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Abstract: One of the main challenges for quadrotor is desired trajectory tracking in presence of external disturbances. This paper 

addresses the quadrotor tracking control for external disturbances. Quadrotor dynamic modeling is taken by considering drag 

forces, aerodynamic friction and gyroscopic effects. So the new state space model is represented for the mathematical modeling 

of quadrotor. Two non linear controllers, sliding mode controller and backstepping controller are combined. The new sliding 

surface is designed using Lyapunov based adaptive law to compensate for the effect of external disturbances. The new law is 

asymptotically stable as tracking errors are reduced to zero. The controller algorithm is implemented using MATLAB simulations 

and compares with the nominal SMC with backstepping controller. And results shows new law is successfully compensate the 

external disturbances. 

 

Index Terms– Matlab, sliding mode control (SMC), Backstepping control (BSC) 

I. INTRODUCTION 

 

The quadrotor is also known as quadcopter and it is characterized by a unique four rotor design. It has the ability to take off and 

land vertically even in a small place. Firstly these are developed mainly for military application purposes but because of its 

various advantages these are inevitable in many applications like agriculture, aerial photography etc. the critical aspect of the 

quadrotor is trajectory tracking which is an intense research area in recent years. Because of quadrotor nonlinear dynamics, 

controlling is a challenging task. In the presence of external disturbances it is difficult to achieve desired trajectory and stability of 

the system. 

Mathematical modeling of the quadrotor is a difficult task, several quadrotor models like non linear model, quaternion model and 

near hover position model was discussed [1]. These mathematical models are represented in state space form. To implement the 

control techniques on dynamics of quadrotor state space modeling is easy [2]. Inertia, drag forces, aerodynamic friction and 

gyroscopic effects are considered for more effective modeling of the quadrotor [3].   

Many linear and nonlinear control strategies were applied to the quadrotor Unmanned Aerial Vehicle (UAV), such as PD 

control, PID control, Trajectory Linearization Control (TLC), Sliding Mode Controller (SMC), Backstepping Controller (BSC) etc 

[24][25]. PID controller is a most popular controller but main disadvantage is tuning the controller gain which is a tedious process. 

Most of the PID controllers are focusing on tuning these controller gains. Two degrees of freedom PID controllers with tuning 

parameters individually without affecting the other parameters proposed [4]. Adaptive PID controller with particle swarm 

optimization used for automatic tuning based on strictly negative imaginary theory [5]. A nonlinear PID controller with Hurwitz 

stability theorem is used genetic algorithm is used for tuning the parameters [6]. Intelligent active force control integrated with PID 

controller is used to stabilize quadrotor and to compensate the external disturbances [7]. Backstepping control is well suited for 

stabilize nonlinear dynamic systems. It starts by defining a set of virtual control inputs then by using virtual control laws state 

variables are stabilized using recursive scheme. This paper proposed backstepping controller integrated with an auxiliary input 

saturation compensator, disturbance observer is employed and finite time stability is derived [8]. An adaptive neural tracking 

control law based back stepping control is designed which avoids singularity problem of virtual controls [9]. For quadrotor slung 

load, a nonlinear backstepping controller is used by introducing virtual thrust force for position control [10]. An adaptive 

backstepping controller is designed to overcome the problem of unknown input gains and improves tracking performance [11]. 

Robust backstepping control proposed the wind estimator is designed using neural networks levenberg marquart algorithm with 

back propagation [12]. Sliding mode controller, sliding surface is designed and controller is designed to derive the state trajectory 

onto the sliding surface and then maintain it there. It is a robust and nonlinear control technique and its main drawback is chattering 

problem. Both PID and sliding mode controller are designed by using iteration method coefficients are tuned [13]. Non singular 

fast terminal sliding mode control is proposed and to estimate the unknown external disturbances a nonlinear disturbance observer 

is designed for robust performance [14]. An adaptive fractional order nonsingular fast terminal sliding mode controller is designed 

for fast time convergence and reject uncertainties [15]. An adaptive sliding mode controller is proposed and these adaptive laws are 

used to detect actuator faults and improve the stability [16]. Sliding mode controller is integrated with neural network algorithm, 

which results in time varying sliding surfaces [17]. To estimate upper bounds of disturbance and physical parameters adaptive 
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second order system based sliding mode controller is designed [18]. Sliding mode controller integrated with fuzzy network is 

proposed to compensate the external disturbances [19]. Appointed fixed time sliding mode controller is designed and its stability is 

verified using Lyapunov theorem [20]. Robust sliding mode controller with PID controller is designed observer estimate the 

disturbances and ensures exponential convergence [21]. Sliding mode controller is integrated with iterative learning control, this 

algorithm force the state trajectory on to the sliding surface without need of accurate dynamics of quadrotor [22]. A gain scheduling 

based SMC law is synthesized to compensate the presence of uncertainties in the system and it is integrated with nonlinear 

disturbance observer to reduce disturbances [23]. This paper presents sliding mode backstepping controller with new Lyapunov 

based adaptive law to compensate the external disturbances. This control strategy is effective for trajectory tracking of quadrotor as 

it combines the advantages of both sliding mode controller and back stepping controller. This approach offers robust and accurate 

trajectory tracking capabilities in the presence of external disturbances and complex dynamics. The main contribution of the paper 

is summarized as follows. i) The quadrotor model is developed by considering aerodynamic friction torques gyroscopic effects and 

drag forces. ii) The state space model is designed by considering all system nonlinearities. iii) Backstepping sliding mode controller 

is designed. iv)  Lyapunov based new adaptive law is synthesized to compensate the disturbances. The rest of the paper is arranged 

as follows. Section II describes the modeling of the quadrotor. Section III describes the controller design and laws. Section IV 

presents simulation results of the proposed controller. Section V carries the conclusion. 
  

II. QUADROTOR DYNAMIC MODELLING: 

In this section we will discuss the mathematical model of a symmetrical rigid quadrotor based on Newton-Euler formulation. 

Quadrotor is equipped with four rotors that are directed upwards. It is an underactauted system with four inputs to control six 

degrees of freedom. Input thrust is generated by four propellers, which can be controlled. Six degrees of freedom in space 

includes translation motion x, y and z in three directions and rotational motion roll, pitch and yaw around three axes. For the 

quadrotor kinematic and dynamic equations are derived in both the inertial frame and the body fixed frame, assuming that the 

center of gravity of the quadrotor coincides with the origin of the body fixed frame. The transformation from the inertial reference 

frame to the body fixed reference frame of the quadrotor is given by a rotational matrix. 

 

𝑅𝑖
𝑏(𝜙, 𝜃, 𝜓) =  (

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃
𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑐𝜃
𝑐𝜙𝑠𝜃𝑐𝜑 + 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑐𝜃

)                                                                               (1)              

 where  𝑐 ≜ 𝑐𝑜𝑠 and  𝑠 ≜ 𝑠𝑖𝑛. 

The position derivative vector P is in the inertial frame and the velocity vector V is in the body frame. They can be related to each 

other through a rotational matrix such as 𝑃 = 𝑅𝑖
𝑏(𝜙, 𝜃, 𝜓) 𝑉 where 𝑃 = ( 𝑥̇, 𝑦̇, 𝑧̇ )𝑇 and 𝑉 = ( 𝑢, 𝑣,𝑤)𝑇, and the angular 

derivative vector R= ( 𝑝, 𝑞, 𝑟 )𝑇   and angular velocity vector A =( 𝜙̇  𝜃̇  𝜓̇ )𝑇 are related by the equation 

(

𝜙

𝜃̇
𝜓̇

̇

) =  (
1 s(𝜙) t (𝜃) c(𝜙) t (𝜃)
0 c (𝜙) −s (𝜙)
0 s (𝜙)sec (𝜃) c(𝜙)sec (𝜃)

)(
𝑝
𝑞
𝑟
)                                                                                                      (2) 

where    𝑠(. )= sin(. ) , 𝑡(. )= tan(. ) and 𝑐(. )= cos(. )     

Translational dynamic equations of the quadrotor can be written by using Newton’s laws as below 

𝑉̇ =  (
0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
)𝑉                                      (3) 

Above matrix is skew symmetric matrix. 

𝑚𝑃̇ = 𝐹𝑟 + 𝐹𝑔 + 𝐹𝑑                                                                                                                                                     (4) 

Where total mass of the quadrotor is represented by m,  𝐹𝑟 is the resultant forces which are generated by the four rotors, 𝐹𝑔is the 

force of the gravity and  𝐹𝑑 is the resultant drag forces along translation axis which are given as  

𝐹𝑟 = ( 

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓

𝑐𝜙𝑐𝜃
)𝑈1                                   (5) 

where 𝑐(. )= cos(. )  and 𝑠(. )= sin(. ) respectively 

𝐹𝑔 =  [0 0 −𝑚𝑔]𝑇                                   (6) 

𝐹𝑑 = (

−𝐾𝑑𝑥 0 0
0 −𝐾𝑑𝑦 0

0 0 −𝐾𝑑𝑧

)𝑃                                                                                                                              (7) 

Such as𝐾𝑑𝑥, 𝐾𝑑𝑦 and 𝐾𝑑𝑧 are the translation drag coefficients. 

Rotational dynamic equations of the quadrotor can be derived by using Newton’s laws as follows  

𝐴̇ =  −𝐴 x 𝐽𝑏𝐴 + 𝜏𝑟 − 𝜏𝑎 − 𝜏𝑔                      (8) 

 where 𝐽𝑏is the matrix that represents quadrotor constant inertia in a symmetric manner 

𝐽𝑏 = (

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

)                                                            (9) 

Rotor torques developed by the quadrotor is denoted by 𝜏𝑟 and it is expressed as follows 

𝜏𝑟 = (
𝑙𝑈2

𝑙𝑈3

𝑈4

)                        (10) 

𝜏𝑎 is the aerodynamic frictions torques expressed as follows 
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𝜏𝑎 = (

𝐾𝑎𝑥 0 0
0 𝐾𝑎𝑦 0

0 0 𝐾𝑎𝑧

)𝑅2                                                              (11) 

𝐾𝑎𝑥 , 𝐾𝑎𝑦 and 𝐾𝑎𝑧 are the aerodynamic friction coefficients 

𝜏𝑔is the resultant torque caused by the gyroscopic  

effects which is expressed as  

𝜏𝑔 = ∑ 𝑅 x 𝐽𝑟(−1)𝑖+1 Ω4
𝑖=1                                                                (12) 

𝐽𝑟  is the rotor inertia and Ω is the rotor speed of the quadrotor expressed as 

Ω = Ω1 − Ω2 + Ω3 − Ω4                              (13) 

The control inputs are derived using angular velocities as  

[

𝑈1

𝑈2

𝑈3

𝑈4

] =  (

𝐾𝑃 𝐾𝑃

−𝐾𝑃

0
𝐾𝑑

0
−𝐾𝑃

−𝐾𝑑

     

𝐾𝑃 𝐾𝑃

𝐾𝑃

0
𝐾𝑑

0
𝐾𝑃

−𝐾𝑑

)

[
 
 
 
 
Ω1

2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

                                                                                                              (14)  

where 𝐾𝑃 and 𝐾𝑑  are the thrust and drag coefficients respectively. 

Quadrotor uses four rotors powered by DC motors and the rotor model is expressed as  

∑ Ω̇i = 𝑏 ∑ 𝑉𝑖
4
𝑖=1

4
𝑖=1 − 𝛽0 − 𝛽1 ∑ Ωi

4
𝑖=1 − 𝛽2 ∑ Ωi

24
𝑖=1                                                                                     (15)                           

             

            

III. CONTROLLER DESIGN 

The above quadrotor mathematical model can be represented by the state space model as 

  𝑋̇ = 𝑓(𝑋,𝑈)      

The symbols X and U represent the state vector and control inputs, respectively 

𝑋 =  [𝜙 𝜙̇   𝜃 𝜃̇    𝜓 𝜓̇    𝑥 𝑥̇    𝑦 𝑦̇    𝑧 𝑧̇]𝑇                                                                                              (16) 

𝑈 = [ 𝑈1 𝑈2   𝑈3 𝑈4 ]𝑇                              (17) 

𝜙̈ =  
(𝐽𝑦−𝐽𝑧)

𝐽𝑥
 𝑞𝑟 +

𝑙

𝐽𝑥
 𝑈2 −

1

𝐽𝑥
(𝐾𝑎𝑥𝜙2̇ −  𝐽𝑟Ω𝜃̇)                                                                                                        (18) 

𝜃 ̈ =
𝐽𝑧−𝐽𝑥

𝐽𝑦
 𝑝𝑟 +

𝑙

𝐽𝑦
  𝑈3 −

1

𝐽𝑦
(𝐾𝑎𝑦

2̇ + 𝐽𝑟Ω̇)                                                                                                           (19) 

𝜓 ̈ =
𝐽𝑥−𝐽𝑦

𝐽𝑧
 𝑝𝑞 +

1

𝐽𝑧
 𝑈4 −

1

𝐽𝑧
𝐾𝑎𝑧

2̇                                                (20) 

𝑥̈ = (𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)
𝑈1

𝑚
−

𝐾𝑑𝑥

𝑚
𝑥̇                                                  (21) 

𝑦̈ =  (𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓) 
𝑈1

𝑚
−

𝐾𝑑𝑦

𝑚
𝑦̇                                               (22) 

𝑧̈ = (𝑐𝜙𝑐𝜃)  
𝑈1

𝑚
− 𝑔 −

𝐾𝑑𝑧

𝑚
𝑧̇                                 (23) 

This non linear dynamic model can be represented in state space model with external disturbance as follows. 

𝜙̇ =  𝑥̇1 = 𝑥2                                                          (24) 

𝜙̈ =  𝑥̇2 = 𝑎1𝑥4𝑥6 + 𝑎2𝑥2
2 + 𝑎3Ω𝑥4 + 𝑏1𝑈2 + 𝑑∅                                                                                                (25)                                                                            

𝜃̇ =  𝑥̇3 = 𝑥4                                                                (26) 

𝜃̈ =  𝑥̇4 = 𝑎4𝑥2𝑥6 + 𝑎5𝑥4
2 + 𝑎6Ω𝑥2 + 𝑏2𝑈3 + 𝑑𝜃                                                                                                (27)                                                                            

𝜓̇ =  𝑥̇5 =  𝑥6                                    (28) 

 𝜓̈ =  𝑥̇6 =  𝑎7𝑥2𝑥4 + 𝑎8𝑥6
2 +  𝑏3𝑈4  + 𝑑𝜓                                                                                                            (29) 

𝑥̇ =  𝑥̇7 = 𝑥8                                                                                                                                                             (30) 

𝑥̈ =  𝑥̇8 = 𝑎9𝑥8 +  (𝑈𝑥 ∗
𝑈1

𝑚
) + 𝑑𝑥                                                                                                                         (31) 

𝑦̇ = 𝑥̇9 =  𝑥10                                                                                                                                                            (32) 

𝑦̈ = 𝑥̇10 =  𝑎10𝑥10 + (𝑈𝑦 ∗
𝑈1

𝑚
) + 𝑑𝑦                                                                                                                          (33)           

𝑧̇ = 𝑥̇11 = 𝑥12                                        (34) 

𝑧̈ = 𝑥̇12 = 𝑎11𝑥12 + (𝑈1 ∗
(𝐶𝑥1 ∗𝐶𝑥3)

𝑚
) − 𝑔 + 𝑑𝑧                                                                                                         (35)              

 where 

 𝑎1 =  
𝐽𝑦− 𝐽𝑧

𝐽𝑥
 , 𝑎4 = 

𝐽𝑧−𝐽𝑥

𝐽𝑦
 , 𝑎7 = 

𝐽𝑥− 𝐽𝑦

𝐽𝑧
                                                                                                                       (36) 

𝑎2 = 
−𝐾𝑎𝑥

𝐽𝑥
 , 𝑎5 = 

−𝐾𝑎𝑦

𝐽𝑦
 ,  𝑎8 = 

−𝐾𝑎𝑧

𝐽𝑧
                                                                                                                          (37) 

𝑎3 =
−𝐽𝑟

𝐽𝑥
 ,  𝑎6 =

−𝐽𝑟

𝐽𝑦
                                                                                                                                                     (38)  

𝑎9 =
−𝐾𝑑𝑥

𝑚
 , 𝑎10 =

−𝐾𝑑𝑦

𝑚
 , 𝑎11 =

−𝐾𝑑𝑧

𝑚
                                                                                                                          (39) 
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𝑏1 =  
𝑙

𝐽𝑥
 , 𝑏2 =  

𝑙

𝐽𝑦
 ,  𝑏3 = 

1

𝐽𝑧
                                                                                                                                       (40) 

𝑈𝑥 = 𝐶𝑥1 ∗ 𝑆𝑥3 ∗ 𝐶𝑥5  +  𝑆𝑥1 ∗ 𝑆𝑥5                                                                                                                          (41) 

𝑈𝑦 =  𝐶𝑥1 ∗ 𝑆𝑥3 ∗ 𝐶𝑥5 − 𝑆𝑥1 ∗ 𝐶𝑥5                                                                                                                           (42) 

Backstepping Sliding mode control: 

This section introduces the SMC technique combined with Back-Stepping control technique and introduces an adaptive reaching 

law to create a robust controller for position trajectory tracking. As it combines advantages of both SMC and Back-stepping 

controllers, the sliding mode control is an effective approach for addressing nonlinear tracking problems that involve model 

uncertainties and external disturbances and back-stepping controller offers precise tracking and stable performance for quadrotor. 

An adaptive reaching law is proposed which dynamically adjusts the control inputs while handling external disturbances to ensure 

robust performance and to guide a system to a desired trajectory. 

 

1. Roll Control: 

Roll Error is defined as  

𝑒1 = 𝑥1𝑑 – 𝑥1                                                                                                                                                               (43) 

where 𝑒1 is error,  𝑥1𝑑 is desired roll and 𝑥1  is actual roll  

Differentiating the roll error  

𝑒̇1 = 𝑥̇1𝑑 – 𝑥̇1                                                                                                                                                               (44) 

Substituting from equation no.24  

𝑒̇1 = 𝑥̇1𝑑 – 𝑥2                                                                                                                                                               (45) 

The sliding surface 𝑆∅ is defined and 𝑣1 is virtual control               

𝑒2 = 𝑆∅ = 𝑥2 − 𝑣1                   (46) 

𝑥2 = 𝑆∅ − 𝑣1                     (47)       

𝑒̇1 = 𝑥̇1𝑑 − 𝑆∅ + 𝑣1                                                                                                                                                      (48) 

The Lyapunov candidate chosen for this is 

𝑉1 = 
1

2
𝑒1

2                                                                                                                                                                     (49) 

Derivative of 𝑉1 is  

𝑉̇1 = 𝑒1𝑒̇1                                                                                                                                                                     (50) 

𝑉̇1 = 𝑒1 (𝑥̇1𝑑 + 𝑣1 − 𝑆∅)                                                                                                                                              (51) 

The virtual control 𝑣1  is designed to stabilize Lyapunov function as 

𝑣1 = −𝑥̇1𝑑 − 𝑐1𝑒1                                                                                                                                                        (52) 

𝑉̇1 = 𝑒1 ( – 𝑐1𝑒1  − 𝑆∅)                                                                                                                                                 (53) 

𝑉̇1 =–𝑐1𝑒1
2 − 𝑒1 𝑆∅ < 0                                                                                                                                               (54) 

where  𝑐1 is positive constant, and the subsystem is asymptotically stable. 

The sliding surface time derivative is 

𝑒̇2 = 𝑆̇∅ = 𝑣̇1 + 𝑥̇2                                                                                                                                                      (55) 

Lyapunov candidate chosen for this system is 

𝑉2(𝑒1, 𝑆∅)  =  
1

2
( 𝑒1

2 + 𝑆∅
2)                                                                                                                                          (56) 

Time derivative of the Lyapunov function is 

𝑉̇2(𝑒1, 𝑆∅)  = 𝑒1𝑒̇1  +  𝑆∅𝑆̇∅                                                                                                                                          (57) 

Necessary sliding condition required to stabilize is  

𝑆̇∅ =  −𝑞1𝑠𝑖𝑔𝑛(𝑆∅) − 𝑘1𝑆∅                                                                                                                                        (58) 

𝑉̇2(𝑒1, 𝑆∅) =– 𝑐1𝑒1
2 − 𝑒1𝑆∅ + 𝑆∅(−𝑞1𝑠𝑖𝑔𝑛(𝑆∅) − 𝑘1𝑆∅)                    (59) 

𝑉̇2(𝑒1, 𝑆∅) =– 𝑐1𝑒1
2 − 𝑒1𝑆∅ − 𝑞1𝑠𝑖𝑔𝑛(𝑆∅) 𝑆∅ − 𝑘1𝑆∅

2                       (60) 

𝑉̇2(𝑒1, 𝑆∅) =– 𝑐1𝑒1
2 – 𝑒1𝑆∅ − 𝑞1𝑠𝑖𝑔𝑛(𝑆∅) 𝑆∅ − 𝑘1𝑆∅

2       < 0                                                                                     (61) 

System is asymptotically stable and control input can be obtained by  

𝑆̇∅ =  −𝑞1𝑠𝑖𝑔𝑛(𝑆∅) − 𝑘1𝑆∅                                                                                                                                        (62) 

𝑆̇∅ = −𝑥̈1𝑑 − 𝑐1𝑒̇1 + 𝑥̇2                  (63)  

−𝑞1𝑠𝑖𝑔𝑛(𝑆∅) − 𝑘1𝑆∅ = – 𝑥̈1𝑑 − 𝑐1𝑒̇1 + 𝑎1𝑥4𝑥6 + 𝑎2𝑥2
2 + 𝑎3Ω𝑥4 + 𝑏1𝑈2                                                           (64)                          

 𝑈2 =
1

𝑏1
(−𝑞1𝑠𝑖𝑔𝑛(𝑆∅) − 𝑘1𝑆∅ + 𝑥̈1𝑑 + 𝑐1𝑒̇1 − 𝑎1𝑥4𝑥6 − 𝑎2𝑥2

2 − 𝑎3Ω𝑥4)                                                          (65)                           

In this control input an adaptive control law which is proposed to compensate the external disturbances. 

𝑞1 = 𝑘𝑏𝑎𝑟1 ∗ |𝑆∅|                                                                                                                                                         (66) 

 where 𝑘𝑏𝑎𝑟1 is a controller gain and 𝑞1 is a state variable whose value changes. 

 

2. Pitch Control: 

Pitch error is defined as 

𝑒3 = 𝑥3𝑑 – 𝑥3                                                                                                                                                                (67) 

Where 𝑒3 is error,  𝑥3𝑑 is desired pitch and 𝑥3  is actual pitch 

Differentiating the pitch error  

𝑒̇3 = 𝑥̇3𝑑 – 𝑥̇3                                                                                                                                                                (68) 

Substituting from equation no.26  

𝑒̇3 = 𝑥̇3𝑑 – 𝑥4                                                                                                                                                                (69) 

The sliding surface 𝑆𝜃  is defined and 𝑣3 is virtual control  
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𝑒4 = 𝑆𝜃 = 𝑥4 − 𝑣3                                                                                                                                                                           (70) 
𝑥4 = 𝑆𝜃 − 𝑣3                                                                                                                                                                (71) 

𝑒̇3 = 𝑥̇3𝑑 − 𝑆𝜃 + 𝑣3                                                                                                                                                      (72) 

The Lyapunov candidate chosen for this is 

𝑉3 = 
1

2
𝑒3

2                                                                                                                                                                     (73) 

Derivative of 𝑉3 is  

𝑉̇3 = 𝑒3𝑒̇3                                                                                                                                                                     (74) 

𝑉̇3 = 𝑒3 (𝑥̇3𝑑 + 𝑣3 − 𝑆𝜃)                                                                                                                                             (75) 

Virtual control 𝑣3  is designed to stabilize Lyapunov function as 

𝑣3 = −𝑥̇3𝑑 − 𝑐3𝑒3                                                                                                                                                       (76) 

𝑉̇3 = 𝑒3 ( – 𝑐3𝑒3  − 𝑆𝜃)                                                                                                                                                (77) 

𝑉̇3 =– 𝑐3𝑒3
2 − 𝑒3 𝑆𝜃 < 0                                                                                                                                              (78) 

𝑐3 is positive constant and the subsystem is asymptotically stable. 

The sliding surface time derivative is 

𝑒̇4 = 𝑆̇𝜃 = 𝑣̇3 + 𝑥̇4                                                                                                                                                      (79) 

Lyapunov candidate chosen for this system is  

𝑉4(𝑒3, 𝑆𝜃)  =  
1

2
( 𝑒3

2 + 𝑆𝜃
2)                                                                                                                                          (80) 

Time derivative of the Lyapunov function is 

𝑉̇4(𝑒3, 𝑆𝜃)  = 𝑒3𝑒̇3  +  𝑆𝜃𝑆̇𝜃                                                                                                                                          (81) 

Necessary sliding condition required to stabilize is  

𝑆̇𝜃 =  −𝑞2𝑠𝑖𝑔𝑛(𝑆𝜃) − 𝑘2𝑆𝜃                                                                                                                                        (82) 

𝑉̇4(𝑒3, 𝑆𝜃) =– 𝑐3𝑒3
2 − 𝑒3𝑆𝜃 + 𝑆𝜃(−𝑞2𝑠𝑖𝑔𝑛(𝑆𝜃) 

− 𝑘2𝑆𝜃)                                                                                                     (83) 

𝑉̇4(𝑒3, 𝑆𝜃) =– 𝑐3𝑒3
2 − 𝑒3𝑆𝜃 − 𝑞2𝑠𝑖𝑔𝑛(𝑆𝜃) 𝑆𝜃 − 𝑘2𝑆𝜃

2                                                                                                 (84) 

𝑉̇4(𝑒3, 𝑆𝜃) =– 𝑐3𝑒3
2 – 𝑒3𝑆𝜃 − 𝑞2𝑠𝑖𝑔𝑛(𝑆𝜃) 𝑆𝜃 − 𝑘2𝑆𝜃

2        < 0 (85)                   

System is asymptotically stable and control input can be obtained by  

 𝑆̇𝜃 =  −𝑞2𝑠𝑖𝑔𝑛(𝑆𝜃) − 𝑘2𝑆𝜃                                                                                                                                        (86)    

 𝑆̇𝜃 = −𝑥̈3𝑑 − 𝑐3𝑒̇3 + 𝑥̇4                                                                                                                                              (87) 

−𝑞2𝑠𝑖𝑔𝑛(𝑆𝜃) − 𝑘2𝑆𝜃 = −𝑥̈3𝑑 − 𝑐3𝑒̇3 + 𝑎4𝑥2𝑥6 + 𝑎5𝑥4
2 + 𝑎6Ω𝑥2 + 𝑏2𝑈3                                                          (88)                     

  𝑈3 =
1

𝑏2
(−𝑞2𝑠𝑖𝑔𝑛(𝑆𝜃) − 𝑘2𝑆𝜃 + 𝑥̈3𝑑 + 𝑐3𝑒̇3 − 𝑎4𝑥2𝑥6 − 𝑎5𝑥4

2 − 𝑎6Ω𝑥2)                                                          (89)                          

In this control input an adaptive control law which is proposed to compensate the external disturbances. 

𝑞2 = 𝑘𝑏𝑎𝑟2 ∗ |𝑆𝜃|                                                                                                                                                          (90) 

 where 𝑘𝑏𝑎𝑟2 is a controller gain and 𝑞2 is a state variable whose value changes. 

 

3.Yaw Control: 

Yaw error is defined as  

 𝑒5 = 𝑥5𝑑 – 𝑥5                                                                                                                                                               (91) 

Where 𝑒5 is error,  𝑥5𝑑 is desired yaw and 𝑥5  is actual yaw 

Differentiating the yaw error  

𝑒̇5 = 𝑥̇5𝑑 – 𝑥̇5                                                                                                                                                                (92) 

 Substituting from equation no.28                                                       

𝑒̇5 = 𝑥̇5𝑑 – 𝑥6                                                                                                                                                               (93) 

The sliding surface 𝑆𝜓 is defined and 𝑣5 is virtual control  

𝑒6 = 𝑆𝜓 = 𝑥6 − 𝑣5                                                                                                                                                      (94)  

𝑥6 = 𝑆𝜓 − 𝑣5                                                                                                                                                               (95)                                             

𝑒̇5 = 𝑥̇5𝑑 − 𝑆𝜓 + 𝑣5                                                                                                                                                     (96) 

The Lyapunov candidate chosen for this is 

𝑉5 = 
1

2
𝑒5

2                                                                                                                                                                     (97) 

Derivative of 𝑉5 is  

𝑉̇5 = 𝑒5𝑒̇5                                                                                                                                                                     (98) 

𝑉̇5 = 𝑒5 (𝑥̇5𝑑 + 𝑣5 − 𝑆𝜓)                                                                                                                                             (99) 

Virtual control 𝑣5  is designed to stabilize Lyapunov function as 

𝑣5 = −𝑥̇5𝑑 − 𝑐5𝑒5                                                                                                                                                       (100) 

𝑉̇5 = 𝑒5( – 𝑐5𝑒5  − 𝑆𝜓)                                                                                                                                                (101) 

𝑉̇5 =– 𝑐5𝑒5
2 − 𝑒5 𝑆𝜓 < 0                                                                                                                                             (102) 

𝑐5 is positive constant and the subsystem is asymptotically stable. 

The sliding surface time derivative is 

𝑒̇6 = 𝑆̇𝜓 = 𝑣̇5 + 𝑥̇6                                                                                                                                                     (103) 

Lyapunov candidate function chosen for this system is  

𝑉6(𝑒5, 𝑆𝜓)  =  
1

2
( 𝑒5

2 + 𝑆𝜓
2)                                                                                                                                         (104) 

Time derivative of the Lyapunov function is 

𝑉̇6(𝑒5, 𝑆𝜓)  = 𝑒5𝑒̇5  +  𝑆𝜓𝑆̇𝜓                                                                                                                                        (105) 

Necessary sliding condition required to stabilize is  
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𝑆̇𝜓 =  −𝑞3𝑠𝑖𝑔𝑛(𝑆𝜓) − 𝑘3𝑆𝜓                                                                                                                                      (106) 

𝑉̇6(𝑒5, 𝑆𝜓) =– 𝑐5𝑒5
2 − 𝑒5𝑆𝜓 + 𝑆𝜓(−𝑞3𝑠𝑖𝑔𝑛(𝑆𝜓) − 𝑘3𝑆𝜓)                            (107) 

 𝑉̇6(𝑒5, 𝑆𝜓) =– 𝑐5𝑒5
2 − 𝑒5𝑆𝜓 − 𝑞3𝑠𝑖𝑔𝑛(𝑆𝜓) 𝑆𝜓 − 𝑘3𝑆𝜓

2                                                                                                       (108) 

 𝑉̇6(𝑒5, 𝑆𝜓) =– 𝑐5𝑒5
2 − 𝑒5𝑆𝜓 − 𝑞3𝑠𝑖𝑔𝑛(𝑆𝜓) 𝑆𝜓 − 𝑘3𝑆𝜓

2   < 0                  (109)                                                                                          

System is asymptotically stable and control input can be obtained by  

𝑆̇𝜓 =  −𝑞3𝑠𝑖𝑔𝑛(𝑆𝜓) − 𝑘3𝑆𝜓                                                                                                                                     (110)                     

𝑆̇𝜓 = −𝑥̈5𝑑 − 𝑐5𝑒̇5 + 𝑥̇6                                                              (111)  

 −𝑞3𝑠𝑖𝑔𝑛(𝑆𝜓) − 𝑘3𝑆𝜓 = −𝑥̈5𝑑 − 𝑐5𝑒̇5 + 𝑎7𝑥2𝑥4 + 𝑎8𝑥6
2 +  𝑏3𝑈4                                                                       (112)                  

  𝑈4 =
1

𝑏3
(−𝑞3𝑠𝑖𝑔𝑛(𝑆𝜓) − 𝑘3𝑆𝜓 + 𝑥̈5𝑑 + 𝑐5𝑒̇5 − 𝑎7𝑥2𝑥4 − 𝑎8𝑥6

2)                                                                       (113)                        

In this control input an adaptive control law which is proposed to compensate the external disturbances. 

𝑞3 = 𝑘𝑏𝑎𝑟3 ∗ |𝑆𝜓|                                                                                                                                                       (114) 

 where 𝑘𝑏𝑎𝑟3 is a controller gain and 𝑞3 is a state variable whose value changes. 

 

4. Horizontal X-Position Control: 

X-position error is defined as 

 𝑒7 = 𝑥7𝑑 – 𝑥7                                                                                                                                                              (115) 

Where 𝑒7 is error,  𝑥7𝑑 is desired x-axis position and 𝑥7  is actual x-axis position 

Differentiating the x-axis position error is 

 𝑒̇7 = 𝑥̇7𝑑 – 𝑥̇7                                                                                                                                                              (116) 

Substituting from equation no.30   

𝑒̇7 = 𝑥̇7𝑑 – 𝑥8                                                                                                                                                              (117) 

The sliding surface 𝑆𝑥 is defined and 𝑣7 is virtual control  

𝑒8 = 𝑆𝑥 = 𝑥8 − 𝑣7                                (118) 
𝑥8 = 𝑆𝑥 − 𝑣7                                                                                                                                                               (119) 

𝑒̇7 = 𝑥̇7𝑑 − 𝑆𝑥 + 𝑣7                                                                                                                                                     (120) 

The Lyapunov candidate chosen for this is 

𝑉7 = 
1

2
𝑒7

2                                                                                                                                                                    (121) 

Derivative of 𝑉7 is  

𝑉̇7 = 𝑒7𝑒̇7                                                                                                                                                                    (122) 

𝑉̇7 = 𝑒7 (𝑥̇7𝑑 + 𝑣7 − 𝑆𝑥)                                                                                                                                            (123) 

Virtual control 𝑣7  is designed to stabilize Lyapunov function as 

𝑣7 = −𝑥̇7𝑑 − 𝑐7𝑒7                                                                                                                                                     (124) 

𝑉̇7 = 𝑒7 ( – 𝑐7𝑒7  − 𝑆𝑥)                                                                                                                                              (125) 

𝑉̇7 =– 𝑐7𝑒7
2 − 𝑒7 𝑆𝑥 < 0                                                                                                                                            (126) 

𝑐7 is positive constant and the subsystem is asymptotically stable. 

The sliding surface time derivative is 

 𝑒̇8 = 𝑆̇𝑥 = 𝑣̇7 + 𝑥̇8                                                                                                                                                  (127) 

Lyapunov candidate chosen for this system is  

 𝑉8(𝑒7, 𝑆𝑥)  =  
1

2
( 𝑒7

2 + 𝑆𝑥
2)                                                                                                                                      (128) 

Time derivative of the Lyapunov function is 

𝑉̇8(𝑒7, 𝑆𝑥)  = 𝑒7𝑒̇7  +  𝑆𝑥𝑆̇𝑥                                                                                                                                       (129) 

Necessary sliding condition to be stabilize is  

 𝑆̇𝑥 =  −𝑞4𝑠𝑖𝑔𝑛(𝑆𝑥) − 𝑘4𝑆𝑥                                                                                                                                     (130) 

𝑉̇8(𝑒7, 𝑆𝑥) =– 𝑐7𝑒7
2 − 𝑒7𝑆𝑥 + 𝑆𝑥(−𝑞4𝑠𝑖𝑔𝑛(𝑆𝑥) − 𝑘4𝑆𝑥)                              (131) 

 𝑉̇8(𝑒7, 𝑆𝑥) =– 𝑐7𝑒7
2 − 𝑒7𝑆𝑥 − 𝑞4𝑠𝑖𝑔𝑛(𝑆𝑥) 𝑆𝑥 − 𝑘4𝑆𝑥

2                                                                                             (132) 

 𝑉̇8(𝑒7, 𝑆𝑥) =– 𝑐7𝑒7
2  − 𝑒7𝑆𝑥 − 𝑞4𝑠𝑖𝑔𝑛(𝑆𝑥) 𝑆𝑥 − 𝑘4𝑆𝑥

2     < 0                                          (133)

                                                           

System is asymptotically stable and control input can be obtained by  

  𝑆̇𝑥 =  −𝑞4𝑠𝑖𝑔𝑛(𝑆𝑥) − 𝑘4𝑆𝑥                                                                                                                                    (134)                                                   

  𝑆̇𝑥 = −𝑥̈7𝑑 − 𝑐7𝑒̇7 + 𝑥̇8                                                                                                                                         (135) 

 −𝑞4𝑠𝑖𝑔𝑛(𝑆𝑥) − 𝑘4𝑆𝑥 = −𝑥̈7𝑑 − 𝑐7𝑒̇7 + 𝑎9𝑥8 +  (𝑈𝑥 ∗
𝑈1

𝑚
)              (136) 

  𝑈𝑥 =
𝑚

𝑈1
(−𝑞4𝑠𝑖𝑔𝑛(𝑆𝑥) − 𝑘4𝑆𝑥 + 𝑥̈7𝑑 + 𝑐7𝑒̇7 − 𝑎9𝑥8)                                                                                        (137) 

In this control input an adaptive control law which is proposed to compensate the external disturbances. 

𝑞4 = 𝑘𝑏𝑎𝑟4 ∗ |𝑆𝑥|                                                                                                                                                      (138) 

 where 𝑘𝑏𝑎𝑟4 is a controller gain and 𝑞4 is a state variable whose value changes.   

 

 

5. Horizontal Y-Position Control: 

Y-position error is defined as 

 𝑒9 = 𝑥9𝑑 – 𝑥9                                                                                                                             (139) 

Where 𝑒9 is error,  𝑥9𝑑 is desired y-axis position and 𝑥9  is actual y-axis position 
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Differentiating the y-axis position error is 

𝑒̇9 = 𝑥̇9𝑑 – 𝑥̇9                                                                                                                                                           (140) 

Substituting from equation no.32   

𝑒̇9 = 𝑥̇9𝑑 – 𝑥10                                                                                                                                                         (141) 

The sliding surface 𝑆𝑦 is defined and 𝑣9 is virtual control 

𝑒10 = 𝑆𝑦 = 𝑥10 − 𝑣9               (142) 

𝑥10 = 𝑆𝑦 − 𝑣9                                                                                                                                                         (143)         

𝑒̇9 = 𝑥̇9𝑑 − 𝑆𝑦 + 𝑣9                                                                                                                                                 (144) 

The Lyapunov candidate chosen for this is 

𝑉9 = 
1

2
𝑒9

2                                                                                                                                                                (145) 

Derivative of 𝑉9 is  

𝑉̇9 = 𝑒9𝑒̇9                                                                                                                                                                 (146) 

𝑉̇9 = 𝑒9 (𝑥̇9𝑑 + 𝑣9 − 𝑆𝑦)                                                                                                                                         (147) 

Virtual control 𝑣9  is designed to stabilize Lyapunov function  

𝑣9 = −𝑥̇9𝑑 − 𝑐9𝑒9                                                                                                                                                   (148) 

𝑉̇9 = 𝑒9 ( – 𝑐9𝑒9  − 𝑆𝑦)                                                                                                                                            (149) 

𝑉̇9 =– 𝑐9𝑒9
2 − 𝑒9 𝑆𝑦 < 0                                                                                                                                         (150) 

where 𝑐9 is positive constant the subsystem is asymptotically stable. 

The sliding surface time derivative is 

𝑒̇10 = 𝑆̇𝑦 = 𝑣̇9 + 𝑥̇10                                                                                                                                              (151) 

Lyapunov candidate chosen for this system is  

𝑉10(𝑒9, 𝑆𝑦)  =  
1

2
( 𝑒9

2 + 𝑆𝑦
2)                                                                                                                                   (152) 

Time derivative of the Lyapunov function is 

  𝑉̇10(𝑒9, 𝑆𝑦)  = 𝑒9𝑒̇9  +  𝑆𝑦𝑆̇𝑦                                                                                                                                 (153) 

Necessary sliding condition required to stabilize is  

𝑆̇𝑦 =  −𝑞5𝑠𝑖𝑔𝑛(𝑆𝑦) − 𝑘5𝑆𝑦                                                                                                                                  (154) 

𝑉̇10(𝑒9, 𝑆𝑦) =– 𝑐9𝑒9
2 − 𝑒9𝑆𝑦 + 𝑆𝑦(−𝑞5𝑠𝑖𝑔𝑛(𝑆𝑦) − 𝑘5𝑆𝑦)                                                                                   (155) 

𝑉̇10(𝑒9, 𝑆𝑦) =– 𝑐9𝑒9
2 − 𝑒9𝑆𝑦 − 𝑞5𝑠𝑖𝑔𝑛(𝑆𝑦) 𝑆𝑦 − 𝑘5𝑆𝑦

2                                                                                         (156)                            

𝑉̇10(𝑒9, 𝑆𝑦) =– 𝑐9𝑒9
2 − 𝑒9𝑆𝑦 − 𝑞5𝑠𝑖𝑔𝑛(𝑆𝑦) 𝑆𝑦 − 𝑘5𝑆𝑦

2      < 0          (157) 

               

System is asymptotically stable and control input can be obtained by   

 𝑆̇𝑦 =  −𝑞5𝑠𝑖𝑔𝑛(𝑆𝑦) − 𝑘5𝑆𝑦                                                                                                                                  (158) 

  𝑆̇𝑦 = −𝑥̈9𝑑 − 𝑐9𝑒̇9 + 𝑥̇10                                                                                                                                      (159) 

 −𝑞5𝑠𝑖𝑔𝑛(𝑆𝑦) − 𝑘5𝑆𝑦 =  −𝑥̈9𝑑 − 𝑐9𝑒̇9 + 𝑎10𝑥10 +  (𝑈𝑦 ∗
𝑈1

𝑚
)                                                                          (160) 

  𝑈𝑦 =
𝑚

𝑈1
(−𝑞5𝑠𝑖𝑔𝑛(𝑆𝑦) − 𝑘5𝑆𝑦 + 𝑥̈9𝑑 + 𝑐9𝑒̇9 − 𝑎10𝑥10)                        (161)      

In this control input an adaptive control law which is proposed to compensate the external disturbances. 

𝑞5 = 𝑘𝑏𝑎𝑟5 ∗ |𝑆𝑦|                                                                                                                                                    (162) 

 where 𝑘𝑏𝑎𝑟5 is a controller gain and 𝑞5 is a state variable whose value changes  

 

6. Height Control: 

Z-position error is defined as 

 𝑒11 = 𝑥11𝑑 – 𝑥11                                                                                                                                                     (163) 

where 𝑒11 is error,  𝑥11𝑑 is desired z-axis position and 𝑥11  is actual z-axis position 

Differentiating the z-axis position error 

𝑒̇11 = 𝑥̇11𝑑 – 𝑥̇11                                                                                                                                                      (164) 

Substituting from equation no.34   

𝑒̇11 = 𝑥̇11𝑑 – 𝑥12                                                                                                                                                     (165) 

The sliding surface 𝑆𝑧 is defined and 𝑣11 is virtual control 

𝑒12 = 𝑆𝑧 = 𝑥12 − 𝑣11                           (166) 
𝑥12 = 𝑆𝑧 − 𝑣11                                                                                                                                                       (167) 

𝑒̇11 = 𝑥̇11𝑑 − 𝑆𝑧 + 𝑣11                                                                                                                                            (168) 

The Lyapunov candidate chosen for this is 

𝑉11 = 
1

2
𝑒11

2                                                                                                                                                              (169) 

Derivative of V11 is  

V̇11 = e11ė11                                                                                                                                                          (170) 

𝑉̇11 = 𝑒11 (𝑥̇11𝑑 + 𝑣11 − 𝑆𝑧)                                                                                                                                 (171) 

Virtual control 𝑣11is designed to stabilize Lyapunov function as 

𝑣11 = −𝑥̇11𝑑 − 𝑐11𝑒11                                                                                                                                           (172) 

𝑉̇11 = 𝑒11 ( – 𝑐11𝑒11  − 𝑆𝑧)                                                                                                                                    (173) 

𝑉̇11 =– 𝑐11𝑒11
2 − 𝑒11 𝑆𝑧 < 0                                                                                                                                  (174) 

where 𝑐11 is positive constant the subsystem is asymptotically stable. 

The sliding surface time derivative is 
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𝑒̇12 = 𝑆̇𝑧 = 𝑣̇11 + 𝑥̇12                                                                                                                                           (175) 

Lyapunov candidate chosen for this system is  

𝑉12(𝑒11, 𝑆𝑧)  =  
1

2
( 𝑒11

2 + 𝑆𝑧
2)                                                                                                                                (176) 

Time derivative of the Lyapunov function is 

𝑉̇12(𝑒11, 𝑆𝑧)  = 𝑒11𝑒̇11  + 𝑆𝑧𝑆̇𝑧                                                                                                                              (177) 

Necessary sliding condition to be stabilize is  

𝑆̇𝑧 = −𝑞6𝑠𝑖𝑔𝑛(𝑆𝑧) − 𝑘6𝑆𝑧                                                                                                                                  (178) 

𝑉̇12(𝑒11, 𝑆𝑧) =– 𝑐11𝑒11
2 − 𝑒11𝑆𝑧 + 𝑆𝑧(−𝑞6𝑠𝑖𝑔𝑛(𝑆𝑧) − 𝑘6𝑆𝑧)            (179) 

𝑉̇12(𝑒11, 𝑆𝑧) =– 𝑐11𝑒11
2 − 𝑒1𝑆𝑧 − 𝑞6𝑠𝑖𝑔𝑛(𝑆𝑧) 𝑆𝑧 − 𝑘6𝑆𝑧

2                                                                                     (180)                                                                               

𝑉̇12(𝑒11, 𝑆𝑧) =– 𝑐11𝑒11
2 − 𝑒11𝑆11 − 𝑞6𝑠𝑖𝑔𝑛(𝑆𝑧) 𝑆𝑧 − 𝑘6𝑆𝑧

2 < 0                                                                          (181) 

 

System is asymptotically stable and control input can be obtained by  

𝑆̇𝑧 = −𝑞6𝑠𝑖𝑔𝑛(𝑆𝑧) − 𝑘6𝑆𝑧                                                                                                                                 (182)       

𝑆̇𝑧 = −𝑥̈11𝑑 − 𝑐11𝑒̇11 + 𝑥̇12                                                                                    (183)          

−𝑞6𝑠𝑖𝑔𝑛(𝑆𝑧) − 𝑘6𝑆𝑧 = −𝑥̈11𝑑 − 𝑐11𝑒̇11 + 𝑎11𝑥12 +  (𝑈1 ∗
(𝐶𝑥1 ∗𝐶𝑥3)

𝑚
) −  𝑔                                                   (184)        

 𝑈1 =
𝑚

(𝐶𝑥1 ∗𝐶𝑥3)
(−𝑞6𝑠𝑖𝑔𝑛(𝑆𝑧) − 𝑘6𝑆𝑧 + 𝑥̈11𝑑 + 𝑐11𝑒̇11   −  𝑎11𝑥12 + 𝑔)                                                           (185)                        

In this control input an adaptive control law which is proposed to compensate the external disturbances. 

𝑞6 = 𝑘𝑏𝑎𝑟6 ∗ |𝑆𝑧|                                                                                                                                                   (186) 

 where 𝑘𝑏𝑎𝑟6 is a controller gain and 𝑞6 is a state variable whose value changes. 

 

IV. SIMULATION RESULTS 

In this section, the performance of the proposed algorithm is compared with nominal SMC with backstepping controller in 

MATLAB simulation. The initial conditions 𝜙(𝑡0), 𝜃(𝑡0), 𝜓(𝑡0), 𝑥(𝑡0), 𝑦(𝑡0) and 𝑧(𝑡0) are set as (0, 0, 0, 0, 0, 0). The desired 

trajectory for the attitude and altitude (𝜙𝑑, 𝜃𝑑 , 𝜓𝑑 , 𝑥𝑑, 𝑦𝑑 and𝑧𝑑) of the quadrotor are chosen as 

(0, 0, 0, 𝑠𝑖𝑛(𝑡) , 𝑐𝑜𝑠(𝑡) 𝑎𝑛𝑑 0.1 ∗ 𝑡).  External disturbances 𝑑∅ = 2 ∗ sin(𝑡) , 𝑑𝜃 = 2 ∗ sin(𝑡) , 𝑑𝜓 = 2 ∗ sin(𝑡) , 𝑑𝑥 = 2 ∗

sin(𝑡) , 𝑑𝑦 = 2 ∗ sin(𝑡) and  𝑑𝑧 = 2 ∗ sin(𝑡) are added. The quadrotor physical parameters are given in [26] and control gain 

parameters are given in the table 4.1.  

 

Table 4.1: Parameters of the controller 

                                                                                 

 
                                                                                                                     

        Fig.1 Adaptive 𝑞1 value                                                 

                To show the effectiveness of proposed adaptive control algorithm for trajectory tracking problem of quadrotor, 

simulation is conducted with a helical reference trajectory with red color lines and Actual trajectory with blue lines as shown in 

Fig.2 and Fig.3. The Fig.1 shows that the value of adaptive reaching law gain 𝑞1 is not constant and it is varying as per the 

proposed adaptive law in order to adjust the control input so that they can compensate the external disturbances. The Fig.4 to 

Fig.5 shows the output along the X-axis with Sliding Mode Back-Stepping Controller without adaptive control law and with 

adaptive control law. 

 

The parameters of the controller 
Numerical value 

𝑘𝑏𝑎𝑟1,  𝑘𝑏𝑎𝑟2 and 𝑘𝑏𝑎𝑟3 2 

𝑘𝑏𝑎𝑟4, 𝑘𝑏𝑎𝑟5 and 𝑘𝑏𝑎𝑟6 1.5 

 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5 and 𝑞6 2 
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  Fig.2 Trajectory tracking in three dimensions for                         Fig.3 Trajectory tracking in three dimensions for 

           Nominal Sliding Mode Back-Stepping Controller                          Adaptive control Law 

 

 

        
 

Fig.4. Output of X-axis without Adaptive Control Law                     Fig.5. Output of X-axis with Adaptive Control Law 

        
 

 Fig.6. Output of Y-axis without Adaptive Control Law                     Fig.7. Output of Y-axis with Adaptive Control Law 

 

The Fig.6 to Fig.7 shows the output along the Y-axis with Sliding Mode Back-Stepping Controller without adaptive control law 

and with adaptive control law. 

 

From the results one conclude that the system behavior of the proposed controller is robust against external disturbances. Also 

results obtained from the experiments suggest that performance of the proposed controller is better than nominal SMC with 

backstepping controller. 

 

V. CONCLUSIONS 

This article investigates the trajectory tracking problem of the quadrotor UAV in the presence of external disturbances. First 

nominal SMC with backstepping controller with reaching law is designed in MALAB. However, the system is unable to deal with 
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external disturbances to deal with this problem, an adaptive reaching law is designed that successfully estimates the external 

disturbances and improves trajectory tracking performance. 
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