Advance Robust Nonlinear Control Algorithm for Quadrotor Applications

${ }^{1}$ Praveen Kumar Goskula, ${ }^{2}$ Lini Mathew, ${ }^{3}$ Shimi S.L, ${ }^{4}$ Sandeep Gupta
${ }^{1}$ ME Scholar, ${ }^{2}$ Professor and Head, ${ }^{3}$ Associate Professor, ${ }^{4}$ Senior Research Fellow
${ }^{1,2}$ Department of Electrical Engineering
${ }^{1,2}$ National Institute of Technical Teachers Training and Research (NITTTR), Chandigarh,
${ }^{3}$ Punjab Engineering College Chandigarh, ${ }^{4}$ IIT Kanpur, India

Abstract

One of the main challenges for quadrotor is desired trajectory tracking in presence of external disturbances. This paper addresses the quadrotor tracking control for external disturbances. Quadrotor dynamic modeling is taken by considering drag forces, aerodynamic friction and gyroscopic effects. So the new state space model is represented for the mathematical modeling of quadrotor. Two non linear controllers, sliding mode controller and backstepping controller are combined. The new sliding surface is designed using Lyapunov based adaptive law to compensate for the effect of external disturbances. The new law is asymptotically stable as tracking errors are reduced to zero. The controller algorithm is implemented using MATLAB simulations and compares with the nominal SMC with backstepping controller. And results shows new law is successfully compensate the external disturbances.

Index Terms- Matlab, sliding mode control (SMC), Backstepping control (BSC)

I. INTRODUCTION

The quadrotor is also known as quadcopter and it is characterized by a unique four rotor design. It has the ability to take off and land vertically even in a small place. Firstly these are developed mainly for military application purposes but because of its various advantages these are inevitable in many applications like agriculture, aerial photography etc. the critical aspect of the quadrotor is trajectory tracking which is an intense research area in recent years. Because of quadrotor nonlinear dynamics, controlling is a challenging task. In the presence of external disturbances it is difficult to achieve desired trajectory and stability of the system.
Mathematical modeling of the quadrotor is a difficult task, several quadrotor models like non linear model, quaternion model and near hover position model was discussed [1]. These mathematical models are represented in state space form. To implement the control techniques on dynamics of quadrotor state space modeling is easy [2]. Inertia, drag forces, aerodynamic friction and gyroscopic effects are considered for more effective modeling of the quadrotor [3].

Many linear and nonlinear control strategies were applied to the quadrotor Unmanned Aerial Vehicle (UAV), such as PD control, PID control, Trajectory Linearization Control (TLC), Sliding Mode Controller (SMC), Backstepping Controller (BSC) etc [24][25]. PID controller is a most popular controller but main disadvantage is tuning the controller gain which is a tedious process. Most of the PID controllers are focusing on tuning these controller gains. Two degrees of freedom PID controllers with tuning parameters individually without affecting the other parameters proposed [4]. Adaptive PID controller with particle swarm optimization used for automatic tuning based on strictly negative imaginary theory [5]. A nonlinear PID controller with Hurwitz stability theorem is used genetic algorithm is used for tuning the parameters [6]. Intelligent active force control integrated with PID controller is used to stabilize quadrotor and to compensate the external disturbances [7]. Backstepping control is well suited for stabilize nonlinear dynamic systems. It starts by defining a set of virtual control inputs then by using virtual control laws state variables are stabilized using recursive scheme. This paper proposed backstepping controller integrated with an auxiliary input saturation compensator, disturbance observer is employed and finite time stability is derived [8]. An adaptive neural tracking control law based back stepping control is designed which avoids singularity problem of virtual controls [9]. For quadrotor slung load, a nonlinear backstepping controller is used by introducing virtual thrust force for position control [10]. An adaptive backstepping controller is designed to overcome the problem of unknown input gains and improves tracking performance [11]. Robust backstepping control proposed the wind estimator is designed using neural networks levenberg marquart algorithm with back propagation [12]. Sliding mode controller, sliding surface is designed and controller is designed to derive the state trajectory onto the sliding surface and then maintain it there. It is a robust and nonlinear control technique and its main drawback is chattering problem. Both PID and sliding mode controller are designed by using iteration method coefficients are tuned [13]. Non singular fast terminal sliding mode control is proposed and to estimate the unknown external disturbances a nonlinear disturbance observer is designed for robust performance [14]. An adaptive fractional order nonsingular fast terminal sliding mode controller is designed for fast time convergence and reject uncertainties [15]. An adaptive sliding mode controller is proposed and these adaptive laws are used to detect actuator faults and improve the stability [16]. Sliding mode controller is integrated with neural network algorithm, which results in time varying sliding surfaces [17]. To estimate upper bounds of disturbance and physical parameters adaptive
second order system based sliding mode controller is designed [18]. Sliding mode controller integrated with fuzzy network is proposed to compensate the external disturbances [19]. Appointed fixed time sliding mode controller is designed and its stability is verified using Lyapunov theorem [20]. Robust sliding mode controller with PID controller is designed observer estimate the disturbances and ensures exponential convergence [21]. Sliding mode controller is integrated with iterative learning control, this algorithm force the state trajectory on to the sliding surface without need of accurate dynamics of quadrotor [22]. A gain scheduling based SMC law is synthesized to compensate the presence of uncertainties in the system and it is integrated with nonlinear disturbance observer to reduce disturbances [23]. This paper presents sliding mode backstepping controller with new Lyapunov based adaptive law to compensate the external disturbances. This control strategy is effective for trajectory tracking of quadrotor as it combines the advantages of both sliding mode controller and back stepping controller. This approach offers robust and accurate trajectory tracking capabilities in the presence of external disturbances and complex dynamics. The main contribution of the paper is summarized as follows. i) The quadrotor model is developed by considering aerodynamic friction torques gyroscopic effects and drag forces. ii) The state space model is designed by considering all system nonlinearities. iii) Backstepping sliding mode controller is designed. iv) Lyapunov based new adaptive law is synthesized to compensate the disturbances. The rest of the paper is arranged as follows. Section II describes the modeling of the quadrotor. Section III describes the controller design and laws. Section IV presents simulation results of the proposed controller. Section V carries the conclusion.

II. QUADROTOR DYNAMIC MODELLING:

In this section we will discuss the mathematical model of a symmetrical rigid quadrotor based on Newton-Euler formulation. Quadrotor is equipped with four rotors that are directed upwards. It is an underactauted system with four inputs to control six degrees of freedom. Input thrust is generated by four propellers, which can be controlled. Six degrees of freedom in space includes translation motion x, y and z in three directions and rotational motion roll, pitch and yaw around three axes. For the quadrotor kinematic and dynamic equations are derived in both the inertial frame and the body fixed frame, assuming that the center of gravity of the quadrotor coincides with the origin of the body fixed frame. The transformation from the inertial reference frame to the body fixed reference frame of the quadrotor is given by a rotational matrix.
$R_{i}^{b}(\phi, \theta, \psi)=\left(\begin{array}{ccc}c \theta c \psi & c \theta s \psi & -s \theta \\ s \phi s \theta c \psi-c \phi s \psi & s \phi s \theta s \psi+c \phi c \psi & s \phi c \theta \\ c \phi s \theta c \varphi+s \phi s \psi & c \phi s \theta s \psi-s \phi c \psi & c \phi c \theta\end{array}\right)$
where $c \triangleq \cos$ and $s \triangleq \sin$.
The position derivative vector P is in the inertial frame and the velocity vector V is in the body frame. They can be related to each other through a rotational matrix such as $P=R_{i}^{b}(\phi, \theta, \psi) V$ where $P=(\dot{x}, \dot{y}, \dot{z})^{T}$ and $V=(u, v, w)^{T}$, and the angular derivative vector $\mathrm{R}=(p, q, r)^{T}$ and angular velocity vector $\mathrm{A}=\left(\begin{array}{lll}\dot{\phi} & \dot{\theta} & \dot{\psi}\end{array}\right)^{T}$ are related by the equation
$\left(\begin{array}{l}\dot{\phi} \\ \dot{\theta} \\ \dot{\psi}\end{array}\right)=\left(\begin{array}{ccc}1 & \mathrm{~s}(\phi) \mathrm{t}(\theta) & \mathrm{c}(\phi) \mathrm{t}(\theta) \\ 0 & \mathrm{c}(\phi) & -\mathrm{s}(\phi) \\ 0 & \mathrm{~s}(\phi) \sec (\theta) & \mathrm{c}(\phi) \sec (\theta)\end{array}\right)\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$
where $s()=.\sin (),. t()=.\tan ($.$) and c()=.\cos ($.
Translational dynamic equations of the quadrotor can be written by using Newton's laws as below
$\dot{V}=\left(\begin{array}{ccc}0 & -r & q \\ r & 0 & -p \\ -q & p & 0\end{array}\right) V$
Above matrix is skew symmetric matrix.
$m \dot{P}=F_{r}+F_{g}+F_{d}$
Where total mass of the quadrotor is represented by m, F_{r} is the resultant forces which are generated by the four rotors, F_{g} is the force of the gravity and F_{d} is the resultant drag forces along translation axis which are given as
$F_{r}=\left(\begin{array}{c}c \phi s \theta c \psi+s \phi s \psi \\ c \phi s \theta s \psi-s \phi c \psi \\ c \phi c \theta\end{array}\right) U_{1}$
where $c()=.\cos ($.$) and s()=.\sin ($.$) respectively$
$F_{g}=\left[\begin{array}{lll}0 & 0 & -m g\end{array}\right]^{T}$
$F_{d}=\left(\begin{array}{ccc}-K_{d x} & 0 & 0 \\ 0 & -K_{d y} & 0 \\ 0 & 0 & -K_{d z}\end{array}\right) P$
Such as $K_{d x}, K_{d y}$ and $K_{d z}$ are the translation drag coefficients.
Rotational dynamic equations of the quadrotor can be derived by using Newton's laws as follows
$\dot{A}=-A \times J_{b} A+\tau_{r}-\tau_{a}-\tau_{g}$
where J_{b} is the matrix that represents quadrotor constant inertia in a symmetric manner
$J_{b}=\left(\begin{array}{ccc}J_{x} & 0 & 0 \\ 0 & J_{y} & 0 \\ 0 & 0 & J_{z}\end{array}\right)$
Rotor torques developed by the quadrotor is denoted by τ_{r} and it is expressed as follows
$\tau_{r}=\left(\begin{array}{l}l U_{2} \\ l U_{3} \\ U_{4}\end{array}\right)$
τ_{a} is the aerodynamic frictions torques expressed as follows
$\tau_{a}=\left(\begin{array}{ccc}K_{a x} & 0 & 0 \\ 0 & K_{a y} & 0 \\ 0 & 0 & K_{a z}\end{array}\right) R^{2}$
$K_{a x}, K_{a y}$ and $K_{a z}$ are the aerodynamic friction coefficients
τ_{g} is the resultant torque caused by the gyroscopic
effects which is expressed as
$\tau_{g}=\sum_{i=1}^{4} R \times J_{r}(-1)^{i+1} \Omega$
J_{r} is the rotor inertia and Ω is the rotor speed of the quadrotor expressed as
$\Omega=\Omega_{1}-\Omega_{2}+\Omega_{3}-\Omega_{4}$
The control inputs are derived using angular velocities as
$\left[\begin{array}{l}U_{1} \\ U_{2} \\ U_{3} \\ U_{4}\end{array}\right]=\left(\begin{array}{cccc}K_{P} & K_{P} & K_{P} & K_{P} \\ -K_{P} & 0 & K_{P} & 0 \\ 0 & -K_{P} & 0 & K_{P} \\ K_{d} & -K_{d} & K_{d} & -K_{d}\end{array}\right)\left[\begin{array}{l}\Omega_{1}{ }^{2} \\ \Omega_{2}{ }^{2} \\ \Omega_{3}{ }^{2} \\ \Omega_{4}{ }^{2}\end{array}\right]$
where K_{P} and K_{d} are the thrust and drag coefficients respectively.
Quadrotor uses four rotors powered by DC motors and the rotor model is expressed as

$$
\begin{equation*}
\sum_{i=1}^{4} \dot{\Omega}_{\mathrm{i}}=b \sum_{i=1}^{4} V_{i}-\beta_{0}-\beta_{1} \sum_{i=1}^{4} \Omega_{\mathrm{i}}-\beta_{2} \sum_{i=1}^{4} \Omega_{\mathrm{i}}^{2} \tag{15}
\end{equation*}
$$

III. CONTROLLER DESIGN

The above quadrotor mathematical model can be represented by the state space model as $\dot{X}=f(X, U)$
The symbols X and U represent the state vector and control inputs, respectively
$X=\left[\begin{array}{llllllllllll}\phi & \dot{\phi} & \theta & \dot{\theta} & \psi & \dot{\psi} & x & \dot{x} & y & \dot{y} & z & \dot{z}\end{array}\right]^{T}$
$U=\left[\begin{array}{llll}U_{1} & U_{2} & U_{3} & U_{4}\end{array}\right]^{T}$
$\ddot{\phi}=\frac{\left(J_{y}-J_{z}\right)}{J_{x}} q r+\frac{l}{J_{x}} U_{2}-\frac{1}{J_{x}}\left(K_{a x} \dot{\phi}^{2}-J_{r} \Omega \dot{\theta}\right)$
$\ddot{\theta}=\frac{J_{z}-J_{x}}{J_{y}} p r+\frac{l}{J_{y}} U_{3}-\frac{1}{J_{y}}\left(K_{a y} \dot{\theta}^{2}+J_{r} \Omega \dot{\phi}\right)$
$\ddot{\psi}=\frac{J_{x}-J_{y}}{J_{z}} p q+\frac{1}{J_{z}} U_{4}-\frac{1}{J_{z}} K_{a z} \dot{\psi}^{2}$
$\ddot{x}=(c \phi s \theta c \psi+s \phi s \psi) \frac{U_{1}}{m}-\frac{K_{d x}}{m} \dot{x}$
$\ddot{y}=(c \phi s \theta s \psi-s \phi c \psi) \frac{U_{1}}{m}-\frac{K_{d y}}{m} \dot{y}$
$\ddot{z}=(c \phi c \theta) \frac{U_{1}}{m}-g-\frac{K_{d z}}{m} \dot{z}$
This non linear dynamic model can be represented in state space model with external disturbance as follows.
$\dot{\phi}=\dot{x}_{1}=x_{2}$
$\ddot{\phi}=\dot{x}_{2}=a_{1} x_{4} x_{6}+a_{2} x_{2}^{2}+a_{3} \Omega x_{4}+b_{1} U_{2}+d_{\emptyset}$
$\dot{\theta}=\dot{x}_{3}=x_{4}$
$\ddot{\theta}=\dot{x}_{4}=a_{4} x_{2} x_{6}+a_{5} x_{4}^{2}+a_{6} \Omega x_{2}+b_{2} U_{3}+d_{\theta}$
$\dot{\psi}=\dot{x}_{5}=x_{6}$
$\ddot{\psi}=\dot{x}_{6}=a_{7} x_{2} x_{4}+a_{8} x_{6}^{2}+b_{3} U_{4}+d_{\psi}$
$\dot{x}=\dot{x}_{7}=x_{8}$
$\ddot{x}=\dot{x}_{8}=a_{9} x_{8}+\left(U_{x} * \frac{U_{1}}{m}\right)+d_{x}$
$\dot{y}=\dot{x}_{9}=x_{10}$
$\ddot{y}=\dot{x}_{10}=a_{10} x_{10}+\left(U_{y} * \frac{U_{1}}{m}\right)+d_{y}$
$\dot{z}=\dot{x}_{11}=x_{12}$
$\ddot{z}=\dot{x}_{12}=a_{11} x_{12}+\left(U_{1} * \frac{\left(C x_{1} * C x_{3}\right)}{m}\right)-g+d_{z}$
where

$$
\begin{equation*}
a_{1}=\frac{J_{y}-J_{z}}{J_{x}}, a_{4}=\frac{J_{z}-J_{x}}{J_{y}}, a_{7}=\frac{J_{x}-J_{y}}{J_{z}} \tag{36}
\end{equation*}
$$

$a_{2}=\frac{-K_{a x}}{J_{x}}, a_{5}=\frac{-K_{a y}}{J_{y}}, a_{8}=\frac{-K_{a z}}{J_{z}}$
$a_{3}=\frac{-J_{r}}{J_{x}}, a_{6}=\frac{-J_{r}}{J_{y}}$
$a_{9}=\frac{-K_{d x}}{m}, a_{10}=\frac{-K_{d y}}{m}, a_{11}=\frac{-K_{d z}}{m}$
$b_{1}=\frac{l}{J_{x}}, b_{2}=\frac{l}{J_{y}}, b_{3}=\frac{1}{J_{z}}$
$U_{x}=C x_{1} * S x_{3} * C x_{5}+S x_{1} * S x_{5}$
$U_{y}=C x_{1} * S x_{3} * C x_{5}-S x_{1} * C x_{5}$

Backstepping Sliding mode control:

This section introduces the SMC technique combined with Back-Stepping control technique and introduces an adaptive reaching law to create a robust controller for position trajectory tracking. As it combines advantages of both SMC and Back-stepping controllers, the sliding mode control is an effective approach for addressing nonlinear tracking problems that involve model uncertainties and external disturbances and back-stepping controller offers precise tracking and stable performance for quadrotor. An adaptive reaching law is proposed which dynamically adjusts the control inputs while handling external disturbances to ensure robust performance and to guide a system to a desired trajectory.

1. Roll Control:

Roll Error is defined as
$e_{1}=x_{1 d}-x_{1}$
where e_{1} is error, $x_{1 d}$ is desired roll and x_{1} is actual roll
Differentiating the roll error
$\dot{e}_{1}=\dot{x}_{1 d}-\dot{x}_{1}$
Substituting from equation no. 24
$\dot{e}_{1}=\dot{x}_{1 d}-x_{2}$
The sliding surface S_{\emptyset} is defined and v_{1} is virtual control
$e_{2}=S_{\emptyset}=x_{2}-v_{1}$
$x_{2}=S_{\emptyset}-v_{1}$
$\dot{e}_{1}=\dot{x}_{1 d}-S_{\emptyset}+v_{1}$
The Lyapunov candidate chosen for this is
$V_{1}=\frac{1}{2} e_{1}^{2}$
Derivative of V_{1} is
$\dot{V}_{1}=e_{1} \dot{e}_{1}$
$\dot{V}_{1}=e_{1}\left(\dot{x}_{1 d}+v_{1}-S_{\emptyset}\right)$
The virtual control v_{1} is designed to stabilize Lyapunov function as
$v_{1}=-\dot{x}_{1 d}-c_{1} e_{1}$
$\dot{V}_{1}=e_{1}\left(-c_{1} e_{1}-S_{\emptyset}\right)$
$\dot{V}_{1}=-c_{1} e_{1}^{2}-e_{1} S_{\emptyset}<0$
where c_{1} is positive constant, and the subsystem is asymptotically stable.
The sliding surface time derivative is
$\dot{e}_{2}=\dot{S}_{\emptyset}=\dot{v}_{1}+\dot{x}_{2}$
Lyapunov candidate chosen for this system is
$V_{2}\left(e_{1}, S_{\varnothing}\right)=\frac{1}{2}\left(e_{1}^{2}+S_{\emptyset}^{2}\right)$
Time derivative of the Lyapunov function is
$\dot{V}_{2}\left(e_{1}, S_{\varnothing}\right)=e_{1} \dot{e}_{1}+S_{\emptyset} \dot{S}_{\emptyset}$
Necessary sliding condition required to stabilize is
$\dot{S}_{\varnothing}=-q_{1} \operatorname{sign}\left(S_{\varnothing}\right)-k_{1} S_{\varnothing}$
$\dot{V}_{2}\left(e_{1}, S_{\varnothing}\right)=-c_{1} e_{1}^{2}-e_{1} S_{\varnothing}+S_{\varnothing}\left(-q_{1} \operatorname{sign}\left(S_{\varnothing}\right)-k_{1} S_{\varnothing}\right)$
$\dot{V}_{2}\left(e_{1}, S_{\emptyset}\right)=-c_{1} e_{1}^{2}-e_{1} S_{\emptyset}-q_{1} \operatorname{sign}\left(S_{\emptyset}\right) S_{\emptyset}-k_{1} S_{\varnothing}^{2}$
$\dot{V}_{2}\left(e_{1}, S_{\emptyset}\right)=-c_{1} e_{1}^{2}-e_{1} S_{\emptyset}-q_{1} \operatorname{sign}\left(S_{\emptyset}\right) S_{\emptyset}-k_{1} S_{\emptyset}^{2}<0$
System is asymptotically stable and control input can be obtained by
$\dot{S}_{\varnothing}=-q_{1} \operatorname{sign}\left(S_{\varnothing}\right)-k_{1} S_{\varnothing}$
$\dot{S}_{\emptyset}=-\ddot{x}_{1 d}-c_{1} \dot{e}_{1}+\dot{x}_{2}$
$-q_{1} \operatorname{sign}\left(S_{\emptyset}\right)-k_{1} S_{\emptyset}=-\ddot{x}_{1 d}-c_{1} \dot{e}_{1}+a_{1} x_{4} x_{6}+a_{2} x_{2}^{2}+a_{3} \Omega x_{4}+b_{1} U_{2}$
$U_{2}=\frac{1}{b_{1}}\left(-q_{1} \operatorname{sign}\left(S_{\emptyset}\right)-k_{1} S_{\emptyset}+\ddot{x}_{1 d}+c_{1} \dot{e}_{1}-a_{1} x_{4} x_{6}-a_{2} x_{2}^{2}-a_{3} \Omega x_{4}\right)$
In this control input an adaptive control law which is proposed to compensate the external disturbances.
$q_{1}=k_{\text {bar } 1} *\left|S_{\emptyset}\right|$
where $k_{\text {bar } 1}$ is a controller gain and q_{1} is a state variable whose value changes.

2. Pitch Control:

Pitch error is defined as
$e_{3}=x_{3 d}-x_{3}$
Where e_{3} is error, $x_{3 d}$ is desired pitch and x_{3} is actual pitch
Differentiating the pitch error
$\dot{e}_{3}=\dot{x}_{3 d}-\dot{x}_{3}$
Substituting from equation no. 26
$\dot{e}_{3}=\dot{x}_{3 d}-x_{4}$
The sliding surface S_{θ} is defined and v_{3} is virtual control
$x_{4}=S_{\theta}-v_{3}$
$\dot{e}_{3}=\dot{x}_{3 d}-S_{\theta}+v_{3}$
The Lyapunov candidate chosen for this is
$V_{3}=\frac{1}{2} e_{3}^{2}$
Derivative of V_{3} is
$\dot{V}_{3}=e_{3} \dot{e}_{3}$
$\dot{V}_{3}=e_{3}\left(\dot{x}_{3 d}+v_{3}-S_{\theta}\right)$
Virtual control v_{3} is designed to stabilize Lyapunov function as
$v_{3}=-\dot{x}_{3 d}-c_{3} e_{3}$
$\dot{V}_{3}=e_{3}\left(-c_{3} e_{3}-S_{\theta}\right)$
$\dot{V}_{3}=-c_{3} e_{3}^{2}-e_{3} S_{\theta}<0$
c_{3} is positive constant and the subsystem is asymptotically stable.
The sliding surface time derivative is
$\dot{e}_{4}=\dot{S}_{\theta}=\dot{v}_{3}+\dot{x}_{4}$
Lyapunov candidate chosen for this system is
$V_{4}\left(e_{3}, S_{\theta}\right)=\frac{1}{2}\left(e_{3}^{2}+S_{\theta}^{2}\right)$
Time derivative of the Lyapunov function is
$\dot{V}_{4}\left(e_{3}, S_{\theta}\right)=e_{3} \dot{e}_{3}+S_{\theta} \dot{S}_{\theta}$
Necessary sliding condition required to stabilize is
$\dot{S}_{\theta}=-q_{2} \operatorname{sign}\left(S_{\theta}\right)-k_{2} S_{\theta}$
$\dot{V}_{4}\left(e_{3}, S_{\theta}\right)=-c_{3} e_{3}^{2}-e_{3} S_{\theta}+S_{\theta}\left(-q_{2} \operatorname{sign}\left(S_{\theta}\right)\right.$
$-k_{2} S_{\theta}$)
$\dot{V}_{4}\left(e_{3}, S_{\theta}\right)=-c_{3} e_{3}^{2}-e_{3} S_{\theta}-q_{2} \operatorname{sign}\left(S_{\theta}\right) S_{\theta}-\overline{k_{2}} S_{\theta}^{2}$
$\dot{V}_{4}\left(e_{3}, S_{\theta}\right)=-c_{3} e_{3}^{2}-e_{3} S_{\theta}-q_{2} \operatorname{sign}\left(S_{\theta}\right) S_{\theta}-k_{2} S_{\theta}^{2}<0$
System is asymptotically stable and control input can be obtained by
$\dot{S}_{\theta}=-q_{2} \operatorname{sign}\left(S_{\theta}\right)-k_{2} S_{\theta}$
$\dot{S}_{\theta}=-\ddot{x}_{3 d}-c_{3} \dot{e}_{3}+\dot{x}_{4}$
$-q_{2} \operatorname{sign}\left(S_{\theta}\right)-k_{2} S_{\theta}=-\ddot{x}_{3 d}-c_{3} \dot{e}_{3}+a_{4} x_{2} x_{6}+a_{5} x_{4}^{2}+a_{6} \Omega x_{2}+b_{2} U_{3}$
$U_{3}=\frac{1}{b_{2}}\left(-q_{2} \operatorname{sign}\left(S_{\theta}\right)-k_{2} S_{\theta}+\ddot{x}_{3 d}+c_{3} \dot{e}_{3}-a_{4} x_{2} x_{6}-a_{5} x_{4}^{2}-a_{6} \Omega x_{2}\right)$
In this control input an adaptive control law which is proposed to compensate the external disturbances.
$q_{2}=k_{b a r 2} *\left|S_{\theta}\right|$
where $k_{\text {bar } 2}$ is a controller gain and q_{2} is a state variable whose value changes.
3.Yaw Control:

Yaw error is defined as
$e_{5}=x_{5 d}-x_{5}$
Where e_{5} is error, $x_{5 d}$ is desired yaw and x_{5} is actual yaw
Differentiating the yaw error
$\dot{e}_{5}=\dot{x}_{5 d}-\dot{x}_{5}$
Substituting from equation no. 28
$\dot{e}_{5}=\dot{x}_{5 d}-x_{6}$
The sliding surface S_{ψ} is defined and v_{5} is virtual control
$e_{6}=S_{\psi}=x_{6}-v_{5}$
$x_{6}=S_{\psi}-v_{5}$
$\dot{e}_{5}=\dot{x}_{5 d}-S_{\psi}+v_{5}$
The Lyapunov candidate chosen for this is
$V_{5}=\frac{1}{2} e_{5}^{2}$
Derivative of V_{5} is
$\dot{V}_{5}=e_{5} \dot{e}_{5}$
$\dot{V}_{5}=e_{5}\left(\dot{x}_{5 d}+v_{5}-S_{\psi}\right)$
Virtual control v_{5} is designed to stabilize Lyapunov function as
$v_{5}=-\dot{x}_{5 d}-c_{5} e_{5}$
$\dot{V}_{5}=e_{5}\left(-c_{5} e_{5}-S_{\psi}\right)$
$\dot{V}_{5}=-c_{5} e_{5}^{2}-e_{5} S_{\psi}<0$
c_{5} is positive constant and the subsystem is asymptotically stable.
The sliding surface time derivative is
$\dot{e}_{6}=\dot{S}_{\psi}=\dot{v}_{5}+\dot{x}_{6}$
Lyapunov candidate function chosen for this system is
$V_{6}\left(e_{5}, S_{\psi}\right)=\frac{1}{2}\left(e_{5}^{2}+S_{\psi}^{2}\right)$
Time derivative of the Lyapunov function is
$\dot{V}_{6}\left(e_{5}, S_{\psi}\right)=e_{5} \dot{e}_{5}+S_{\psi} \dot{S}_{\psi}$
Necessary sliding condition required to stabilize is
$\dot{V}_{6}\left(e_{5}, S_{\psi}\right)=-c_{5} e_{5}^{2}-e_{5} S_{\psi}+S_{\psi}\left(-q_{3} \operatorname{sign}\left(S_{\psi}\right)-k_{3} S_{\psi}\right)$
$\dot{V}_{6}\left(e_{5}, S_{\psi}\right)=-c_{5} e_{5}^{2}-e_{5} S_{\psi}-q_{3} \operatorname{sign}\left(S_{\psi}\right) S_{\psi}-k_{3} S_{\psi}^{2}$
$\dot{V}_{6}\left(e_{5}, S_{\psi}\right)=-c_{5} e_{5}^{2}-e_{5} S_{\psi}-q_{3} \operatorname{sign}\left(S_{\psi}\right) S_{\psi}-k_{3} S_{\psi}^{2}<0$
System is asymptotically stable and control input can be obtained by
$\dot{S}_{\psi}=-q_{3} \operatorname{sign}\left(S_{\psi}\right)-k_{3} S_{\psi}$
$\dot{S}_{\psi}=-\ddot{x}_{5 d}-c_{5} \dot{e}_{5}+\dot{x}_{6}$
$-q_{3} \operatorname{sign}\left(S_{\psi}\right)-k_{3} S_{\psi}=-\ddot{x}_{5 d}-c_{5} \dot{e}_{5}+a_{7} x_{2} x_{4}+a_{8} x_{6}^{2}+b_{3} U_{4}$
$U_{4}=\frac{1}{b_{3}}\left(-q_{3} \operatorname{sign}\left(S_{\psi}\right)-k_{3} S_{\psi}+\ddot{x}_{5 d}+c_{5} \dot{e}_{5}-a_{7} x_{2} x_{4}-a_{8} x_{6}^{2}\right)$
In this control input an adaptive control law which is proposed to compensate the external disturbances.
$q_{3}=k_{b a r 3} *\left|S_{\psi}\right|$
where $k_{\text {bar } 3}$ is a controller gain and q_{3} is a state variable whose value changes.

4. Horizontal X-Position Control:

X -position error is defined as
$e_{7}=x_{7 d}-x_{7}$
Where e_{7} is error, $x_{7 d}$ is desired x -axis position and x_{7} is actual x -axis position
Differentiating the x -axis position error is

$$
\begin{equation*}
\dot{e}_{7}=\dot{x}_{7 d}-\dot{x}_{7} \tag{116}
\end{equation*}
$$

Substituting from equation no. 30
$\dot{e}_{7}=\dot{x}_{7 d}-x_{8}$
The sliding surface S_{x} is defined and v_{7} is virtual control
$e_{8}=S_{x}=x_{8}-v_{7}$
$x_{8}=S_{x}-v_{7}$
$\dot{e}_{7}=\dot{x}_{7 d}-S_{x}+v_{7}$
The Lyapunov candidate chosen for this is
$V_{7}=\frac{1}{2} e_{7}^{2}$
Derivative of V_{7} is
$\dot{V}_{7}=e_{7} \dot{e}_{7}$
$\dot{V}_{7}=e_{7}\left(\dot{x}_{7 d}+v_{7}-S_{x}\right)$
$\dot{V}_{7}=-c_{7} e_{7}^{2}-e_{7} S_{x}<0$
$\dot{e}_{8}=\dot{S}_{x}=\dot{v}_{7}+\dot{x}_{8}$
$V_{8}\left(e_{7}, S_{x}\right)=\frac{1}{2}\left(e_{7}^{2}+S_{x}^{2}\right)$
Time derivative of the Lyapunov function is
$\dot{V}_{8}\left(e_{7}, S_{x}\right)=e_{7} \dot{e}_{7}+S_{x} \dot{S}_{x}$
Necessary sliding condition to be stabilize is
$\dot{S}_{x}=-q_{4} \operatorname{sign}\left(S_{x}\right)-k_{4} S_{x}$
$\dot{V}_{8}\left(e_{7}, S_{x}\right)=-c_{7} e_{7}^{2}-e_{7} S_{x}+S_{x}\left(-q_{4} \operatorname{sign}\left(S_{x}\right)-k_{4} S_{x}\right)$
$\dot{V}_{8}\left(e_{7}, S_{x}\right)=-c_{7} e_{7}^{2}-e_{7} S_{x}-q_{4} \operatorname{sign}\left(S_{x}\right) S_{x}-k_{4} S_{x}^{2}$
$\dot{V}_{8}\left(e_{7}, S_{x}\right)=-c_{7} e_{7}^{2}-e_{7} S_{x}-q_{4} \operatorname{sign}\left(S_{x}\right) S_{x}-k_{4} S_{x}^{2}<0$
System is asymptotically stable and control input can be obtained by

$$
\begin{align*}
& \dot{S}_{x}=-q_{4} \operatorname{sign}\left(S_{x}\right)-k_{4} S_{x} \tag{134}\\
& \dot{S}_{x}=-\ddot{x}_{7 d}-c_{7} \dot{e}_{7}+\dot{x}_{8} \tag{135}\\
& -q_{4} \operatorname{sign}\left(S_{x}\right)-k_{4} S_{x}=-\ddot{x}_{7 d}-c_{7} \dot{e}_{7}+a_{9} x_{8}+\left(U_{x} * \frac{U_{1}}{m}\right) \tag{136}\\
& U_{x}=\frac{m}{U_{1}}\left(-q_{4} \operatorname{sign}\left(S_{x}\right)-k_{4} S_{x}+\ddot{x}_{7 d}+c_{7} \dot{e}_{7}-a_{9} x_{8}\right) \tag{137}
\end{align*}
$$

In this control input an adaptive control law which is proposed to compensate the external disturbances.
$q_{4}=k_{b a r 4} *\left|S_{x}\right|$
where $k_{\text {bar } 4}$ is a controller gain and q_{4} is a state variable whose value changes.

5. Horizontal Y-Position Control:

Y-position error is defined as

$$
\begin{equation*}
e_{9}=x_{9 d}-x_{9} \tag{139}
\end{equation*}
$$

Where e_{9} is error, $x_{9 d}$ is desired y-axis position and x_{9} is actual y -axis position

Differentiating the y-axis position error is
$\dot{e}_{9}=\dot{x}_{9 d}-\dot{x}_{9}$
Substituting from equation no. 32
$\dot{e}_{9}=\dot{x}_{9 d}-x_{10}$
The sliding surface S_{y} is defined and v_{9} is virtual control
$e_{10}=S_{y}=x_{10}-v_{9}$
$x_{10}=S_{y}-v_{9}$
$\dot{e}_{9}=\dot{x}_{9 d}-S_{y}+v_{9}$
The Lyapunov candidate chosen for this is
$V_{9}=\frac{1}{2} e_{9}^{2}$
Derivative of V_{9} is
$\dot{V}_{9}=e_{9} \dot{e}_{9}$
$\dot{V}_{9}=e_{9}\left(\dot{x}_{9 d}+v_{9}-S_{y}\right)$
Virtual control v_{9} is designed to stabilize Lyapunov function
$v_{9}=-\dot{x}_{9 d}-c_{9} e_{9}$
$\dot{V}_{9}=e_{9}\left(-c_{9} e_{9}-S_{y}\right)$
$\dot{V}_{9}=-c_{9} e_{9}^{2}-e_{9} S_{y}<0$
where c_{9} is positive constant the subsystem is asymptotically stable.
The sliding surface time derivative is
$\dot{e}_{10}=\dot{S}_{y}=\dot{v}_{9}+\dot{x}_{10}$
Lyapunov candidate chosen for this system is
$V_{10}\left(e_{9}, S_{y}\right)=\frac{1}{2}\left(e_{9}^{2}+S_{y}^{2}\right)$
Time derivative of the Lyapunov function is
$\dot{V}_{10}\left(e_{9}, S_{y}\right)=e_{9} \dot{e}_{9}+S_{y} \dot{S}_{y}$
Necessary sliding condition required to stabilize is
$\dot{S}_{y}=-q_{5} \operatorname{sign}\left(S_{y}\right)-k_{5} S_{y}$
$\dot{V}_{10}\left(e_{9}, S_{y}\right)=-c_{9} e_{9}^{2}-e_{9} S_{y}+S_{y}\left(-\overline{q_{5}} \operatorname{sign}\left(S_{y}\right)-k_{5} S_{y}\right)$
$\dot{V}_{10}\left(e_{9}, S_{y}\right)=-c_{9} e_{9}^{2}-e_{9} S_{y}-q_{5} \operatorname{sign}\left(S_{y}\right) S_{y}-\bar{k}_{5} S_{y}^{2}$
$\dot{V}_{10}\left(e_{9}, S_{y}\right)=-c_{9} e_{9}^{2}-e_{9} S_{y}-q_{5} \operatorname{sign}\left(S_{y}\right) S_{y}-k_{5} S_{y}^{2}<0$
System is asymptotically stable and control input can be obtained by
$\dot{S}_{y}=-q_{5} \operatorname{sign}\left(S_{y}\right)-k_{5} S_{y}$
$\dot{S}_{y}=-\ddot{x}_{9 d}-c_{9} \dot{e}_{9}+\dot{x}_{10}$
$-q_{5} \operatorname{sign}\left(S_{y}\right)-k_{5} S_{y}=-\ddot{x}_{9 d}-c_{9} \dot{e}_{9}+a_{10} x_{10}+\left(U_{y} * \frac{U_{1}}{m}\right)$
$U_{y}=\frac{m}{U_{1}}\left(-q_{5} \operatorname{sign}\left(S_{y}\right)-k_{5} S_{y}+\ddot{x}_{9 d}+c_{9} \dot{e}_{9}-a_{10} x_{10}\right)$
In this control input an adaptive control law which is proposed to compensate the external disturbances.
$q_{5}=k_{\text {bar } 5} *\left|S_{y}\right|$
where $k_{\text {bar } 5}$ is a controller gain and q_{5} is a state variable whose value changes

6. Height Control:

Z-position error is defined as

$$
\begin{equation*}
e_{11}=x_{11 d}-x_{11} \tag{163}
\end{equation*}
$$

where e_{11} is error, $x_{11 d}$ is desired z -axis position and x_{11} is actual z -axis position
Differentiating the z -axis position error
$\dot{e}_{11}=\dot{x}_{11 d}-\dot{x}_{11}$
Substituting from equation no. 34
$\dot{e}_{11}=\dot{x}_{11 d}-x_{12}$
The sliding surface S_{z} is defined and v_{11} is virtual control
$e_{12}=S_{z}=x_{12}-v_{11}$
$x_{12}=S_{z}-v_{11}$
$\dot{e}_{11}=\dot{x}_{11 d}-S_{z}+v_{11}$
The Lyapunov candidate chosen for this is
$V_{11}=\frac{1}{2} e_{11}^{2}$
Derivative of V_{11} is
$\dot{V}_{11}=\mathrm{e}_{11} \dot{\mathrm{e}}_{11}$
$\dot{V}_{11}=e_{11}\left(\dot{x}_{11 d}+v_{11}-S_{z}\right)$
Virtual control v_{11} is designed to stabilize Lyapunov function as
$v_{11}=-\dot{x}_{11 d}-c_{11} e_{11}$
$\dot{V}_{11}=e_{11}\left(-c_{11} e_{11}-S_{z}\right)$
$\dot{V}_{11}=-c_{11} e_{11}^{2}-e_{11} S_{z}<0$
where c_{11} is positive constant the subsystem is asymptotically stable.
The sliding surface time derivative is

Lyapunov candidate chosen for this system is
$V_{12}\left(e_{11}, S_{z}\right)=\frac{1}{2}\left(e_{11}^{2}+S_{z}^{2}\right)$
Time derivative of the Lyapunov function is
$\dot{V}_{12}\left(e_{11}, S_{z}\right)=e_{11} \dot{e}_{11}+S_{z} \dot{S}_{z}$
Necessary sliding condition to be stabilize is
$\dot{S}_{z}=-q_{6} \operatorname{sign}\left(S_{z}\right)-k_{6} S_{z}$
$\dot{V}_{12}\left(e_{11}, S_{z}\right)=-c_{11} e_{11}^{2}-e_{11} S_{z}+S_{z}\left(-q_{6} \operatorname{sign}\left(S_{z}\right)-k_{6} S_{z}\right)$
$\dot{V}_{12}\left(e_{11}, S_{z}\right)=-c_{11} e_{11}^{2}-e_{1} S_{z}-q_{6} \operatorname{sign}\left(S_{z}\right) S_{z}-k_{6} S_{z}^{2}$
$\dot{V}_{12}\left(e_{11}, S_{z}\right)=-c_{11} e_{11}^{2}-e_{11} S_{11}-q_{6} \operatorname{sign}\left(S_{z}\right) S_{z}-k_{6} S_{z}^{2}<0$
System is asymptotically stable and control input can be obtained by
$\dot{S}_{z}=-q_{6} \operatorname{sign}\left(S_{z}\right)-k_{6} S_{z}$
$\dot{S}_{z}=-\ddot{x}_{11 d}-c_{11} \dot{e}_{11}+\dot{x}_{12}$
$-q_{6} \operatorname{sign}\left(S_{z}\right)-k_{6} S_{z}=-\ddot{x}_{11 d}-c_{11} \dot{e}_{11}+a_{11} x_{12}+\left(U_{1} * \frac{\left(C x_{1} * C x_{3}\right)}{m}\right)-g$
$U_{1}=\frac{m}{\left(C x_{1} * C x_{3}\right)}\left(-q_{6} \operatorname{sign}\left(S_{z}\right)-k_{6} S_{z}+\ddot{x}_{11 d}+c_{11} \dot{e}_{11}-a_{11} x_{12}+g\right)$
In this control input an adaptive control law which is proposed to compensate the external disturbances.
$q_{6}=k_{\text {bar } 6} *\left|S_{z}\right|$
where $k_{\text {bar } 6}$ is a controller gain and q_{6} is a state variable whose value changes.

IV. SIMULATION RESULTS

In this section, the performance of the proposed algorithm is compared with nominal SMC with backstepping controller in MATLAB simulation. The initial conditions $\phi\left(t_{0}\right), \theta\left(t_{0}\right), \psi\left(t_{0}\right), x\left(t_{0}\right), y\left(t_{0}\right)$ and $z\left(t_{0}\right)$ are set as $(0,0,0,0,0,0)$. The desired trajectory for the attitude and altitude $\left(\phi_{d}, \theta_{d}, \psi_{d}, x_{d}, y_{d}\right.$ and $\left.z_{d}\right)$ of the quadrotor are chosen as $(0,0,0, \sin (t), \cos (t)$ and $0.1 * t)$. External disturbances $d_{\emptyset}=2 * \sin (t), d_{\theta}=2 * \sin (t), d_{\psi}=2 * \sin (t), d_{x}=2 *$ $\sin (t), d_{y}=2 * \sin (t)$ and $d_{z}=2 * \sin (t)$ are added. The quadrotor physical parameters are given in [26] and control gain parameters are given in the table 4.1.

Table 4.1: Parameters of the controller

The parameters of the controller	Numerical value
$k_{\text {bar } 1}, k_{\text {bar } 2}$ and $k_{\text {bar } 3}$	2
$k_{\text {bar } 4}, k_{\text {bar } 5}$ and $k_{\text {bar } 6}$	1.5
$q_{1}, q_{2}, q_{3}, q_{4}, q_{5}$ and q_{6}	2

Fig. 1 Adaptive q_{1} value

To show the effectiveness of proposed adaptive control algorithm for trajectory tracking problem of quadrotor, simulation is conducted with a helical reference trajectory with red color lines and Actual trajectory with blue lines as shown in Fig. 2 and Fig.3. The Fig. 1 shows that the value of adaptive reaching law gain q_{1} is not constant and it is varying as per the proposed adaptive law in order to adjust the control input so that they can compensate the external disturbances. The Fig. 4 to Fig. 5 shows the output along the X -axis with Sliding Mode Back-Stepping Controller without adaptive control law and with adaptive control law.

Fig. 2 Trajectory tracking in three dimensions for Nominal Sliding Mode Back-Stepping Controller

Fig.4. Output of X-axis without Adaptive Control Law

Fig.6. Output of Y-axis without Adaptive Control Law

Fig. 3 Trajectory tracking in three dimensions for Adaptive control Law

Fig.5. Output of X-axis with Adaptive Control Law

Fig.7. Output of Y-axis with Adaptive Control Law

The Fig. 6 to Fig. 7 shows the output along the Y-axis with Sliding Mode Back-Stepping Controller without adaptive control law and with adaptive control law.

From the results one conclude that the system behavior of the proposed controller is robust against external disturbances. Also results obtained from the experiments suggest that performance of the proposed controller is better than nominal SMC with backstepping controller.

V. CONCLUSIONS

This article investigates the trajectory tracking problem of the quadrotor UAV in the presence of external disturbances. First nominal SMC with backstepping controller with reaching law is designed in MALAB. However, the system is unable to deal with
external disturbances to deal with this problem, an adaptive reaching law is designed that successfully estimates the external disturbances and improves trajectory tracking performance.

VI. REFERENCES

(1) Anezka Chovancova, Tomas Fico, Lubos Chovanec, Peter Hubinsky 2014. "Mathematical Modelling and Parameter Identification of Quadrotor." Sciencedirect Procedia Engineering Elsvier 96-172-181.
(2) Vanitha, N. Suthanthira, L. Manivannan, T. Meenakshi, and K. Radhika 2020. "Stability analysis of quadrotor using state space mathematical modeling." Materials Today: Proceedings 33: 4040-4043.
(3) Liang, Weisheng, Zheng Chen, and Bin Yao 2021. "Geometric adaptive robust hierarchical control for quadrotors with aerodynamic damping and complete inertia compensation." IEEE Transactions on Industrial Electronics 69, no. 12: 13213-13224.
(4) Balaguer, Vicente, Antonio González, Pedro García, and Francisco Blanes 2021. "Enhanced 2-DOF PID controller tuning based on an uncertainty and disturbance estimator with experimental validation." IEEE Access 9: 99092-99102.
(5) Tran, Vu Phi, Fendy Santoso, and Matthew A. Garratt 2021. "Adaptive trajectory tracking for quadrotor systems in unknown wind environments using particle swarm optimization-based strictly negative imaginary controllers." IEEE transactions on aerospace and electronic systems 57, no.3: 1742-1752.
(6) Najm, Aws Abdulsalam, and Ibraheem Kasim Ibraheem 2019."Nonlinear PID controller design for a 6-DOF UAV quadrotor system." Engineering Science and Technology, an International Journal 22, no. 4: 1087-1097.
(7) Abdelmaksoud, Sherif I., Musa Mailah, and Ayman M. Abdallah 2020. "Robust intelligent self-tuning active force control of a quadrotor with improved body jerk performance." IEEE Access 8: 150037-150050.
(8) Jiang, Tao, Defu Lin, and Tao Song 2018. "Finite-time backstepping control for quadrotors with disturbances and input constraints." IEEE Access 6: 62037-62049.
(9) Wang, Mingyu, Bing Chen, and Chong Lin 2020. "Fixed-time Backstepping control of quadrotor trajectory tracking based on neural network." IEEE Access 8: 177092-177099.
(10) Yu, Gan, David Cabecinhas, Rita Cunha, and Carlos Silvestre 2019. "Nonlinear backstepping control of a quadrotorslung load system." IEEE/ASME Transactions On Mechatronics 24, no. 5: 2304-2315.
(11) Huang, Jeng-Tze, and Yu-Wei Jiang 2023. "Robust Adaptive Backstepping Control of Quadrotors With Unknown Input Gains." IEEE Access 11: 33069-33079.
(12) Liu, Peng, Run Ye, Kaibo Shi, and Bin Yan 2021. "Full backstepping control in dynamic systems with air disturbances optimal estimation of a quadrotor." IEEE Access 9: 34206-34220.
(13) Cömert, Ceren, and Coşku Kasnakoğlu 2017. "Comparing and developing PID and sliding mode controllers for quadrotor." International Journal of Mechanical Engineering and Robotics Research 6, no. 3: 194-199.
(14) Tripathi, Vibhu Kumar, Subhash Chand Yogi, Archit Krishna Kamath, Laxmidhar Behera, Nishchal K. Verma, and Saeid Nahavandi 2021. "A disturbance observer-based intelligent finite-time sliding mode flight controller design for an autonomous quadrotor." IEEE Systems Journal 16, no. 1: 1649-1660.
(15) Labbadi, Moussa, and Mohamed Cherkaoui 2021. "Adaptive fractional-order non-singular fast terminal sliding mode based robust tracking control of quadrotor UAV with Gaussian random disturbances and uncertainties." IEEE Transactions on Aerospace and Electronic Systems 57, no. 4: 2265-2277.
(16) Shi, Xiaoyu, Yuhua Cheng, Chun Yin, Shouming Zhong, Xuegang Huang, Kai Chen, and Gen Qiu 2020. "Adaptive fractional-order SMC controller design for unmanned quadrotor helicopter under actuator fault and disturbances." IEEE Access 8: 103792-103802.
(17) Nguyen, Ngoc Phi, Nguyen Xuan Mung, Ha Le Nhu Ngoc Thanh, Tuan Tu Huynh, Ngoc Tam Lam, and Sung Kyung Hong 2021. "Adaptive sliding mode control for attitude and altitude system of a quadcopter UAV via neural network." IEEE Access 9: 40076-40085.
(18) Huang, Tianpeng, Tieshan Li, and CL Philip Chen 2022. "Adaptive tracking control for a quadrotor system subject to internal and external uncertainties." IEEE Transactions on Circuits and Systems II: Express Briefs 70, no.3: 1099-1103.
(19) Xu, Bowen, and Xinjiang Lu 2020. "An online adaptive control strategy for trajectory tracking of quadrotors based on fuzzy approximation and robust sliding mode algorithm." IEEE Access 8: 215327-215342.
(20) Li, Bo, Wenquan Gong, Yongsheng Yang, Bing Xiao, and Dechao Ran 2021. "Appointed fixed time observer-based sliding mode control for a quadrotor UAV under external disturbances." IEEE Transactions on Aerospace and Electronic Systems 58, no. 1: 290-303.
(21) Ríos, Héctor, Romeo Falcón, Oscar A. González, and Alejandro Dzul 2018. "Continuous sliding-mode control strategies for quadrotor robust tracking: Real-time application." IEEE Transactions on Industrial Electronics 66, no. 2: 1264-1272.
(22) Maqsood, Hamid, and Yaohong Qu 2020."Nonlinear disturbance observer based sliding mode control of quadrotor helicopter." Journal of Electrical Engineering \& Technology 15: 1453-1461.
(23) An, Chen, Shengde Jia, Jiaxi Zhou, and Chang Wang 2022. "Fast Model-Free Learning for Controlling a Quadrotor UAV With Designed Error Trajectory." IEEE Access 10: 79669-79680.
(24) Mo, Hongwei, and Ghulam Farid 2019. "Nonlinear and adaptive intelligent control techniques for quadrotor uav-a survey." Asian Journal of Control 21, no. 2: 989-1008.
(25) Abdelmaksoud, Sherif I., Musa Mailah, and Ayman M. Abdallah 2020. "Control strategies and novel techniques for autonomous rotorcraft unmanned aerial vehicles: A review." IEEE Access 8: 195142-195169.
(26) Bouadi, H., Bouchoucha, M. and Tadjine, M., 2007. "Sliding mode control based on backstepping approach for an UAV type-quadrotor." World Academy of Science, Engineering and Technology, 26(5), pp.22-27.

