.8
2	39480058	100.9
3	39520666	101.0
4	39556047	100.9
5	39374198	100.7
6	39504924	100.9
Mean		100.9
% RSD		0.1

Table 15 Intermediate precision for Pioglitazone

Robustness:

This parameter was studied by making small, deliberate changes in the chromatographic conditions and Assay parameters, observing the effect of these changes on the system suitability and results obtained by injecting the standard and sample solutions.

Changes in	Values	Retention Time	%	Absolute difference
parameters			Assay	
Control	As per method	7.0	99.8	NA
Flow rate	+0.1 mL/min	7.2	100.1	-0.3
(± 0.1 mL/min)	-0.1 mL/min	6.7	100.0	-0.2
Change in	+5 nm	6.9	99.3	0.5
Wavelength	-5 nm	6.9	100.1	-0.3
(± 5 nm)		· ·		
Change in Column	+5°C	6.8	100.1	-0.3
temp.	-5°C	7.1	100.2	-0.4
(± 5°C)				

Table 16 Robustness for Amlodipine

Changes in parameters	Values	Retention Time	%	Absolute difference
			Assay	
Control	As per	11.7	100.3	NA
	method			
Flow rate	+0.1 mL/min	11.5	100.4	0.1
(± 0.1 mL/min)	-0.1	11.9	100.4	0.1
	mL/min			
Change in Wavelength	+5 nm	11.6	99.2	-1.1
(± 5 nm)	-5 nm	11.7	100.1	-0.2
Change in Column	+5°C	11.6	100.0	-0.3
temperature				
(± 5°C)	-5°C	11.9	100.2	-0.1

Table 17 Robustness for Pioglitazone

Conclusion:

The High Performance Liquid Chromatographic method developed used for simultaneous determination of Amlodipine Besylate and Pioglitazone Hydrochloride drugs in the pharmaceutical formulations using standard was stability indicating as recommended by ICH guidelines and validated for Specificity, System precision, Method precision, Ruggedness, Robustness and Accuracy. The extent of the current work is to develop RP-HPLC strategy for the assessment of medication in mass. The technique was totally approved and showed good outcomes. Maintenance time and runtime was diminished, so the created technique can be utilized for synchronous determination of Amlodipine Besylate and Pioglitazone Hydrochloride.

References:

- 1. Mendham J., Denny R. C., Thomas M.; Vogel's text book of Quantitative Chemical Analysis; Pearson Education Limited; 6th Edition, 2008, 29-39.
- Chatwal G. R., Anand S. K.; Instrumental methods of Chemical Analysis; Himalaya Publishing House, Mumbai; 11th edition, 2005, 1.1-1.2, 2.108-2.109, 2.151-2.153.
- Kasture A. V., Wadodkar S. G., Mahadik K.R., More H.N.; Pharmaceutical analysis instrumental methods; Nirali prakashan; 12th Edition, 2005; 148-156.
- Skoog D., Leqary J.; Principle of Instrumental Analysis; Thomson Asia Pvt Ltd. Singapore; 54th edition, 2004; 3-8.
- Skoog D., Holler F., Timothy A., Nieman N.; Principles of Instrumental Analysis; Saunders College Publications, London; 4th edition, 1992; 1-2, 338-340.
- 6. Settle F.; Handbook of Instrumental Techniques of Analytical Chemistry. 1st edition, 2004, 19-21, 609-617.

- Corners K. A., Textbook of pharmaceutical analysis, A wiley interscience publication, 1st Edition, 1967, 475-478
- **8.** Kasture A. V., Wadodkar S. G., Mahadik K.R., More H.N; Textbook of pharmaceutical analysis-II, Nirali prakashan, 13th Edition, 2005,1, 47-56
- 9. British Pharmacopoeia, 1993, Volume II, 180-190.
- 10. Kakde R.B., Kasture A.V., Wadodkar S. G.; Indian Journal of Pharmaceutical sciences, 2002, 64(1), 24-27.
- **11.** Dyade G.K., Sharma A.K.; Indian drugs, 2001, 38(2): 75-78.
- **12.** Sethi P.D.; Qualitativie Analysis of drugs in Pharmaceutical Formulations, 3rd edition, 1997, 182-184.
- Swarbrick James., Boylan James.C.; Encyclopedia of pharmaceutical technology, Volume I, Marcel Dekker Inc., New York, 1998, 217 - 224.
- 14. Lindsay Sandy.; HPLC by open learning; John wiley and sons, London, 1991, 30-45.
- **15.** Lough W.J., Wainer I.W.W.; HPLC fundamental principles and practices, Blackie Academic and professional, 1991, 52-67.
- 16. G. D Christian; In: Analytical Chemistry, 4th Edition, John Wiley and Sons, United Kingdom, 1986, 1-6.
- 17. Meyer Veronica R.; Practical High Performance Liquid Chromatography, John wiley and sons, London, 2nd edition, 1993, 26, 27, 40, 222, 246, 258.
- **18.** Chatwal G. R., Anand S. K.; Instrumental method of chemical analysis; Himalaya Publishing House, 11th edition, 2005, 2.634-2.638
- **19.** Raymond P. W. Scott; Liquid Chromatography for the Analyst, Chromatographic Science Series; Marcel Dekker, Inc., 1991, 1-30.
- 20. Andrea Westen; HPLC and CE Principles and Practice; Academic press 1997, 1-21.
- **21.** Snyder L.R; High-Performance Liquid Chromatography: Advances and Perspectives; C. Horvath, ed., Academic Press, San Diego, CA; 1983, 3, 157.
- Snyder L. R., M. A. Stadalius.; High-Performance Liquid Chromatography: Advances and Perseptives; C. Horvath, ed., Academic Press, San Diego, CA; 1986, 4, 294-295.
- 23. Ghulam A. Shabir.; HPLC Method Development and Validation for Pharmaceutical Analysis; Pharmaceutical Technology Europe, March 2004.
- 24. Paul C. Sadek.; Troubleshooting HPLC systems; John Wiley and Sons, New York, 2000
- **25.** Sethi P.D.; HPLC-quantitative analysis of pharmaceutical formulation; CBS publisher and distributors New Delhi; 2001, 11.
- **26.** ICH Q2B harmonized tripartite guideline, text on validation of analytical procedures, IFPMA, in proceeding of international conference on harmonization, Geneva, March 1996.
- D.A. Skoog, F.J. Holler, A. Timothy, N.W. Nieman, Principle of Instrumental Analysis, Saunders College Publications, London, 1998.
- **28.** ASEAN, Guideline on stability of drug product, Philippines, 2005.
- 29. S.W. Baertschi, P.J. Jansen, Pharmaceutical Stress Testing, by Taylor & Francis Group, LLC, 2005.

30. S. Klick, Stress testing of drug substances and drug products, Pharm. Technol. 2005.

- **31.** ICH, Stability Testing: Photostability Testing of New Drug Substances and Products Q1B, International Conference on Harmonisation, IFPMA, Geneva, 1996.
- 32. Mirza, A.Z., Arayne, M.S. and Sultana, N., 2014. Method development and validation of amlodipine, gliquidone and pioglitazone: application in the analysis of human serum. Analytical Chemistry Letters, 4(5-6), pp.302-312.
- **33.** Shaikh, J.S.A., Raut, S., Abdul, A. and Pathan, M.A.A.K., 2020. High performance liquid chromatographic assay of amlodipine, valsartan and hydrochlorothiazide simultaneously and its application to pharmaceuticals, urine and plasma analysis. Journal of Chromatography B, 1155, p.122295.
- 34. Sultana, N., Shafi, N., Arayne, M.S., Siddiqui, F.A. and Hussain, A., 2011. Development and validation of new assay method for the simultaneous analysis of diltiazem, metformin, pioglitazone and rosiglitazone by RP-HPLC and its applications in pharmaceuticals and human serum. Journal of chromatographic science, 49(10), pp.774-779.
- **35.** Sengupta, P., Chatterjee, B., Mandal, U.K., Gorain, B. and Pal, T.K., 2017. Development and validation of a high throughput LC–MS/MS method for simultaneous quantitation of pioglitazone and telmisartan in rat plasma and its application to a pharmacokinetic study. Journal of pharmaceutical analysis, 7(6), pp.381-387.

