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Abstract  

           Damped vibrations of an isotropic rectangular plate of parabolically varying thickness have been studied. The fourth 

order differential equation of motion is solved by the method of frobenius. The Frequencies corresponding to the first two modes 

of vibration are computed for the rectangular plate with clamped-simply supported-clamped- simply supported (C-SS-C-SS), and 

clamped-simply supported-simply supported-simply supported (C-SS-SS-SS) edge conditions for different values of taper 

constant, and damping parameter. Effect of damping on natural frequencies of a rectangular plate of parabolically varying 

thickness has been observed. 

Keywords— isotropic, transverse d isp lacement, elas t ic foundat ion, def lec t ion funct ions, damping, rad ia l coord inates, 

Flexura l r igid ity, Poisson rat io  

1 Introduction 

The object of the work presented in this chapter is to study the effect on frequencies of an isotropic rectangular plate of 

parabolically varying thickness. 

Leissa(3) has given the method for analyzing the vibration of rectangular plates. Several authors have studied the vibration 

problems of rectangular plate of uniform thickness using different boundary conditions and different method has finite difference 

method, Series method, Rayleigh Ritz method etc. the most accurate results were presented by Leissa on rectangular plate. 

Young(2) studied the vibration of rectangular plate Ritz methods. Jain and Soni(1) studied the free vibration on rectangular plate 

of parabolically varying thickness. In this chapter we have studied the damped vibration of an isotropic rectangular plate of 

parabolically varying thickness.  

Keywords— isotropic, transverse displacement, elastic foundation, deflection functions, damping, radial coordinates, Flexural rigidity, 

Poisson ratio 

2 Equation of Motion  

The equation of motion of an element of a plates in transverse direction are  
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eliminating Qx and Qy from equation (1), one obtains  
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Here h = h (x, y) 

But for the plate Mxy = -Myx, therefore, 
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where  
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Qx and Qy are stress resultants, Mx, My and Mxy are moment resultants per unit length,  is the mass density per unit volume,  

is the Poission's ratio, h is the thickness of the plate and E is the Young's modulus of the plate material.  

In the case of non-homogeneous plates of variable thickness, E,  and h are functions of x and/or y. Now substituting the values 
of Mx, My and Myx from (6.5) in to (6.4) one gets 
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where 

D = D (x, y) = 

   
 2

3

112

,,



yxhyxE

, 


 = 


(x, y) and  

2

2

2

2
2

yx 









 
When the effect of damping is introduced, the differential equation (6.6) changes to  
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where  K = Damping constant, W = Transverse deflection, D = Flexural rigidity at any point of the plate  

   D = 

 
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Let the two opposite edges y=0 and y=b of the plate be simply supported and thickness varies parabolically x-axis along the 

length i.e. in the direction x axis. And for simplicity one way assume that mass density 


 are also function of x-only. Thus, h 

and 


 are Independent of y, i.e. 
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  For a harmonic solution the deflection function W satisfying the condition at y=0 and y=b is  

w(x, y, t) = W  (x) Sin 

pte
b

ym t cos 

  
 where  P = circular frequency of vibration, m = positive integer.  

Substituting for w and D in the partial differential equation (6.7), one gets,  
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Introducing the non-dimensional variables  
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The equation (6.8) reduces to  
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where,  
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Let the  thickness of the  plate  varies Parabalically i.e.  
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Where,  p= circular frequency,  = frequency parameter,   KD
= damping parameter 

 

3 Solution 

A series solution for W  is then assumed to be in the form  
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On substituting the series expression (12) in the equation (11) one gets,  
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For series expression (6.12) to be the solution the coefficient of different powers of W in the equation (6.13) must be identically 

zero. Thus by equating the coefficient of the lowest power of X to zero, one get the identical equation  
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    03c2c1cc.1 
 

c = 0, 1, 2, 3 

Now on equating the coefficients of the higher powers of X to be zero, it is found that the constants a1, a2 and a3 are 

indeterminate for c=0, so these can be taken as arbitrary constants along with a0. The remaining constants a (=4, 5, 6, --) are all 
obtained in terms of a0, a1, a2 and a3 the remaining unknown constants are determined from recurrence relation. 
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 ( = 4, 5, 6, ---) 
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and the remaining A's & B's ( = 17, 18, 19 ---) are determined from the recursion formula. 
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 The solution for W , corresponding to c=0 is  
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It is evident that no new solution will arise corresponding to other values of c i.e. for  c=1, 2, 3. Solution corresponding to these 

values of c are already included in the solution corresponding to c=0.  

4 Convergence of the Solution  

The test the convergence of the solution (6.15) the technique used by Lamb has been applied. Writing the recurrence relation 

using (6.13) as 
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Now taking the limit as    one gets, 
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The roots of the equation (17) are : 
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Thus the solution (15) is uniformly convergent in the interval 0  X  1 when ||<1. Hence the solution is convergent for all || < 

1. 

5 Boundary Conditions  

The following combinations of boundary conditions at the edges x =0 and x=1 have been considered. While the other two edges 

y=0 and y=1 are simply supported in all cases.  
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 (C-SS-C-SS) plate  

Clamped at X=0 and simply supported at X=1. 

(C-SS-SS-SS) Plate  

Clamped at X=0 and simply supported at X=1. The boundary conditions for different edge conditions are as follows: 

 Clamped Edge Conditions (C-SS-C-SS) 

At a clamped edge,  
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Simply-Supported Edge Conditions (C-SS-SS-SS) 

At a simply supported edge,  
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For a clamped plate the boundary conditions are :  

 At X = 0, 
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Applying the boundary conditions (18) to the solution (15), one gets 
 a0 = a1 = 0 
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              (19) 

Eliminating the unknown constant a2 and a3, one obtains the frequency equation for (C-SS-C-SS) plate as  

   

   
0

43

21






VV

VV

                 (20) 
Whereas  

  





4

1 1


CV

,

  





4

2 1


DV

,

  





4

3 2


CV

,  

  





4

4 3


 DV

(21) 
(C-SS-SS-SS) Plates  

For a (C-SS-SS-SS) plate the boundary conditions are, at X=0, 

0
Xd

Wd
W 

 

at X=1,  

0
2

2


Xd

Wd
W

                (22) 
Applying the boundary condition (22) to the solution (6.15), one finds a0 =0, a1 = 0 
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           (23) 
Eliminating the unknown constants a2 and a3 one gets the frequency equation  

   

   
0
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21



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VV
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               (24) 

whereas  
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1 1


CV

,                  

  
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2 1
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DV
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6 16
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                     (25) 
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6 Result and Discussion 

 Numerical results for an isotropic rectangular plate of parabolically varying thickness resting on elastic foundation have 

been computed from the equation (20) and (24) using computer technology. In all the cases considered the Poisson’s ratio has 

been assumed to remain constant and it has been taken to be 0.03. Terms of series up to an accuracy of 
810

 in their absolute 
values have been retained. Frequency parameter corresponding to first two modes of vibration of a clamped-simply supported-

clamped-simply supported (C-SS-C-SS) and clamped-simply supported-simply supported-simply supported (C-SS-SS-SS) 

isotropic rectangular plate has been computed for different values of taper constant and damping parameter have been computed. 

All the results are graphically shown in figures (6.1) to (6.8). The results up to accuracy of 
410

 have been given in the tables. 

 Verification of work is obtained if allowing the Damping parameter to be zero, the problem reduces to a well known 

problem of a rectangular plate of parabolically varying thickness. The results with damping parameter is equal to zero compared 

with very well known the results obtained by Jain and Soni [1] 

Figure (1) shows the effect of variation of a taper constant on the frequency parameter for a rectangular plate of parabolically 

varying thickness (i.e., for 
KD

0, h =.1 and 
KD

.001, h =.1) with clamped-simply supported -clamped-simply supported (C-
SS-C-SS) edge conditions. From figure it is observed that the first mode of vibration increasing. in frequency parameter with the 

increasing of taper constant for clamped-simply supported-clamped-simply supported plates. 

             Figure (2) shows the effect of variation of a taper constant on the frequency parameter for a rectangular plate of 

parabolically varying thickness (i.e., for 
KD

0, h =.1 and 
KD

.001, h =.1) with clamped-simply supported -clamped-simply 
supported (C-SS-C-SS) edge conditions. From figure it is observed that the second mode of vibration will be increases in 

frequency parameter with the increasing of taper constant for clamped-simply supported-clamped-simply supported plates. 

            Figure (3) shows the effect of variation of a taper constant on the frequency parameter for a rectangular plate of 

parabolically varying thickness (i.e., for 
KD

0, h =.1 and 
KD

.001, h =.1) with clamped-simply supported-simply 
supported-simply supported (C-SS-SS-SS) edge conditions. From figure it is observed that the first mode of vibration increasing 

in frequency parameter with the increasing of taper constant for clamped- simply supported-simply supported-simply supported  

plates. 

            Figure (4) shows the effect of variation of a taper constant on the frequency parameter for a rectangular plate of 

parabolically varying thickness (i.e., for 
KD

0, h = .1 and 
KD

.001, h = .1) with clamped- simply supported-simply 

supported-simply supported (C-SS-SS-SS) edge conditions. From figure it is observed that the second mode of vibration will be 

decreases in frequency parameter with the increasing of taper constant for clamped- simply supported-simply supported-simply 

supported  plates. 

           Figure (5) shows the effect of variation of damping constant on the frequency parameter for a  rectangular plate of 

parabolically varying thickness (i.e., for  0, h =.1 and  .001,  h =.1) with clamped-simply supported- clamped-simply 
supported (C-SS-C-SS) edge conditions. From figure it is observed that the first mode of vibration sharply decreases in the 

frequency parameter with the increasing of damping parameter for the clamped-simply supported- clamped-simply supported  

plates. 

Figure (6) shows the effect of variation of damping constant on the frequency parameter for a rectangular plate of parabolically 

varying thickness (i.e., for  0, h =.1 and  .001, h =.1) with clamped-simply supported- clamped-simply supported (C-SS-
C-SS) edge conditions. From figure it is observed that the second mode of vibration decreases in the frequency parameter with the 

increasing of damping parameter for the clamped-simply supported- clamped-simply supported plates. 

Figure (7) shows the effect of variation of damping parameter on the frequency parameter for a rectangular plate of parabolically 

varying thickness (i.e., for  0, h =.1 and  .001, h =.1) with clamped- simply supported-simply supported-simply 

supported (C-SS-SS-SS) edge conditions. From figure it is observed that the first mode of vibration decreases in the frequency 

parameter with the increasing of damping parameter for the clamped- simply supported-simply supported-simply supported 

plates. 

Figure (8) shows the effect of variation of damping parameter on the frequency parameter for a rectangular plate of parabolically 

varying thickness (i.e., for  0, , h =.1 and  .001, h =.1) with clamped- simply supported-simply supported-simply 
supported (C-SS-SS-SS) edge conditions. From figure it is observed that the second mode of vibration decreasing in the 

frequency parameter with the increasing of damping parameter for the clamped- simply supported-simply supported-simply 

supported plates. 
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Variation of    for the first mode of vibration of a damped (C-SS-C-SS) rectangular p late of parabolical ly varying  

thickness for dif ferent values of taper constant. 
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Graph _______=    (D K =0.0)  and  Graph ---- ----- =    (D K = 0.001)  
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Variation of    for the second mode of vibration of a damped (C-SS-C-SS) rectangular p late of parabolica lly  

varying thickness for di fferent values of taper constant. 
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Variation of    for the firs t mode of vibration of a damped (C-SS-SS-SS) rectangular plate of parabolically varying  

thickness for dif ferent values of  taper constant .  
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Variation of    for the second mode of vibration of a damped (C-SS-SS-SS) rectangular plate of parabolica lly  

varying thickness for di fferent values of  taper constant.  

 

 
FIGURE   5  
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Graph _______=    ( =0.0)  and  Graph ----- ---- =    ( =0.001)  
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Variation of    for the first mode of vibration of a damped (C-SS-C-SS) rectangular p late of parabolical ly varying  

thickness for dif ferent values of damping parameter.  
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Variation of    for the second mode of vibration of  a damped (C-SS-C-SS) rectangular p late of parabolica lly  

varying thickness for di fferent values of damping parameter.  
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Variation of    for the firs t mode of vibration of a damped (C-SS-SS-SS) rectangular plate of parabolically varying  

thickness for dif ferent values of damping parameter.  
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Variation of    for the second mode of vibration of a damped (C-SS-SS-SS) rectangular plate of parabolica lly  

varying thickness for di fferent values of damping parameter.  
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