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Abstract: The proliferation of digital images across various platforms accentuates the pressing need for robust techniques in 

detecting image forgeries, especially passive forgery methods such as Copy-move and Splicing. This study presents a novel 

approach employing deep learning methodologies for accurate identification of manipulated regions within images, specifically 

targeting these passive forgery techniques. Our proposed framework harnesses the power of Mobile Net and ResNet as feature 

extraction networks, extracting rich representations from image data to capture intricate patterns indicative of potential tampering, 

including Copy-move and Splicing manipulations. Additionally, we utilize Mask R-CNN, a state-of-the-art instance segmentation 

model, for precise localization and quantification of forged regions, enabling the calculation of the percentage of altered content 

within images. 

Index Terms - Copy-Move Forgery, Splicing Forgery, ResNet, Mobile Net V2, Mask R-CNN, Percentage calculation, feature extraction, 

Localization, Digital Forensics. 

I. INTRODUCTION 

 

The convergence of Deep Learning has indeed propelled advancements in the realms of digital forensics and cybersecurity. Notably, 

with the proliferation of various image editing applications and manipulation tools, tampering with images has become an effortless 

task. Detecting the disparity between a tampered image and its original counterpart is exceedingly challenging for the unaided 

human eye. Within the spectrum of image forgery and manipulation techniques, two primary categories emerge: Active and Passive 

methods. Active methods encompass techniques such as Watermarks and Digital Signatures, where concealed information assumes 

the form of a digital signature. On the other hand, Passive methods encompass techniques like Copy-Move Forgery, Splicing, and 

Retouching. In our paper, we focus primarily on Copy-Move Forgery and Splicing Techniques, aiming to delve deeper into these 

areas. 

   Our proposed technique places emphasis on localization, aiming to precisely identify forged regions within an image. 

Furthermore, our research endeavors to provide a forged percentage score for specific regions within an image, thereby enhancing 

the precision and granularity of forgery detection. In the landscape of image manipulation, Copy-Move Forgery involves duplicating 

a section of an image and pasting it elsewhere within the same image, while Splicing Technique entails merging different sections 

from multiple images to create a fabricated composite. Detecting such manipulations demands sophisticated algorithms and 

techniques capable of discerning subtle inconsistencies within the image data. 

 

   Our proposed solution consists of the usage of ResNet (Residual Network) and MobileNet V2 for feature extraction of the images. 

ResNet and MobileNet V2 can be utilized to extract relevant features from images, such as textures, edges, and structural elements, 

which can then be fed into subsequent stages of the forgery detection pipeline. 

Mask R-CNN is a state-of-the-art deep learning model used for instance segmentation and object detection. Building upon the 

Faster R-CNN framework, Mask R-CNN extends it by adding a branch for predicting segmentation masks on each Region of 

Interest (RoI). This model not only identifies objects but also provides pixel-level segmentation masks, enabling precise localization 

of object boundaries within the image. In the context of Forgery Detection Mask R-CNN, with its ability to provide pixel-level 

segmentation masks, is valuable for precisely localizing regions within an image that have been tampered with or forged. It can 

identify the boundaries and extent of manipulated regions, aiding in the forensic analysis of tampered images. 

  Leveraging ResNet and MobileNet V2 for feature extraction combined with Mask R-CNN for accurate localization provides a 

robust framework for detecting and analyzing forged areas within images, enhancing the capabilities of image forensics, and 
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ensuring the integrity of visual content. The percentage calculated serves as an estimation of the extent of forgery within the image 

and aids in quantifying the level of tampering. Within the experimental domain, meticulous attention will be given to data pre-

processing, model training, and the rigorous evaluation of results. Performance metrics, encompassing sensitivity, specificity, and 

overall accuracy, will be scrutinized to quantify the efficiency of our proposed approach. 

II. RELATED WORK 

This literature review aims to delve deeper into the contemporary methodologies, their performance metrics, and the ongoing 

research trends in image forgery detection, with a focus to contribute to the understanding and advancement of reliable forgery 

detection mechanisms. 

 

A hybrid method based on color illumination, DCNN, and semantic segmentation was developed by Abhishek and Jindal [1] to 

detect and localize copy-move and splicing forgery in images. The proposed algorithm consists of three steps. The proposed solution 

is to use a hybrid technique of color illumination, deep convolution neural network, and semantic segmentation to detect and localize 

image forgeries. The future work of this paper includes improving the accuracy and robustness of the proposed method by using more 

advanced deep learning models and techniques, such as attention mechanisms, adversarial learning, and self-supervised learning. 

Extending the proposed method to other types of image forgeries, such as face swapping, object removal, and inpainting, and evaluate 

its performance on larger and more diverse datasets. Exploring the applications of the proposed method in other domains, such as 
video forgery detection, digital forensics, and multimedia security. 

 

Another system proposed by Jwaid and Baraskar consists the use of a novel technique for image splicing forgery detection based 

on local binary pattern (LBP) and discrete wavelet transform (DWT) [2]. The technique first converts the input image into YCbCr 

color channel, and then divides the chrominance component into non-overlapping blocks. Then, LBP operator is applied to each 

block, and wavelet transform is used to extract the features. Finally, principal component analysis (PCA) is used to reduce the 

dimensionality of the features, and support vector machine (SVM) is used to classify the blocks as authentic or forged. The paper 

evaluates the performance of the proposed technique on two public datasets: CASIA and Columbia, and compares it with other 

existing methods. The paper suggests some directions for future research, such as improving the processing time and complexity of 

the proposed technique, extending it to detect other types of image forgery, such as inpainting and retouching, and incorporating other 
features and classifiers to enhance the accuracy and robustness of the technique. 

 

The system proposed by [3] presents a lightweight deep learning model based on Mask R-CNN with MobileNet V1 to detect and 

identify copy move and image splicing forgeries in digital images. The model also provides a forged percentage score for a region in 

an image. The model is evaluated on seven standard datasets and compared with ResNet-1014. The paper suggests some directions 

for future work, such as extending the model to handle other types of image forgeries, such as inpainting and removal, improving the 

accuracy and robustness of the model against various attacks and noise, and developing a web or mobile application for image forgery 

detection and identification. 

 

 The research proposed in [4] introduces a new image forgery detection method based on Discrete Cosine Transformation (DCT) 

and Local Binary Pattern (LBP) and a new feature extraction method using the mean operator1. The method is robust against low 

availability of forged training samples, rotation, scaling, and translation of images. The method is also applicable to both grayscale 

and color images, and outperforms existing methods on four benchmark datasets and a newly created IoT dataset. The paper presents 

the following steps for the proposed algorithm: Convert color images into grayscale and YCbCr color space images. Divide the 

images into non-overlapping fixed size blocks. Apply 2D-DCT on each block to obtain the DCT coefficients. Apply LBP on the 

magnitude of the DCT coefficients to enhance the forgery artifacts. Divide the LBP array into the same size of blocks as before. 

Calculate the mean value of each cell across all LBP blocks to obtain the feature vector. Use SVM classifier to distinguish authentic 

and forged images. The paper suggests some possible directions for future work, such as: Extending the proposed method to detect 

other types of image forgery, such as inpainting and splicing with different backgrounds. Developing a more comprehensive IoT 

image forgery dataset with different types of sensors and scenarios. Exploring other feature extraction and classification methods to 

improve the detection performance and efficiency. Investigating the impact of different block sizes and LBP parameters on the 

detection accuracy. 

 

The paper [5] proposes a method based on convolutional neural network with global average pooling for splicing and copy-move 

tampering detection. The proposed method outperformed some state-of-the-art methods in experiments on three public image 

tampering datasets. Future work could focus on improving the performance of the proposed method on more complex datasets and 
exploring the application of the proposed method in other areas of image forensics. 

The paper reviews the existing methods for forgery detection and their limitations, and motivates the use of a deep learning 

approach, specifically a Convolutional Neural Network (CNN) model, to detect both types of forgeries without knowing their types 

beforehand [6]. The paper proposes a CNN model that consists of three main phases: image pre-processing, feature extraction, and 

classification. The image pre-processing phase involves resizing the images and converting them into Error Level Analysis images. 

The feature extraction phase consists of convolution layers, pooling layers, and Rectified Linear Units (ReLU) layers that learn to 

extract features from the images. The classification phase consists of fully connected layers that map the extracted features to the 

final output, which indicates whether the image is original or forged. The paper explains the details of each phase and the 

hyperparameters used for the CNN model. Some future work of the paper includes evaluating the performance of the CNN model 

under different attacks such as compression, noise, filtering, scaling, and rotation. The CNN model could be enhanced to be more 

resilient to these attacks and preserve the accuracy of forgery detection. 

 

The paper [7] reviews the state-of-the-art techniques of deep learning for copy-move image forgery detection (CMFD), which is 

a common type of image manipulation that involves copying and pasting a part of an image to another location in the same image. 

The paper discusses the challenges and limitations of the conventional methods for CMFD, such as block-based and keypoint-based 
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approaches, and highlights the advantages and potential of deep learning methods, such as convolutional neural networks (CNNs), 

for CMFD. The paper proposes [7] a novel deep learning architecture for CMFD, which consists of three main components: i) a pre-

processing module that converts the input image into grayscale and applies data augmentation techniques; ii) a feature extraction 

module that uses a CNN to learn hierarchical features from the image patches; and iii) a classification module that uses a support 

vector machine (SVM) to classify the image patches as original or forged. The paper also introduces a filter layer in the CNN to 

suppress the image content and enhance the tampering traces. The paper suggests some possible directions for future research on 

CMFD using deep learning methods, such as: i) exploring other deep learning models, such as recurrent neural networks (RNNs) and 

generative adversarial networks (GANs), for CMFD; ii) developing more robust and efficient methods for dealing with complex 

tampering operations, such as rotation, scaling, and blurring; iii) creating more realistic and diverse datasets for CMFD; and iv) 

integrating CMFD with other image forensics tasks, such as source identification and tampering localization. 

 

    The proposed method [8] uses multiscale to ceck if there is any counterfeit in the image. By applying one-level Discrete Wavelet 

Transform, the sharped edges, which are traces of cut-paste manipulation, are high frequencies and detected from LH, HL and HH 

sub-bands. A threshold is proposed to filter the suspicious edges and the morphological operation is applied to reconstruct the 

boundaries of forged regions. If there is no shape produced by dilation or no highlight sharped edges, the image is not faked. In case 

of forgery image, if a region at the other position is like the defined region in the image, a copy-move is confirmed. If not, a splicing 

is detected. The suspicious region is extracted the feature using Run Difference Method (RDM) and a feature vector is created. 

Searching regions having the same feature vector is called detection phase.The proposed architecture of the algorithm is simulated in 

Matlab with high efficiency not only in the copy-move or spliced images but also the image with both copy-move and splicing. The 

authors have also suggested that the proposed method can be extended to detect forgery in videos. 

 

The paper by Yuan Rao and Jiangqun Ni [9] presents a new image forgery detection method based on deep learning technique. 

The proposed method utilizes a convolutional neural network (CNN) to automatically learn hierarchical representations from the 

input RGB color images. The proposed CNN is specifically designed for image splicing and copy-move detection applications. The 

weights at the first layer of the network are initialized with the basic high-pass filter set used in calculation of residual maps in spatial 

rich model (SRM), which serves as a regularizer to efficiently suppress the effect of image contents and capture the subtle artifacts 

introduced by the tampering operations. The pre-trained CNN is used as patch descriptor to extract dense features from the test 

images, and a feature fusion technique is then explored to obtain the final discriminative features for SVM classification. The 

experimental results on several public datasets show that the proposed CNN based model outperforms some state-of-the-art 

methods.The proposed method could be extended to detect other types of image forgeries such as image retouching and image splicing 

with different resolutions. The proposed method could also be applied to other types of media such as videos and audio files. 

Additionally, the proposed method could be improved by using more advanced deep learning techniques such as Generative 

Adversarial Networks (GANs) and Recurrent Neural Networks (RNNs). These techniques could help improve the accuracy of the 

proposed method and make it more robust to different types of image forgeries. 

 

The paper [10] focuses on detecting image manipulation and tampering and the localization of tampered areas. The authors use 

the core idea of end-to-end training of u-net network to further optimize the performance of image tampering detection tasks in 

combination with residual network. The proposed architecture in the paper is based on the end-to-end training of u-net network to 

optimize the performance of image tampering detection tasks in combination with residual network. The authors use a deep learning 

framework to detect image manipulation and tampering and the localization of tampered areas. The method involves training the 

network on a dataset of authentic and tampered images, and then using the trained network to classify new images as authentic or 

tampered. The authors also propose a new loss function to improve the performance of the network. In terms of future work, the 

authors suggest that the proposed method can be extended to detect other types of image manipulations, such as copy-move forgery, 

splicing, and retouching. They also suggest that the method can be applied to other domains, such as video forgery detection and 
document forgery detection. 

III. PROPOSED METHOD 

    Our approach for Image Forgery Detection aims to harness the capabilities of deep learning algorithms to accurately identify and 

localize forged regions within images. The methodology involves a sequence of essential steps, commencing with data preprocessing 
and culminating in the evaluation of model performance. Figure 2 depicts the proposed system architecture. 

Image Preprocessing: 

   In the realm of Image Forgery Detection, meticulous preprocessing of the input dataset stands as a critical initial stride in fostering 

robust and accurate model performance. This preprocessing regimen consists of several imperative steps tailored to optimize the 

images for subsequent forgery detection and localization tasks.  

   Image Resizing serves as the inaugural step in this process. The rationale behind resizing is two-fold: to standardize images to a 

uniform dimension and to facilitate computational efficiency within the detection model. The consistent sizing of images 

harmonizes the dataset, enabling the model to effectively learn patterns and features across all inputs. This uniformity in dimensions 

is instrumental in minimizing potential biases that might arise from disparate image sizes. Moreover, computationally standardized 

dimensions ease the burden on subsequent processing steps and model architectures, fostering a more streamlined and efficient 

workflow. 

    Following resizing, Normalization becomes pivotal. The normalization process normalizes pixel values, typically scaling them 

within a predefined range, such as 0 to 1 or -1 to 1. This crucial transformation mitigates the influence of lighting variations or 

disparities in pixel intensity across images. By standardizing the pixel values, the model training process is expedited, leading to 

enhanced convergence, and reducing the model's susceptibility to being skewed by variations in pixel intensity due to illumination 

discrepancies. Gaussian Filtering assumes a crucial role in refining the dataset for forgery detection. The application of Gaussian 

blur aids in reducing high-frequency noise and smaller details within the images. This noise reduction serves a twofold purpose: it 
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smoothens the images while concurrently diminishing the impact of minor artifacts or distortions that might obscure the genuine 

features. The resultant images are more robust and conducive to effective feature extraction, crucial in accurately discerning forged 

regions. 

     

   Simultaneously, Grayscale Conversion streamlines the dataset by converting images from RGB to grayscale. This conversion not 

only reduces computational complexity but also retains pertinent structural information necessary for forgery detection. Grayscale 

representations preserve key image attributes while alleviating the computational burden associated with color-based image 

analysis. The orchestration of these preprocessing steps, meticulously calibrated for image forgery detection, serves as the bedrock 

for subsequent feature extraction, model training, and accurate localization of forged regions. It is this initial preparatory 

groundwork that profoundly influences the efficacy, robustness, and accuracy of the forgery detection system. 

Feature Extraction: 

In the pursuit of robust Image Forgery Detection, the integration of both ResNet and MobileNet v2.0 architectures for feature 

extraction embodies a pivotal advancement in the arsenal of detection systems. Leveraging these state-of-the-art convolutional 

neural network architectures enables a comprehensive exploration of distinct feature extraction methodologies, each with its unique 

advantages in discerning forged regions within images. 

 

A deep convolutional neural network (CNN) called ResNet, or Residual Network introduced by [11], addresses the vanishing 

gradient problem that hinders training of deeper networks. It achieves this through the introduction of residual blocks, each 

containing a skip connection that allows information to bypass a few layers. This enables the network to construct deeper 

architectures without compromising learning capabilities. 

 

Preprocessed images are fed as input to the ResNet architecture. Convolutional layers extract features hierarchically, starting 

from low-level edges and textures to higher-level semantic information. ResNet's secret weapon lies in its residual blocks, which 

bypass the limitations of deep networks and allow them to extract intricate features from images. A quintessential ResNet block 

comprises two components, Identity mapping: A direct skip connection that bypasses several layers, allowing information flow 

without being affected by nonlinearities or transformations. Transformation branch: Consists of stacked convolutional layers 

followed by non-linear activation functions (e.g., ReLU) that apply transformations to the input. 

 

 
 

Figure 1: Residual learning: a building block. [11] 

 

The output of the transformation branch is added to the identity mapping, resulting in the final block output: Y = X + F(X) where: Y: 

Output of the ResNet block, X: Input to the ResNet block, F(X): Output of the transformation branch. This simple addition bypasses 

the vanishing gradient issue, facilitating information flow even in networks with hundreds of layers. The skip connections directly 

inject lower-level information into the output, preserving crucial details that might be lost through nonlinearities. This becomes 

particularly valuable in forgery detection, where subtle manipulations can manifest at various image scales. 

 

 

 
 

Figure 2: Proposed System Architecture 
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        The input image enters the network, traversing one ResNet block after another. Each block extracts increasingly complex 

features, Early layers: Detect basic elements like edges and textures. Mid-layers: Combine these elements to form higher-level 

features like object parts or specific textures. Later layers: Global average pooling aggregates spatial information into a condensed 

representation concepts like object classes or, in our case, signatures of manipulation for classification. The global average pooling 

operation computes the average value across each feature map: 

  
Here, yi represents the i-th feature in the output, H and W denote the height and width of the feature map, and xijk denotes the i-th 

feature at position (j,k) in the feature map. The final feature maps act as a fingerprint of the image, encoding details about its content 

and potential tampering. 

 

  Mobile Net v2.0 [12], a lightweight convolutional neural network architecture, emerges as a powerful tool for feature extraction 

in image recognition and detection tasks. Its strength lies in its compact design, ideal for situations with limited computational 

resources or real-time processing needs. Unlike traditional CNNs, Mobile Net v2.0 employs several innovative techniques to 

achieve efficiency while preserving feature quality. Depth wise separable convolutions form the cornerstone of the architecture. 

This clever approach splits the convolution process into two stages: depth wise and pointwise. Depth wise convolution as shown in 

figure 4 offers a compelling alternative to traditional convolutional approaches in feature extraction tasks. Its key strength lies in its 

channel-wise specialization, addressing the redundancy inherent in applying a single filter to all image channels. This redundancy 

becomes particularly problematic in networks with numerous channels, leading to increased computational cost and potentially 

obscuring channel-specific features. In contrast, depth wise convolution takes a divide-and-conquer approach. An image is 

conceptually divided into individual channels, akin to separate stalls in a bustling marketplace. Each channel, representing distinct 

information like textures or edges, is then assigned a dedicated "detective" filter. This targeted analysis allows each filter to 

specialize in extracting features relevant to its assigned channel, analogous to an expert focusing on their specific domain within 

the marketplace. 

 

   

 
 

Figure 3: Depth wise separable convolution [14] 

 

 

   Unlike traditional convolutions, pointwise convolution operates through compact 1x1 filters, fostering cross-channel collaboration 

via element-wise fusion and dimensionality reduction. This technique unlocks hidden relationships between channels, enriching 

feature maps with complex interdependencies. Consequently, pointwise convolution delivers not just channel-specific details but a 

richer, more comprehensive understanding of the underlying data, empowering networks with deeper insights for tasks like 

classification, detection, and segmentation, all while maintaining computational efficiency. This makes it a crucial component of 

modern CNNs, enabling them to tackle complex tasks with greater accuracy and understanding. 

 

  MobileNetV2's architecture relies on two types of blocks, Residual Blocks (Stride 1): These blocks preserve spatial resolution and 

enable smooth information flow. They consist of three layers: An initial layer that expands channels using 1x1 convolutions with 

ReLU6 activation, A layer that extracts spatial features efficiently using depth wise convolutions, A final layer that projects feature 

back to a lower channel count using 1x1 convolutions without non-linearity. Downsizing Blocks (Stride 2): These blocks reduce 

spatial resolution, allowing the network to capture higher-level features. They share a similar structure to residual blocks, but with 

a stride of 2 in one layer to achieve down sampling. ReLU6 is used in the first layer, but subsequent layers avoid non-linearities to 

maintain feature complexity and prevent model limitations. An expansion factor (t=6 in most experiments) strategically increases 

channel depth within blocks, leading to richer feature representations. For example, an input with 64 channels would result in an 

internal output with 384 channels as shown in figure 5.  

 

  The extracted features from ResNet and MobileNet v2.0 were concatenated along the feature dimension, resulting in a combined 

representation that leverages the complementary strengths of both models. This straightforward early fusion approach efficiently 

integrates information from both sources, potentially enhancing performance in downstream tasks. 

Forgery Detection Algorithm (Mask R-CNN): 

        Mask R-CNN [15], an extension of the Faster R-CNN architecture, offers a compelling solution for post-processing tasks in 

forgery detection. Through its ability to precisely localize objects and generate pixel-level masks, Mask R-CNN becomes an 

invaluable tool for identifying and delineating forged regions within digital images.  
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        During training, Mask R-CNN learns to identify and delineate the characteristics unique to each category. In this context, 

forged regions within images are treated as objects, allowing the model to precisely segment and outline these manipulated areas 

using its pixel-level masks. Simultaneously, pristine images contribute to the model's understanding of unaltered regions and their 

distinctive features. 

 

 
  
Figure 4: MobileNetV2 Convolutional Blocks [13] 

 

 

Post-processing: 

        Image segmentation, a fundamental task in computer vision, entails partitioning digital images into distinct segments or image 

objects, thereby facilitating the identification and localization of objects and boundaries within them. Mask R-CNN, a versatile deep 

learning model, adeptly employs two primary segmentation approaches: semantic and instance segmentation.  

Semantic segmentation categorizes each pixel within an image into predefined classes, effectively classifying similar objects as a 

collective group at the pixel level. This approach focuses on the identification and classification of objects without differentiat ing 

between individual instances, offering a global view of the image's content.  

 

 

 

 

 

 

 

 

 
  
Figure 5: Architecture of Mask R-CNN [16] 
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In contrast, instance segmentation delves deeper, seamlessly integrating object detection, localization, and classification. It 

meticulously delineates the exact boundaries of every individual image object, thereby facilitating the identification and localization 

of objects and boundaries within them. Mask R-CNN, a versatile deep learning model, adeptly employs two primary segmentation 

approaches: semantic and instance segmentation. Semantic segmentation categorizes each pixel within an image into predefined 

classes, effectively classifying similar objects as a collective group at the pixel level. This approach focuses on the ident ification 

and classification of objects without differentiating between individual instances, offering a global view of the image's content. In 

contrast, instance segmentation delves deeper, seamlessly integrating object detection, localization, and classification. It 

meticulously delineates the exact boundaries of each individual object within an image, providing a granular understanding of the 

scene's composition. 

 

Localization and Mask Generation:  

        Mask R-CNN built upon Faster R-CNN by incorporating an additional mask prediction branch alongside the existing region 

proposal network (RPN) and classification/regression branches. The backbone network (e.g., ResNet and MobileNet v2.0) 

processes the input image and extracts features. These features serve as the basis for subsequent branches in the Mask R-CNN. 

 

Region Proposal Network (RPN):  

        The RPN acts as an initial step to identify potential forged regions by generating candidate bounding boxes within the image. 

Leveraging extracted features from the backbone network, it proposes regions of interest (RoIs) along with objectness scores and 

bounding box coordinates. This process efficiently identifies areas suspected of containing forged content, providing essential 

hypotheses for further scrutiny during forgery detection and mask generation. 

 

RoI Align:  

        Post-region proposals, RoI Align plays a crucial role in ensuring accurate feature extraction within proposed regions. Unlike 

conventional pooling methods, RoI Align preserves spatial fidelity by employing bilinear interpolation, enabling precise feature 

alignment. This meticulous alignment aids in extracting detailed spatial information crucial for generating masks that accurately 

delineate manipulated regions within the image. 

 

Fully Connected Layers:  

        After RoI Align, fully connected layers or intermediate convolutional layers further refine features within detected regions. 

These layers facilitate additional feature extraction and refinement, enhancing the model's capability to discern intricate details of 

suspected forged areas, contributing to more precise mask generation and forgery localization. 

 

Mask Head:  

        The mask head branch specializes in predicting pixel-wise masks for each identified object or suspected forged region. 

Leveraging features extracted through RoI Align, it employs convolutional layers to predict masks, typically binary representations 

indicating the presence or absence of object pixels. This branch plays a pivotal role in generating masks that precisely outline forged 

areas, facilitating accurate localization and analysis of manipulated regions within the image. 

 

Calculating Forged Percentage: 

        Beyond simply declaring an image forged, our architecture delves deeper, quantifying the manipulation's extent through a 

precise "forged percentage." The formula for calculating the percentage of forged region can be : 

 

Percentage of Forged Region = 
[ X−Y ]

Dimension of image
 × 100 

were, 

X = number of pixels of the entire image,  

Y = number of pixels of the forged region 

 

        This begins with isolating tampered regions using bounding boxes and pixel-level masks, each a unique fingerprint of 

suspected forgery. These masks transform the image into a binary format, with white pixels representing the manipulated areas and 

black pixels the untouched regions. By meticulously counting the white pixels within each mask, or measuring the black background 

and subtracting it from the image's total pixel count, we get the percentage of the image compromised by tampering. Thus, the final 

percentage of the forged area is derived using the following formula: 

 

Forged Percentage =
White Pixel Count 

Total Pixel Count
 × 100 

 

        This forged percentage offers a powerful metric, not only allowing us to compare the severity of manipulation across images 

and datasets but also providing valuable insights into potential impacts on interpretation and analysis. In the realm of forensic 

investigations, this precise quantification serves as a potent weapon, adding a crucial layer of detail to the evaluation of manipulated 

evidence. Ultimately, calculating the forged percentage transforms our understanding of digital manipulation from a binary "yes or 

no" to a nuanced spectrum, empowering us to combat forgery with greater precision and insight. 

 
IV. DATASETS 

 

    The effectiveness and robustness of any image forgery detection system heavily rely on the quality and diversity of the datasets 

used for training, validation, and evaluation. In this study, multiple benchmark datasets renowned within the field of digital image 

forensics were employed to comprehensively evaluate the proposed image forgery detection framework based on Mask R-CNN. 
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The selected datasets were chosen for their varied manipulation types, diverse image content, and established ground truth 

annotations, providing a suitable foundation for assessing the framework's performance across different forgery scenarios.The 

CASIA dataset [17] comprises two versions, CASIA 1.0 and CASIA 2.0, featuring manipulated images primarily created using 

Adobe Photoshop. CASIA 1.0 contains 1725 JPEG images, including 800 original non-manipulated images across diverse 

categories like animals, architecture, scenes, and more, along with 925 tampered images resulting from splicing operations on the 

originals. CASIA 2.0 boasts 12614 images, featuring uncompressed TIFF, BMP, and JPEG files with varying dimensions from 

320×240 to 800×600 pixels. This collection comprises 7491 authentic images in nine categories and 5123 tampered images 

exhibiting copy-move and splicing manipulations. These datasets offer a diverse array of authentic and manipulated images, 

showcasing natural and artificial subjects. CASIA 1.0's spliced images stem from alterations made to genuine photos, while CASIA 

2.0 encompasses various manipulation types like copy-move and splicing, serving as vital resources for assessing and benchmarking 

image forgery detection algorithms in digital image forensics. 

 
V. CONCLUSION AND FUTURE WORK 

 

In conclusion, this study presents a comprehensive review and proposed framework for image forgery detection leveraging 

advanced deep learning architecture, specifically focusing on Mask R-CNN. Through an extensive examination of various 

components within Mask R-CNN, including the Region Proposal Network (RPN), RoI Align, Fully Connected Layers, and the 

Mask Head, this research has elucidated the critical role of these components in the context of image forgery localization and mask 

generation. The in-depth exploration of Mask R-CNN's components showcased their significance in accurately localizing forged 

regions within images and generating precise masks outlining the manipulated areas. Leveraging the proposed architecture's 

capabilities, future implementations hold the potential to revolutionize the field of image forensics, enabling more robust and 

accurate detection of digitally manipulated content. 

 

A significant prospective advancement for the proposed image forgery detection framework involves extending its capability 

beyond binary classification to include the identification and classification of distinct forgery classes. Augmenting the framework 

to differentiate between specific manipulation techniques like splicing, copy-move, or retouching within images represents a crucial 

avenue for future research. This expansion would require the integration of fine-grained classification methodologies within the 

existing architecture of Mask R-CNN, enabling the system to not only detect but also classify diverse forgery types, offering 

invaluable insights for forensic analysis. Moreover, to achieve this objective, future research endeavors should focus on developing 

sophisticated models and training strategies that encompass a broad spectrum of forgery classes. Robust experimentation involving 

diverse datasets covering various forgery complexities will be essential to validate the model's efficacy in accurately ident ifying 

and categorizing different manipulation types. Enhancing the interpretability of the model's decision-making processes and 

understanding the discriminative features for diverse forgery classes will also be pivotal in advancing the framework's forensic 

analysis capabilities. 
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