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Abstract :  Chirality has significant importance in chemistry and it is classified as sub-disciplines of chemistry. Many organic 

compounds which are found naturally such as, amino acids and vitamins are chiral. The concept of chirality was first introduced 

in 1815 by French chemist Jean Baptiste Biot when he discovered optical activity in nature. Since then, Chirality has become of 

tremendous importance in our daily life. Enantiomeric compounds have diverse chemical properties, these molecules have 

different tastes and odours. Hence, it is obvious that the two enantiomers of a molecule will interact differently with a living 

organism, as in some cases, only one enantiomer of a drug provides the desired effect while the other could be lethal. The broad 

utility of synthetic chiral molecules in pharmaceuticals, electronic and optical devices, as components in polymers with novel 

properties and as probes of biological function, has made to search for single enantiomer molecules. In this chapter focuses 

various asymmetric transformations using organic catalysts. 

 

Index Terms - Organocatalysis, Asymmetric synthesis, L-proline derivatives, Applications, enantioselectivity. 

 

Introduction 

 The term ‘organocatalysis’ is the metal free chemical transformations by using low molecular weight 

organic molecules as catalysts. Although field of organocatlysis is few decades old, reactions using organic 

molecule as catalysts has been used from a century back. An addition reaction of HCN to aldehydes using 

organocatalyst has been reported in 1912 by Bredig and Fiske. In 1960 Pracejus demonstrated carbon – 

carbon bond forming reactions by using cinchona alkaloids although in low enantioselectivity. [1-3] 

However, organocatalysis gained popularity in the years of 2000 when List and Barbas et al carried out 

asymmetric aldol reaction by using proline as organocatalyst. [4] In last two decades many researchers 

across world have published enamours documents of successful transformation using organocatalysis. 

 At present, organocatalysis stands independently as important key to bring out chemical 

transformations with good sterocontrolled products. It has advantages such as, avoiding hazardous 

conditions and chemicals, metal free, low costing catalysts and can be used as chiral activator. Moreover, 

owing to its structural diversity of these catalysts show both Brønsted acid or base nature to act as a 

bifunctional catalyst. For instance, L-proline, the nitrogen in cyclic framework offers basicity and 

nucleophilicity whereas hydrogen from carboxyl structure shows acidic nature. [5] Thus, felicitate reaction 

by forming iminium or enamine with carbonyl group of ketone or aldehyde substrates while acidic hydrogen 

forms hydrogen bonding which stabilizes and controls transition state resulting stereoselective reactions. [4-

5] Literature revels that these small organic molecules have great ability to catalyses carbon- carbon (C-C), 

[6-15] carbon – nitrogen (C-N), [16-23] carbon – oxygen (C-O) [24-28] and carbon – sulphur (C-S) [29-31] 

bond forming reactions. 

 The organocatalytic process are powerful tool to drive asymmetric synthetic process.  Specially in 

pharmaceutical and food industries where demand for single enantiomer is more. Organocatalytic 

asymmetric processes are excellent solution to these industries, it benefits by eliminating resolution of 

racemic mixture thus avoiding the waste. Further, organocatalysts is an alternative catalytic process to 

industries for preparation of pharmaceutical products preventing metal contamination. In this chapter, the 

trends and developments of organoctalysis and its application in asymmetric synthetic will be discussed. 
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Discussion 

 The first asymmetric synthesis using L- proline was demonstrated by Eder, Sauer, and Weichert in 

the year 1971. [32] Although catalytic loading was high, reaction was able to produce enriched optical 

active products (2) in good yields. Similar reaction was performed by Hajos and Parrish using optimised 

reaction conditions which was able to reduce catalytic loading to 3 mole % with excellent enantiomeric 

excess but yield was moderate 52% yield (2) (Figure 1). [33]  
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Figure 1. 

 Although up to late 1990s very few articles were published on organocatalysis, this field was rooted 

in these years. [34-37] The results of organocatalytic studies started to be highlighted after 2000, when List 

and Barbas reinvestigated direct asymmetric aldol condensation reaction using 30 % L- proline as catalyst 

(Figure 2). [4] Even though yield of product was not so high (68 %) it opened route for metal free version 

for transition state (7). 
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Figure 2. 

 At the same time, successful Diel-Alder reaction using imidazolidinone catalyst was shown by 

McMillan group. The cycloaddition reaction of (E)-cinnamaldehyde (8) and cyclopentadiene (9) was 

reacted in presence of organocatalyst 10 to offer excellent yield and optical purity (Figure 3). The reaction 

was proceeded by formation of reversible iminium ions thus lowering LUMO activation energy (12). [38] 

He published series of papers and shown potential of small organic molecule in catalysing reactions through 

LUMO activation of molecules. [38-41]  
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 These two remarkable findings on organocatalysts helped organocatalysis to establish as 

independent stream of catalysis. After these publications the scope of organocatalytic field was further 

explored and surge of articles were seen in few years of span.  
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Figure 4. 

Hajos-Parrish-Eder-Sauer-Wiechert reaction was restudied by Hanessian et al by using cis- and trans-

4,5-Methanoprolines (Figure 4). The reaction was studied with hybrid density functional theory (B3LYP).  

From studies it was found, iminium transition state formed from planar cis-4,5-methanoproline 

organocatalyst (13a) forms more stable conformation than that of trans-4,5-Methanoproline (13b). Thus, 

catalysts cis-4,5-methanoproline (13a) was better choice for catalysis and able to draw high yield and 

enantioselectivity (86% yield, 93% ee), whereas the trans-4,5-methanoproline (13b) was not very efficient 

(67% yield, 83% ee) and showed very slow rate of reaction [42].  

A, Hartikka and P. Arvidsson synthesized novel organocatalysts 5-pyrrolidine-2-yltetrazole (14) by 

modifying carboxylic acid of proline with the tetrazole (Figure 5). The catalyst 14 was used in aldol 

condensation which showed increased reactivity over proline in DMSO and DMF solvents with 20 % 

catalytic loading.[43] The catalyst 14 was able to bring down activation energy through more stable 

transition state, which increased conversion rate up to more than 90%with 76% ee in 4 hours. 
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 In 2006, D. Gryko with Lipinski, prepared various L-proline-derived thioamides 15(a-j) by reacting 

L-proline and chiral and achiral amines. (Figure 6) These catalysts were screened for aldol reaction. [44] 

The studies confirmed mechanistic approach and necessity of chiral centre in catalyst to form Houk and List 

type transition state. [45] The catalyst Pyrrolidine-2-carbothioic acid (1-phenyl-ethyl)-amide (15c) catalysed 

reaction offering good yield with better ee for products. When catalyst 15c was reacted with ketone in 

absence of aldehyde, it formed imidazolidinethiones which was stable and could be isolated. when it was 

further reacted with aldehyde it gave low yield and unacceptable optical purity. Similar study was done 

using benzaldehyde in absence of acetone it gave oxazolidinone but failed to obtain fruitful result when 

reacted with ketone. This concluded that reaction followed imine–enamine mechanism and the transition 

state (16) which was stabilised by more acidic N-H protons of catalyst to provide enhanced stereo control on 

reaction.  
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Figure 6. 
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 Janda and co-workers researched asymmetric aldol reaction in water using proline-nicotine based 

catalyst 17 in the aqueous medium. In search of alternate route to base catalysed aldol reaction, a new 

system was developed in buffer solution and nornicotine organocatalysts (Figure 7). [46] In series of 

publications Janda recognized role of water in the reaction between acetone and aromatic benzaldehyde in 

alkaline medium (pH 8) by adding phosphate buffer in presence of nornicotine organocatalyst (17). The role 

of water in transition state (18) was studied by combined deuterium isotopic kinetic effects and 

computational studies to propose intermediate. [47] Although reaction claimed to be aqueous, small amount 

of polar solvent DMSO was added to dissolve water in soluble substrates. The reaction offered high yields 

and considerable enantioselectivity. It was found that aldehydes with negative inductive effect reacted faster 

and produced good results. The nornicotine system helped to establish Hammett correlation on reaction 

rates. [48-49]. 

Ar

OH O

N
H

H

O

H

N

O
Water

Phosphate buffer
pH 8 Ar



OH O



N
H

N 17

18 Transition state

30% catalyst

+
CHOAr

 
Figure 7. 

In an interesting report by Gong et al., which illustrated that the addition of water changed 

regiochemistry of reaction by reacting same substrates under different reaction conditions two different 

compounds were obtained.  The presence water alters the regioselectivity of enamine intermediate and 

hence the reaction (Figure 8).  Similar results were seen in the reaction between hydroxyacetone and 4-

nitrobenzaldehyde. The reaction in a THF:water solvent system offered 1,4-Dihydroxy-4-(4-nitro-phenyl)-

butan-2-one in good yield and optical purity (92 % and 90 % ee), whereas the reaction performed in only 

THF solvent produced chiral 3,4-Dihydroxy-4-(4-nitro-phenyl)-butan-2-one although with less selectivity 

(36 % yield, 97 % ee). Then similar protocol was applied to Fluoroacetone with aldehyde in THF solvent it 

produced 94 % 3-Fluoro-4-hydroxy-4-(4-nitro-phenyl)-butan-2-one with 95% ee. Whereas when THF -

water system offered 62% yield and 80 % ee for the product 1-Fluoro-4-hydroxy-4-(4-nitro-phenyl)-butan-

2-one. From theoretical calculations it was depicted that the role of a hydrogen bonding network is crucial to 

stabilize the enamine transition state. [50] 
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 R. S. Schwab et al. prepared a series of chiral cysteine-derived prolinamides and tested their 

application in the organocatalytic asymmetric aldol reaction (Figure 9). In addition, a selenium-containing 

chiral organocatalyst was also synthesized and studied. The organocatalysts 20(a-h) and 21 were 

synthesized by reaction of S-alkyl-L-cysteine methyl ester and N-Boc-L-proline. The obtained amide was 

subjected to double Grignard addition reaction to the ester group or reduction with sodium borohydride. The 

final product 20 was obtained by removing the Boc group of reduced hydroxy N-Boc prolinamide (Figure 

9). Organocatalysts 21 was synthesized using same protocol starting with selenium alkyl-L-cysteine methyl 

ester. The reaction was optimized by sulphur containing organocatalyst 20a and similar conditions were 

used for selenium containing organocatalyst (21).  
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Figure 9. 

The reactants were allowed to react for 24 hrs at low temperature in acetone as solvent with 10 mole % 

catalytic loading. Although catalytic loading was not so high reaction could furnish satisfactory yield up to 

83% for aldol products with excellent optical purity up to 94ee. Selenium derived prolinamide 21 proved to 

be inefficient catalyst producing 50 % of desired product and 85 %ee under optimized conditions. [51] 

 Hayashi et al. demonstrated modification of proline at 4 position to form 4-tert-

butyldimethylsiloxyproline 22. The organocatalyst was derived from commercially available trans-4-

hydroxyproline. The catalyst 22 showed superior catalytic activity than L-proline for a-aminoxylation of 

carbonyl, the O-nitroso aldol/ Michael, and Mannich reaction (Figure 10). The catalyst (22) displayed 

greater yields (up to 66% for a-aminoxylation; 76 % for O-nitroso aldol reaction; 63% for Mannich 

reaction) and better enantioselectivities (up to 99% for a-aminoxylation; 99 % for  O-nitroso aldol reaction; 

96% for Mannich reaction).[52]  

 Further, in his subsequent publication, application of siloxyproline (23) was studied in the 

asymmetric aldol reaction. The catalyst siloxyproline 23 worked well in solvent water to afford aldol 

products in excellent yield (up to 89%) and enantioselectivity (up to 97%) for anti-isomer. [53]  
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Figure 10. 

 Xu and co-researcher studied rational electronic tuning of catalysts to improve enantioselectivity 

also the correlation between the enantiomeric ratio of product and the Hammett constant of the catalyst 

substituent in the asymmetric Aldol reaction system (Figure 11). To understand the electronic tuning, the 

catalysts 24 a-d were designed with very similar structural features and tested in direct Aldol the reaction. 

When all catalysts were screened in aldol reaction, catalyst 24d was found to be better choice in DMSO 

solvent yielding 74% product with 68% ee for anti-isomer. [54] 
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Figure 11. 

 It can be concluded that for all catalysts, substrate with electron-withdrawing groups offered good 

diastereoselectivity and enantioselectivity than those with electron-donating groups. The Hammett constants 

for meta and para substrate were well in agreement with the enantiomeric ratios. Thus, effect of improved 

enantiomeric excess was explained by rationally tuning catalyst structure. 

 A series of thiazolidine amides derived catalysts (25 a-d)) were synthesized from different β-amino 

alcohols (Figure 12) by duo scientists Rambo and Schneider. [55] The synthesized catalysts were studied in 

aldol reaction and asymmetric Michael addition. The influence of electronic and steric characteristics of 

synthesized organocatalyst was studied in aldol reaction. For aldol reaction, catalyst 25a was very efficient 

when used both brine solution and water solvents, in both cases it gave more than 90% yield however in 

brine solution ee was greater. Replacement of phenyl group of catalyst 25a by hydrogen proved to be 

disastrous for desired product in terms of yield. Although performance was improved with catalysts 25b and 

25c but less efficient than catalyst 25d. Scope of reaction was extended further in Michael addition reaction 

between cyclohexanone and trans-β-nitrostyrene, reaction furnished moderate yield 60% with 99 % ee for 

syn isomer.  
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 Wennemers and his group provided mechanistic approach for improving organocatalytic reactions 

(Figure 13). They studied kinetic aspect of organocatalytic reactions to reduce catalytic loadings. [56] The 

conjugate addition reactions between aldehyde and nitroolefin was chosen as model reaction using 1 mole 

% peptide catalyst 26 to understand the kinetic influence of the reaction. They discovered that enamine 

formation occurs fast in absence of water even at lower concentrations of aldehydes. However, with 

addition of nitroalkene imine formation take place which depends on water.  Thus, studies showed that rate 

determining step does not depends on enamine formation but also hydrolysis of the resulting imine 

complex.  
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Figure 13. Mechanistic study of aldol reaction using catalysts 26. 

 Asymmetric hydrogenation reaction of unsaturated β-aminoacids was attempted by Wu et al. using 

various analogues of chiral pyrrolidine sulfoxide organocatalyst (27 a-f) at very low temperature. The 

reaction was optimized by using varying reaction parameter such as catalysts and solvents. Best condition 

for the reduction of (Z)-ethyl 3-phenyl-3-(benzylamino) acrylate was achieved at -40° C by reacting with 

reducing agent trichlorosilane in presence of catalyst 27d and water as Brønsted acidic additive (Figure 14). 

The reaction performed well in presence of 1.0 equivalent water as additive in toluene to produce yield up to 

98% and 96% ee for desired products. It was believed that reduction proceeds through enamine - imine 

tautomerization -enamino ester due to protonation of the nitrogen atom, which also increase the 

electrophilicity of the imine followed by attach HSiCl3. Resultant transition state was controlled by non-

bonding interactions with organocatalyst leading to conversion of product. [57] 
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Figure 14. 

 From literature it is evident that, pyrrolidine-based catalysts prominently work through enamine or 

iminium mode of action using primary or secondary amine group of organocatalysts. For the first time, 

Thorat et al, in series of publications demonstrated exclusive use of hydrogen bonding with N-H moiety and 

non-bonding interactions for catalysing various asymmetric reactions using N-protected pyrrolidine-based 

catalysts. The catalysts 28 (a-d) and 29 (a-c) were developed by introducing N- tosyl /acyl group on reactive 

amine of proline and substituted carboxylic part by amide group (Figure 15). [58--64] 
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Figure 15. 

 The catalysts 28 (a-d) were screened in aldol and Henry reaction. In both type of reaction catalyst 

28b worked efficiently in to give excellent results. The Catalyst 28b catalysed direct asymmetric aldol 

reaction to afford yield up to 92% with anti:syn ratio up to 100 % and up to 95 % enantioselectivity for anti-
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stereoisomer. [58] Whereas, it also proved to be exceptional for production of asymmetric β-nitroalcohols 

along with assistance of water molecule to form product up to 87% and up to 94 % optical enrichment. [59]  

 The catalyst 29 (a-c) were tested in carbon phosphorous bond forming reactions. viz, synthesis of -

aminophosphates and β-malanophosphate. The catalyst 29b was productive for asymmetric synthesis of -

aminophosphates and achieved good yields up to 90 % with enantioselectivity up to 92 %. [60] It was also 

fruitful to drive formation of asymmetric β-malanophosphate which gave moderate to high yield (85–64%) 

and good enantiomeric excess (78–53%). [61] 

 The catalyst 29b along with base triethylamine catalysed Baylis-Hillman reaction offering good to 

high yields (73–90%) and with excellent enantiomeric excesses (up to 96%). [62] When catalyst 29 (a-c) 

and base triethylamine were employed in direct aldol reaction between of chloroacetone with p-

nitrobenzaldehyde it could fetch up to 90 % yield and 92%ee under optimized conditions. These optimized 

conditions were explored for the Knoevenagel condensation reaction where it gave traditional product as , 

β unsaturated ketones at room temperature (up to 89% yield) (Figure 16). However, when temperature of 

reaction was dropped down to -78° C, it yielded novel chiral α-cyno-β-hydroxy ketones in excellent yield 

with high anti selectivity and enantioselectivity. Nevertheless, rise in temperature dehydrates product 

destroying chiral centre and forms , β unsaturated ketones. [63] 

 

 

 

 

 

 

 

 

 

Figure 16. 

 Further catalyst 29 was modified and used in the asymmetric synthesis of highly dense piperidine 

derivatives (Figure 17). The organocatalyst 29e successfully produced desired compound up to 92% yield 

for pure anti at 80°C. When reaction was performed at lower temperature at 5°C, although in moderate 

yields (up to 48%), dominant syn distereomer was obtained up to 100 % dr for some selected products. 

Albeit, yields for the reaction were improved (up to 76%) when it was raised to room temperature but 

stereocontrol was lost. [64] 
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Figure 17. 

 Ma and others prepared nanosphere based Heterogeneous organocatalysts (31) for asymmetric 

reactions. Theses catalysts were obtained by the two different paths (Figure 18). In path I, emulsion 

polymerization of (S)-α, α- bis(4-vinyl) phenylprolinoltrimethylsilyl ether (ProTMS) with ethylene glycol 

methacrylate (EGDMA), styrene (St) and acrylic acid (AA) was achieved using Sodium dodecyl sulphate 

(SSD) as emulsifying agent in aqueous solution. Whereas Path II, a mixture of (S)-α, α- bis (4-vinylphenyl) 

prolinol (Pro), with EGDMA, styrene (St) and acrylic acid (AA) was emulsified to obtain nanosphere 
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material 30 followed by treatment with trimethylsilyl trifluoromethanesulfonate (TMSOTf) to get desired 

catalyst 31. The various catalysts were prepared by taking differing amount of all reacting substrates, 

specially(S)-α, α- bis (4-vinylphenyl) prolinol (Pro). Heterogeneous organocatalysts were utilized in 

different C-C bond forming reactions.  The catalytic activity of catalysts was found to be dependent on route 

by which catalysts were prepared. Catalysts (31) prepared by route II was more reactive than catalysts 

prepared by route I. The catalyst which was prepared by reacting 178.2 mg of nanosphere organomaterial 30 

with TMSOTf in basic medium followed by quenching with 40ml water, proved to be the best catalyst 

amongst all. The Heterogeneous asymmetric three-component/triple Michael/Michael/aldol organocascade 

reaction via above said catalyst helped to obtain up to 78% yield, >19:1 dr and upto 99%ee). In addition, [4 

+ 2]-type cycloaddition of cyclohexenylidenemalononitrile with , -unsaturated aromatic aldehydes was 

also achieved in high yield (up to 86%, > 19:1 dr and up to 99% ee). Furthermore, the polymeric 

nanospheres was reused up to few cycles. [65]  
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Figure 18. 

 Kokotos and his research group derived a series of fluorine substituted prolinamide derivaties 33 (a-

e) as organocatalysts (Figure 19). These catalysts were used in aldol reaction for their performance. 

Catalyst 33a and other o-floro-substituted prolinamide derivatives performed well in water-organic solvent 

system. Almost similar yield and sterocontrol was observed for o-floro-substituted prolinamide catalysts. 

Moreover, catalyst 33d was most efficient. It was demonstrated that the catalysts have powerful hydrogen 

bonding interactions with reacting substrates leading to stabilized transition state (34). Thus, provide great 

control over steroselectivity of products. Scope of catalyst was studied for various aromatic and aliphatic 

aldehydes with cyclohexane to obtain aldol products. Aromatic aldehydes were more suitable with catalyst 

33d giving products in high yields (up to 100%) with greater diastereo- (up to 95:5) and enantioselectivities 

(up to 97%), however the aliphatic aldehydes could not give good yields, but optical purity was maintained. 

[66] 
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Figure 19. 

A. Pich and his co-scientists demonstrated use of microgel covalently bonded proline polymer catalysts 

for the synthesis of asymmetric aldol reaction. Various microgel catalysts were prepared based on different 

proportions of L-proline and method of preparation ie., batch process 35a and semi batch process 35b. In 

batch process L-proline was incorporated in core of microgel, and in semi batch process it was in periphery 

of microgel (Figure 20). Application of these microgel catalysts was studied in both heterogeneous (water 

as solvent) and homogeneous (methanol as solvent) reaction conditions. Thus, catalytic mode could be tune 

by choosing nature of solvent and distribution of L-proline in microgel network. In homogeneous condition 

reaction executed well in presence of microgel catalyst in which L-proline was present in periphery of 

microgel (35b). In contrast, heterogeneous condition worked well with catalyst in which L-proline was 

integrated in core of microgel (35a). The aldol reaction in methanol and water offered up to 98 % and up to 

88 %yield respectively and up to 93% and 90% ee respectively. [67] 
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Figure 20. 

 Various enantiomeric transformations of O,O-dimenthyl α-iminotrifluoroethylphosphonates (NH-

iminophosphonates) (36) was shown using organocatalytic pathways by Y.V. Rassukana et al (Figure 21). 

When opticaly pure dimenthyl phosphites was reacted with trifluoroacetonitrile under mild basic conditions, 

the reaction afforded two disteromers of dimenthyl iminophosphonates (36).  
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Figure 21. 

This product was reduced in presence of catalyst chiral (S) oxazaborolidine and catecholborane as an 

additive, which resulted in optically active amino phosphonates (37) up to 84% yield and 86% dr. Non 

chiral catalysts although forced reaction to occur but failed in terms of stereo selectivity. Further, NH-

iminophosphonates was treated with acetone to undergo Mannich reaction in presence of proline 

enantiomers to receive product (38) up to 86% yield and highest 87 % de in case of D-Proline catalyst. 

Furthermore, disteroselective Aza-Henry reaction was shown under mild basic conditions by reacting (+)-1 

with nitromethane to obtain 94 % α-amino-β-nitro-phosphonates (39) with (2:1 dr). The reaction revealed 

good stereo control, which was supposed because of negative inductive effect of CF3 group and easily 

accessible N-unprotected C-N bond. [68] 

 Antonio and Juaristi synthesized new series of chiral derivative pyrrolidine thio tetrazole derivatives 

40 (a-c). The derivatives were prepared under microwave irradiation in basic conditions resulting in high 

yielding protocol (Figure 22).  Further these chiral compounds were tested in aldol reaction.  Among all 

catalysts, excellent results were obtained with catalysts 40a under solvent free condition in absence of 

additive. The reaction gave up to 96 % yield and up to 90% ee for anti-isomer. Although reaction was 

performed under solvent free conditions, enamine formation between catalysts and ketone produced water 

molecules, which activate aldehyde molecule to form transition state (41) leading to formation of product. 

The mechanism was supported by DFT calculations. [69] 
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Figure 22. Synthesis of catalysts 40 (a-c) and transition state 41. 

 T. Satoh and his research team prepared three one-handed helical poly(phenylacetylene)s with 

proline and its analogue as attachments PPA-Pro, (43a) PPA-Pro-Pro (43b) and PPA-Pro-Hyp (43c) 

(Figure 23). All three catalysts were employed in the synthesis of aldol reaction for its catalytic evaluation. 

Catalytic activity was compared with its monomer catalysts (42 a-c). The catalysts, PPA-Pro-Pro (43b) and 

PPA-Pro-Hyp (43c) bearing dipeptide moiety resulted the greater catalytic activity and stero control than its 

monomer catalysts. The enlightening catalytic activity of polymer catalysts was due to the synergistic effect 

of the dipeptide structure with the one-handed helical mainchain of the polymer catalyst. Moreover, 

Catalytic performance could be increased to some extent by adding imidazole as an additive to aldol process 

along with dipeptide polymer catalyst. The catalysts in presence of additive yielded aldol product 64% for 

catalysts PPA-Pro and PPA-Pro-Pro, 69% in case of PPA-Pro-Hyp, whereas, ee value was highest 34% in 

case of PPA-Pro-Hyp. Moreover, catalysts were also reused without loss of significant activity up to few 

cycles. [70] 
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 Hayashi in another report, demonstrated use of commercially available flurosubstituted prolinol 

based catalysts 44for cross aldol reaction. The direct cross-aldol reaction was investigated between ,  -

unsaturated aldehyde and propane aldehyde derivatives. The reaction was progressed in presence of 

organocatalyst 44 and acid additives to offer high yields for anti-isomer rich , -unsaturated -hydroxy 

aldehydes (45) with enhanced enantioselectivity, which was treated further with Wittig reagent 

(Ph3P=CHCO2Et) in situ to obtain , -unsaturated ester (46) up to 90% yield and up to 98% ee for anti-

products (Figure 24). The reaction was claimed to be the first example of using acid as an additive. The role 

of acid was to lower the LUMO level of reactant aldehyde and help in stabilising transition state to felicitate 

reaction. [71] 
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Hayashi in his subsequent publications, revelled protocols for total synthesis of Corey lactone (49) and 

Latanoprost (50) drugs via multistep processes (Figure 25). The common key step of total synthesis was the 

production of main precursor [3-(Dimethyl-phenyl-silanyl)-2-formyl-5-oxo-cyclopentyl]-acetic acid ethyl 

ester (48), which was achieved by organoctalytic pathway efficiently and in pure optical form. The 

compound 48 was obtained by reacting 3-(dimethylphenylsilyl) propenal and ethyl 4-oxo-2-pentenoate in 

presence of commercially available prolinol based organocalalyst 47. The reaction proceeded via [3+2] 

cycloaddition reaction and afforded single isomer with 99% optical purity and 90% yield. Duo scientists 

have proposed this method to be pot economical and time economical total synthesis.[72] 

 Recently, Mohanta and Bez have set protocol for the effective asymmetric synthesis of oxa-Michael 

addition reaction of -nitroalkene and salicylaldehyde. Series of proline derivatives analogues 51 (a-j) were 

designed and prepared to test the hypothesis in evaluation of asymmetric synthesis of chromenes (Figure 

26). All catalysts supported propositions made and helped to understand mechanism well. Reaction 

proceeded via known reversible iminium ion formation with free NH of pyrrolidine catalyst. Moreover, 

iminium ion formation assisted to lower the nucleophilicity of the hydroxy group in salicylaldehyde. 

Further, Si-face attach of β-nitroalkene to this activated complex formed transition state (52), thus producing 

desired product with upto 96% yield and upto 99% ee. [73] 
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Summary: 

Above section evidently revels the efficiency and potency of small organic chiral molecules like, proline 

and its derivatives in synthetic chemistry. From last two decades it has been emerging as one of the most 

powerful weapons to obtain optically pure isomers, thus, avoiding tedious job of resolution of racemic 

mixtures.  One of the most important advantages of organocatalysis is to evade non-hazardous reagents and 

reaction conditions and ability to control stereoselectivity of reaction by tunning catalytic structures. 

However, the main restriction of organocatalytic transformation is due to its high catalytic loadings (10 

mol% or higher). Nevertheless, there are quite few reports where catalytic loadings very low, [74] 

organocatalytic field needs interrogation and development in this part as to stand with the catalytic 

requirements of enzymes or metal catalysts mediated reactions.  
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From few years, organocatalysis has been explored successfully in medicinal chemistry [75-76] and 

industries [77]. Organocatalysis is primary key for the expectation of atom efficiency, energy efficiency, 

and environmental issues and need for sustainable chemistry. [78-79] Organocatalysis are progressing its 

path in industries such as pharmaceutical and food industry, where metal free methods are utmost in 

demands and metals are not expected even in trace amount. Consequently, Asymmetric organocatalytic field 

is one of the most popular and significant field. Still, organocatalysis has to meet various challenges but 

surely will keep unlocking useful routes for synthetic organic chemistry and industry.  
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