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Abstract :  A crucial physiological characteristic that is frequently assessed in a variety of therapeutic contexts is breathing rate (BR). It is 

still frequently measured manually, though. In this study, a novel methodology is put forth for estimating the BR from a blood pressure (BP), 

photoplethysmogram (PPG), or electrocardiogram (ECG) signal. The framework takes advantage of both time and frequency domain data to 

extract respiratory signals using Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) techniques. With the use of 

a Robust Kalman Filter (RKF) that incorporates a Signal Quality Index (SQI), our technique was able to operate adequately even during 

periods when the signals were noticeably distorted. The output signals are integrated via state vector fusion, and then the BR is calculated. 

The MIT-BIH Polysomnographic and BIDMC datasets were used to evaluate the framework on two publicly accessible clinical databases. 

The mean absolute percentage error (MAPE) was used to evaluate performance. The outcomes showed great accuracy, with MAPEs on the 

two databases for ECG signals of 4% and 4%, 7% for PPG signals, and 5.4% for BP signals. The outcomes also showed a remarkable 

robustness to noise at 0 dB. Consequently, this system might be useful for BR monitoring in environments with excessive noise. 
 

IndexTerms - Electrocardiogram (ECG), photoplethysmogram (PPG) and blood pressure (BP) signals. Empirical mode decomposition 

(EMD)and discrete wavelet transform (DWT). 

 

 

I. INTRODUCTION 

Breathing Rate (BR) is a crucial physiological metric that may be assessed from patients in a variety of situations, such as 

ERs, ICUs, and hospital wards. The sensitive indicator of patient deterioration known as BR has been demonstrated. Elevated 

BRs, for instance, may occur before cardiac arrest or respiratory failure. 

Additionally, BR can be utilised as a predictor of in-hospital mortality. Additionally, BR is used to diagnose a number of 

illnesses, including sepsis and pneumonia. Direct breathing monitoring sensors based on methods like spirometry, pneumography, 

or plethysmography are readily available. The use of these sensors is restricted to particular clinical situations, such as stress 

testing and sleep apnea diagnosis, because they might affect breathing patterns and be intrusive. Less intrusive respiratory 

monitoring techniques might be more well-tolerated by patients and hence used in a wider variety of clinical situations. 

The Discrete Wavelet Transform (DWT) and Empirical Mode Decomposition (EMD) can be used to decompose a signal into 

a set of signals, allowing one to extract a respiratory signal (herein referred to as ECG-Derived Respiration (EDR), PPG-Derived 

Respiration (PDR), or BP-Derived Respiration (BDR) signals. They have been widely applied to ECG signals.Since EMD and 

DWT methods are not absolutely superior to each other, we have used both of them simultaneously to improve the performance 

of the estimator. Having obtained a respiratory signal, Power Spectral Density (PSD), a measure of a signal’s power across the 

range of frequency content, has been widely used to estimate BR. The Welch periodogram is a technique for estimating the PSD 

which averages power spectra calculated from shorter segments of the input signal to provide increased robustness to noise. 
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FIGURE(1):PROPOSED BLOCK DIAGRAM 

II. MATERIALS AND METHODS 

Pre processing stage and Extracting respiratory signals and empirical mode decomposition (EMD) and Discrete wavelet 

transform (DWT). Basically First pre processing stage has ECG and PPG BP signals has contain some hign frequency  noise and 

it having DC component. Second stage has decompose this signals into components by using EMD and DWT.  Power Spectral 

density of the components are used to corresponding respiratory signals (EDR,PDR,BDR).thirdly the SPI is calculated over time 

for each respiratory signals and use the robust Kalman filter (RKF) remove noise from each respiratory signal and signal quality 

index in the RKF is more evident in  the noisy parts which have low quality. Fourthly state vector fusion is used to derive a single 

respiratory signal and finally the breathing rate (BR). 

 

 

            PRE PROCESSING STAGE  

When the sensors or transducers are generating ECG and PPG  and BP signal has contain some high frequency noise and DC 

components are removing this stage by using 3rd order Butterworth high pass filter. Now take BR assumption 5 breaths per minute 

corresponding (0.083HZ)  for window length 11 and high frequency noise removed for using moving average filter. 

 

 EXTRACTING RESPIRATORY SIGNALS 

Extracting respiratory signals from physiological data or sensor readings is a crucial step in various medical and healthcare 

applications. Accurate extraction of respiratory signals is essential for monitoring a patient's respiratory rate and detecting 

anomalies. EMD and its extended algorithm and DWT method use extracting a set of respiratory signals from input signals. 

 

A. EMPERICAL MODE DECOMPOSITION (EMD) 

EMD is an adaptive fully data-driven method for analyzing non-linear and non-stationary signals. By exploiting both local 

temporal and structural characteristics, time series are decomposed into individual components by expressing the original signal 

as a linear combination of zero-mean amplitude and frequency modulated functions called Intrinsic Mode Functions (IMFs), 

and a residual 

(1) The number of zero-crossings and positive/negative peaks should either be equal or at most differ by one; and  

(2) The mean of upper and lower envelopes must be zero. The mode mixing problem arises when the signal contains intermittent 

processes  

 

Mode mixing is defined as a single IMF containing signals of widely disparate scales or a signal of a similar scale residing in 

different components. This phenomenon makes the physiological meaning of individual IMFs unclear. To alleviate this problem 

a Noise-Assisted Data Analysis (NADA) method is proposed. 
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FIGURE(2):EMD BASED DIAGRAM 

 

 

B. COMPLETE ENSEMBLE EMPERICAL MODE DECOMPOSITION ADAPTIVE NOISE(CEEMD) 

The advantages of CEEMDAN over EEMD are that it achieves a negligible reconstruction error and solves the problem of 

different number of modes for different realizations of signal plus noise. EEMD and CEEMDAN methods. The steps of the 

EEMD and CEEMDAN methods, are shown in the two flowcharts in Figs.2 and 3, respectively.  

To determine which IMFs contain respiratory content, the PSD of each IMF is calculated, and the dominant frequency band 

of each IMF is identified as the 6dB bandwidth around the highest amplitude of the PSD. Afterwards, the IMF with the closest 

frequency band to the respiratory frequency band (6 to 33 bpm [0.10Hz, 0.55Hz]) is chosen as the EDR, PDR, or BDR signal. 

EDR and PDR signals extracted from a 60-second window of ECG and PPG signals respectively (from BIDMC01).  

These were extracted using EMD, EEMD and CEEMDAN methods. The dashed red and green lines indicate the dominant 

frequency ranges of the reference respiratory signal and EDR/PDR signals, respectively. The dominant frequency bands of both 

extracted EDR and PDR signals by CEEMDAN method are the closest to the dominant frequency band of the reference respiratory 

signal. 

 

  

 
FIGURE(2):CEEMDAN BASED DIAGRAM 
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III. DISCRETE WAVELET TRANSFORM 

      Discrete Wavelet Transform 

The Wavelet Transform (WT) is a time-frequency signal analysis methods that offers simultaneous interpretation of the signal 

in both time and frequency domains, allowing local transient or intermittent components to be elucidated. The WT and inverse 

transform can be computed discretely, quickly and without loss of signal information by considering the multi-resolution 

algorithm. 

In this study, respiratory components of ECG, PPG, or BP signals were extracted using the DWT with four different mother 

wavelet functions: Daubechies of 4th and 8th order and Symlet of 4th and 8th order. After applying the DWT with these wavelet 

functions, the PSDs of each detail signal were calculated. To identify the detail signal containing respiratory content, the 

dominant frequency bands of the obtained PSDs were compared to the frequency band of respiration ([0.10Hz, 0.55Hz]). 

 

1.SIGNAL QUALITY INDEX 

 

Hjorth parameters were originally proposed to extract features from the spectrum of the Electroencephalographic (EEG) signal 

by calculating  
 

 

 
     Where P (ejω) is the power spectrum of the signal as a function of angular frequency. ω = 2πf, with f in cycles/second. By 

averaging in the time domain, the spectral moments of a signal can be estimated using a shifting overlapping window as follows 

using a shifting overlapping is 

 

 

 

Where x(i/2) (k) is the i/2 derivative of x(k) and L is the window duration (L = 4s here). The SPI uses the Hjorth descriptors to 

calculate an index for assessing the quality of signals. Here we have used SPI as an SQI to assess the quality of signals as follows 

  

     Where  varies between 0 (corresponding to complete noise) and 1 (corresponding to a pure sinusoid), indicating low 

and high signal quality respectively. For instance, the variation  for the PPG signal of BIDMC01, which approaches 0 during low 

quality periods and 1 during high quality periods. 

IV. ROBUST KALMAN FILTER 

There are seven respiratory signals in the proposed algorithm at this point, each with a corresponding SQI parameter. Applying 

a KF or RKF to the respiratory signals at this stage improves their quality. Both a KF and an RKF have the ability to remove 

noise from a signal and then reconstruct it using a dynamic model. However, a KF can only accept a linear model, whereas an 

RKF can accept a nonlinear dynamic model. 

Since a model's accuracy can be decreased during the linearization process for use with a KF, an RKF may perform better than 

a KF. In this study, the RKF is optimized using the SQI parameter. Details are now provided on the use of the KF and RKF. 

The KF is a well-known optimal state estimation method that has been proven to be the optimal filter in the Minimum Mean 

Square Error (MMSE) sense. The application of the KF and RKF is now described in detail. The KF is a well-known technique 

for estimating optimal states, and it has been shown to be the best filter in terms of Minimum Mean Square Error (MMSE). 

 

 

Since most systems in practise are nonlinear, the estimation accuracy must first be reduced when using the KF to approximate 

nonlinear dynamical models in linear form. The RKF is an extension of the standard KF that takes into account nonlinear 

dynamic estimate of a stochastic signal's states. McSharry et al.'s dynamic equations are employed as the state model in this 

paper. Three coupled ordinary differential equations make up the dynamic model.  

Using the initial nonlinear dynamical model of the signal, the RKF estimates the state vector throughout the time propagation 

step. The RKF uses an interaction between a dynamical model and data, which is produced by the Kalman Gain (KG), to estimate 

the state vector in each iteration. The measurement noise covariance (R) value and KG have an inverse relationship. As a result, 

measurements of inferior quality, which have greater R values, have lower KG values. For each cycle, lowering the value of 
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KG lessens the impact of measurements on estimation, and vice versa. The following is a representation of a multiplicative 

modification of R. 

where SQI n is the SQI of the n th sample of data which is replaced by SPI in this paper, as follows. 

 

A)STATE VECTOR FUSION  

At this stage of the proposed algorithm, there are 7 respiratory signals. State vector fusion is then used to fuse the 7 signals to 

provide a single respiratory signal. By considering the state error covariance matrices that are achieved from RKF, local estimate 

signals are combined in a MMSE sense, as follows. 

 

 

where xˆn is the global estimate of state at each time n. J represents the number of signals that must be fused, which in our case 

is equal to 7 (J = 7). The (Pj
n) −1 and xˆ j n, respectively are the inverses of the state error covariance matrices and the local state 

vector estimate for each of the 7 respiratory signals. According to this, respiratory signals with better performance contribute 

more to obtaining the state vector. In accordance to estimating breathing rates, for each sample of the 7 respiratory signals a 

global estimate of state is obtained as a single fused signal. 

 

B)ESTIMATING BREATHING RATES 

At this stage used to detect the peaks in the fused respiratory signal. The BR was then estimated by counting the number of 

peaks within a time period, and expressed as beats per minute (bpm). 

 

V. DATA BASES 

At this stage used A renowned hospital and research facility connected to Harvard Medical School is known as MIT BIDMC 

(Beth Israel Deaconess Medical Center). They have several databases and research tools, but you don't mention which particular 

database in your question. In addition to managing a large number of databases pertaining to healthcare, clinical trials, patient 

records, and other topics, MIT BIDMC is actively involved in numerous medical and scientific research projects. 

 

I don't specifically know if there is a BIDMC (Beth Israel Deaconess Medical Center) database that is open to the general public 

as of my most recent knowledge update in September 2021. Being a renowned teaching hospital and a member of Harvard 

Medical School, BIDMC may have access to a number of private databases and research tools. 

 

I advise visiting BIDMC's official website or getting in touch with them directly through their official channels if you're 

searching for specific data or information pertaining to the organization. Researchers, healthcare professionals, or certain 

collaborators may have access to their research databases, clinical data repositories, or other resources, but access and 

availability may be restricted by their policies and procedures. 

VI. ADITION OF NOISE 

You appear to be talking about a test of the reliability of a method for calculating blood pressure (BR) from electrocardiogram 

(ECG), photoplethysmogram (PPG), and blood pressure (BP) signals by including various amounts of white noise. To assess 

how well the framework performed in various noise environments, the signal-to-noise ratio (SNR) was modified, with SNR 

values stated as SNRdB = 0, 5, 10, 20, 40. 

 

 
 

where N is the total number of samples, y is the denoised signal, and x is the original signal. 

 

 

A)STASTICAL ANALYSIS 

Three metrics were used to assess the effectiveness of a set of algorithms for BR (Beat-to-Beat Heart Rate) estimate, one of 

which is the Coverage Probability (CP) with a specified bound of 2 bpm (beats per minute). Here is a description of the measure 

and its methodology. 
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B)MEAN ABSOLUTE ERROR 

 

Mean Absolute Error (MAE) is a metric that assesses a predictive model's precision and is frequently employed in the context 

of regression analysis. It measures the typical absolute difference between a dataset's actual values and the values that were 

anticipated. In other words, it assesses the average deviation between the model's predictions and actual results. 

 

 

 
 

Where is the actual breath rate and is the reference breath rate in BPM. 

 

To put it another way, you figure out the absolute difference between each predicted value and its corresponding actual value, 

add up all of these absolute differences, and then divide by the entire number of data points (n) to get the average. 

 

Due to its direct measurement of the average size of model errors, MAE is an easy-to-understand metric. Lower values denote 

greater performance and give a measure of how well the model's predictions match the actual data. When dealing with datasets 

that contain outliers or when you want to stress the significance of mistakes of a consistent size, MAE is an excellent option 

because it is less sensitive to outliers than certain other error metrics like Mean Squared Error (MSE). 

 

C)MEAN ABSOLUTE PERCENTAGE ERROR 

In statistics and data analysis, the Mean Absolute Percentage Error (MAPE) is a regularly used metric to assess the precision of 

a forecasting or prediction model. The average absolute percentage difference between a dataset's actual values and expected 

values is quantified by MAPE. It is very helpful for evaluating a model's performance in terms of percentage inaccuracy. 

 

 

 
 

To put it simply, you find the percentage difference between each predicted value and its corresponding actual value, calculate 

its absolute value, add up all of these absolute percentage differences, and then find the average by dividing by the total number 

of data points (N). 

 

MAPE is helpful when you wish to evaluate a model's correctness in a method that is independent of scale, making it appropriate 

for contrasting models across various datasets or domains. Since the prediction error is expressed as a % of the actual value, it 

is simpler to understand in many situations. It does have some limits, particularly when working with small actual values close 

to zero, which might result in errors that are either undefinable or have excessively large percentages. Other error metrics, like 

MAE or RMSE, may be more suited in such circumstances. 
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VII. OUTPUTS AND RESULTS. 

 

 

 

 

                        
                               FIG4: original ECG signal                                                     FIG5: original PPG signal                                                          
 

 
                            FIG6: HIGH PASS FILTER ECG signal                                                     FIG7: original BP signal                                                      
 

 

 
                   FIG8: moving average filter ECG signal                                            FIG9:moving average filter PPG signal                                                       
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                      FIG10: imf ECG signal                                                      FIG11: DAUBECHIES 4TH ECG  PPG signal                                                      

                     
                   FIG12:DAUBECHIES 8TH  ECG PPG  signal                                       FIG13: Symlet 4th  ECG PPG signal                                                      

 

 

 

 

                   
                            FIG14: Symlet 8th ECG  PPG signal                                             FIG15: periodgram FFT db4 ECG PPG signal                                                       
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                    FIG16: periodogram FFT sym4 ECG signal                        FIG17: periodogram FFT sym 8th ECG PPG signals                                                    

    

                 
             FIG18: 3dB  ECG PPG signal                                                        FIG19:REFERENCE BPM VS MAPPE 10dB                                                       
 

 

 

 

 

 

              
 

              FIG20:REFERENCE BPM VS MAPPE OdB                             FIG21: REFERENCE BPM VS MAPPE 20dB 
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           FIG20:REFERENCE BPM VS MAPPE 40dB                                        FIG21: REFERENCE BPM VS MAPE 5dB 

 

 

 

 

CONCLUSION;- In this paper, we employ a basic neural network for the detection of abnormal heart rhythms in ECG recordings. 

Our network is made to take two types of input: a feature vector made up of PCA coefficients and a temporal feature vector made 

up of five consecutive beats and the ventricular R-R interval rate.We have used the moving average filter in this instance to further 

reduce the noise present in the input signal. While maintaining superior anomalous signal identification accuracy and acceptable 

accuracy in challenging records, the suggested method can achieve minimal complexity in typical clinical recordings. By 

substituting several activation functions with approximations and mapping to fixed point after retraining, the approach was 

transformed to an embedded platform with the least amount of implementation loss and the least amount of implementation expense. 

A computationally challenging design in comparison to the state of the art. 

We exhibited a considerable reduction in the total system power consumption when the wireless transmission is gated using a binary 

classifier so that only irregular beats are broadcast as opposed to continuous data transfer. 
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