
© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e306

ANDROID MALWARE ANALYSIS – A

LITERATURE REVIEW
Anu Varghese.1,2 , Jagadeesha S.N.3

1 Research Scholar, College of Computer Science & Information Science, Srinivas University, Mangalore, India.

2Assistant Professor, Department of Computer Science, MES M K Mackar Pillay College for Advanced Studies,

Aluva, (Mahatma Gandhi University), Aluva, Kerala, India.

3Research Professor, College of Computer Science and Information Science, Srinivas University, Mangalore,

Karnataka, India.

ABSTRACT

Background/Purpose: The ever-increasing presence of malicious software designed to target Android devices represents

a huge risk to the security of mobile devices. Researchers are investigating a variety of cutting-edge approaches,

procedures, and strategies to analyse and identify it. The purpose of this literature review is to examine recent research

on Android malware analysis, with a particular emphasis on novel methodologies and the degree to which they are

successful in identifying and mitigating the threat. This paper reviews the three common approaches and discuss the

challenges and limitations identified.

Objective: This literature review aims to provide a comprehensive overview of Android malware analysis techniques and

methodologies, evaluating the effectiveness of different approaches like static, dynamic, machine learning and deep

learning. It also evaluates existing tools and frameworks, highlights recent studies’ contributions and highlights gaps in

research. The review aims to enhance detection mitigation strategies for mobile security and provide insights for

researchers, practitioners, and policymakers.

Design/Methodology/Approach: The SWOT analysis method is used to conduct data analysis and present the results from

a variety of sources, including academic papers, web articles, journals, and other sources.

Findings/Result: The literature study focuses on several different strategies and methods for analysing Android malware,

such as static, dynamic, machine learning, and deep learning. These techniques are used to extract features, analyse code

structure, and identify dangerous behaviours. It is essential for effective detection solutions to incorporate a variety of

approaches as well as extensive datasets. Most of the research has been directed towards improving machine learning

models rather than the malware analysis process.

Paper type: literature review

Keywords: android malware, malware detection, HinDroid, static analysis, API, cyber security

INTRODUCTION

Computers, servers, mobile devices, electronic systems, networks, and data can all be protected from malicious attacks

with the use of a practise known as cybersecurity. It requires the use of many layers of protection, which include people,

procedures, and technology. It includes things like the protection of computer networks and applications, as well as

information and operational security, as well as education for end users, disaster recovery, and business continuity.

Cyberattacks can be thwarted by enterprises and individuals alike thanks to technological advancements such as next-

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e307

generation firewalls, DNS filtering, malware protection, antivirus software, and email security solutions. Advanced Cyber

Defence programmes are advantageous for everyone in today's connected society since they avoid unwanted repercussions

such as the theft of personal information, extortion, and the deletion of critical material. These are just some examples.

Researchers of cyberthreats, such as the team of 250 at Talos, investigate new and existing threats and methods of cyber-

attack, thereby enhancing open-source software and boosting public awareness of the issue. The outcomes of their efforts

make the internet a more trustworthy place for users of all stripes. [1]. The Fig.1 shows the statistics of no: of detected

malicious installation packages on mobile devices from 2015 to 2022.

Fig.1 No.of detected malicious installation packages on mobile devices worldwide from 4 th quarter 2015 to 3rd quarter

2022 (www.statistica.com)

A survey on various threats and current state of security in android platform found four forms of Android attacks:

hardware, kernel, HAL, and application. Hardware-based attacks such as Rowhammer, Glitch, and Drammer are related

to sensors, touch screens, communication media, and DRAM. Kernel-based attacks such as Gooligan, DroidKungfu,

Return-oriented Programming are related to Root Privilege, Memory, Boot Loader, and Device Driver. HAL-based attacks

such as Return to User and TocTou are related to interfaces for cameras, Bluetooth, Wi-Fi, Global Positioning System

(GPS), and Radio. Application-based attacks such as AdDetect, WuKong, and LibSift are related to third-party libraries,

Intra-Library collusion, and privilege escalations.

Static analysis and dynamic analysis are the primary methodologies utilised by defence systems; nevertheless, these

approaches are restricted in their ability to detect new types and varieties of malware. In computer vision, natural language

processing, and speech recognition, deep learning technology has demonstrated some encouraging outcomes due to its

intelligence and adaptability. [2]

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e308

OBJECTIVES

 To understand the process involved in malware analysis.

 To analyse the various malware analysis techniques

 To understand current research on malware analysis and to analyse the various threats and challenges in the field.

LITERATURE REVIEW/RELATED WORKS

Slno Features used Model Accuracy Reference

1 API KNN 99% Aafer et al.,[3]

2 API & Permissions RF, ANN 94% Qiao et al.,[4]

3 API & Permissions RF 92.3% Chan & Wen Kai

Song[5]

4` API & Permissions DBN 93% Wang et al.,[6]

5 API & Permissions SVM 99.6% Singh et al.,[7]

6 API & Permissions SVM 86% Li et al.,[8]

7 API, Intents NB 98% Kumar et al.,[9]

8 Permissions, Intents RF 98% Koli[10]

9 API calls RF 94% Onwuzurike et al.,[11]

10 Permissions, API calls, native

calls, opcode

DT 97.7% Cai et al.,[12]

LITERATURE SURVEY

Malware assaults target Android devices, which account for 70% off mobile phone users. Classic signature-based

detection methods failed with huge numbers of users and applications, but machine learning can detect zero-day assaults.

Machine learning to identify Android malware has been studied using supervised, unsupervised, deep learning, and online

methods. Android device growth has spurred the development of ML- based malware detection methods that may avoid

zero-day assaults. However, obsolete data sets and inadequate metrics limit present techniques. Reimplementation and re-

evaluation of existing methodologies using an independent, up to date data set extending online learning approaches to

incorporate dynamic and hybrid features and ongoing Android dynamic analytic tool development are recommendations

to overcome these concerns. Automation for updating datasets add enhanced reporting are also needed. The rise of this

discipline is encouraging, and new machine methods offer great space for additional research [13]. Malware designed to

infect Android devices has evolved into a substantial problem, endangering not just the functionality of devices but also

the privacy and safety of their users. The threat landscape is always shifting; thus, researchers have been concentrating on

building efficient tools for analysing malware for Android devices. The purpose of this literature review is to investigate

recent research that has contributed to the field of Android malware analysis, with a particular emphasis on the application

of machine learning strategies.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e309

Guerra-Manzanares et al. [14] addresses time, dynamic data sources, and real device and emulator characteristics to

improve Android malware detection systems. By integrating benign add malicious data, a broader time frame and 489

static and dynamic features are obtained. The largest hybrid featured Android data set, KronoDroid, offers timestamps for

each data sample from 2008 through 2020. Time stamped sample from over 209 Android malware types make it the largest

and only data set. With KronoDroid , the authors will study concept drift ,dynamic differences between emulators and

real devices and malware family evolution.

Shatnawi et al.[15]proposes a static base classification strategy for malware detection utilising SVM, K nearest neighbours

and Naïve Bayes. The strategy seeks strong malware detection rates and mobile information access development

protection. The SVM classifier has the highest accuracy, averaging 94% using permission features and 83% using API

call features. This strategy aids mobile malware prevention and reduction.

A framework for the identification of malicious software on Android devices dubbed DeepAndroid, which is based on

deep learning, is proposed in Jiang et al. [16]. To extract information from Android applications and obtain a high level

of detection accuracy, the authors make use of convolutional neural networks (CNNs). The results of the experiments

show that DeepAndroid is effective in detecting both known and undiscovered examples of malicious software.

Using Random Forest and XGBoost, Ismail et al.,[17] uses machine learning to sort and guess Distributed Denial of

Service (DDoS) attacks. We utilised the UNWS-np-15 dataset and Python as an emulator. Compared to previous studies,

the model was about 85% to 79% more accurate. In the first group, the model was 89% accurate, and in the second group,

it was 90% accurate on average. This all-around system makes it easier to guess when DDoS attacks will happen

Utilising a learning-based classifier, Chen et al.,[18] investigates the safety of machine learning in finding malware on

Android. Asses the classifier's defences against escape attacks and suggests a strong secure-learning approach. The model

enhances system defences against different evasion attacks and can be used for other security jobs, such as spam blocking

and fraud detection. In this paper, the rising interest in cybersecurity to protect Android users from malware is shown.

Zhai et al.,[19] aims to make use of deep learning strategies to identify potentially harmful intentions in Android

applications. DeepIntent is a model that the authors suggest; it makes use of networks with bidirectional long short-term

memory (BiLSTM) to capture the sequential patterns of intentions. The findings of this experimental work reveal that

DeepIntent is effective in precisely identifying harmful intent patterns.

Shabir & Sabahat,[20] is a hybrid approach to feature selection is presented by the authors as a method for Android

malware detection. They use a combination of information acquisition and evolutionary algorithms to pick features, in

addition to combining static and dynamic characteristics, such as permissions, system calls, and API requests. The

suggested method delivers increased detection performance by picking the features that provide the most informative

information.

Wang et al.,[21] presents DroidEnsemble, an ensemble learning-based method for detecting malicious software on

Android devices. The authors use a combination of different machine learning classifiers, such as random forests, support

vector machines, and gradient boosting, to increase the accuracy of the detection process as a whole. Experiment findings

reveal that DroidEnsemble works better than individual classifiers when it comes to detecting malicious software on

Android.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e310

Feizollah et al.,[22] proposes A framework for analysing Android malware families that is based on deep learning is called

AndroDialysis, and it is presented in this study. In order to categorise malware samples according to their respective

families, the authors make use of several different types of deep neural networks, such as convolutional neural networks

(CNNs) and recurrent neural networks (RNNs). The findings suggest that AndroDialysis is successful in precisely

recognising malware types and comprehending the behavioural characteristics of malicious programmes.

Haq et al.,[23] presents a hybrid approach to Android malware detection that combines static and dynamic analysis

approaches. The authors of this research offer MalDroid as a solution. During the static analysis phase, features such as

permissions, API calls, and manifest entries are extracted. During the dynamic analysis phase, runtime behaviour is

observed. The authors make use of machine learning algorithms like random forests and logistic regression to achieve

high detection rates while simultaneously reducing the number of false positives.

Zhu et al.,[24] presented a stacking ensemble called SEDMDroid for identifying sophisticated Android malware. The

framework employed bootstrap and Principal Component Analysis (PCA) to generate random feature subspaces. Multi-

Layer Perception (MLP) and Support Vector Machine (SVM) were trained to learn additional information. The experiment

was performed on official benign Android applications and malicious apps from the virus share repository.

Bibi, I., et al.,[25] proposed a dynamic deep learning-based architecture to identify Android malware using Gated

Recurrent Unit (GRU). The scheme achieved 98.99% detection accuracy. Millar et al. implemented DAN for identifying

malicious Android applications, with 97% average detection accuracy. Amin et al.,[26] presented a VM-based open-source

mobile anti-malware system, with an accuracy of 99%.

Xiao et al.,[27] introduced a malware identification mechanism using systems calls while using LSTM, with a detection

rate of 97.7%. Iram et al. proposed an effective DL-based ransomware detection scheme using Long Short-Term Memory

(LSTM). The study investigated permission-induced risks in android applications using Gated Recurrent Unit and

Convolutional Neural Network.

An ensemble learning strategy for identifying malicious software for Android is proposed by the authors of Li et al.,[28]

To determine which characteristics are the most important, they use a variety of feature selection methods, such as

information gain and chi-square. An ensemble model is produced by the authors by combining several different classifiers,

including random forests and AdaBoost. The experimental findings show that the overall detection accuracy is better

compared to the separate classifiers.

Zhang et al.,[29] investigates the application of deep learning techniques, more specifically deep belief networks (DBNs),

for the detection of malware on Android. The authors take information gleaned from opcode sequences and use them to

train a DBN model that can differentiate between malicious and benign applications. The results illustrate the usefulness

of deep learning as a tool for analysing malicious Android software and show promise in terms of detection accuracy.

Suarez-Tangil et al.,[30] concentrates on the examination of manifest files for Android applications with the goal to

identify malicious software. The authors suggest using DroidMat, a programme that does an analysis of the permissions,

intents, activities, and services that are defined in the manifest files. DroidMat delivers accurate malware detection by

identifying potentially malicious patterns and then comparing these to prevalent malware behaviours.

Singh et al.,[31] presents a hybrid strategy for detecting malware on Android devices by combining machine learning and

static analysis strategies. When classifying malware samples, the authors make use of a variety of machine learning

algorithms, such as support vector machines and k-nearest neighbours, as well as static features like permissions and API

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e311

calls. The hybrid strategy is stronger than the separate techniques in terms of its ability to achieve increased detection

accuracy.

Arzt et al.,[32] enables exact taint analysis for Android applications. It does static analysis to follow the flow of sensitive

information and identify any data leaks or malicious behaviour. In order to assist in the detection of malicious software,

FlowDroid does an analysis of the dynamic that exists between the various application components. It then offers insights

into the behaviour of Android apps.

Hou et al.,[33] suggests graph analysis as a method for detecting malicious software on Android devices. The idea of a

HinDroid graph, which illustrates the relationships and dependencies between the various parts of Android applications,

is presented in this study for the first time. Through the use of both static and dynamic analysis to generate the graph,

HinDroid is able to discover malicious behaviour by capturing the structural properties and patterns of the system. The

research reveals that HinDroid is effective in precisely detecting malicious software for Android and separating it from

applications that are legitimately available.

Gao et al.,[34] introduces GDroid is a tool that detect malicious software on Android devices via a dynamic analysis. The

research presents a dynamic analysis tool that, when applied to Android applications, allows them to be run in a

predetermined setting while the runtime behaviour of those apps is observed. GDroid is able to detect suspected malicious

software activity and anomalies since it monitors system calls, network communication, and file access. The study

demonstrates how good GDroid is at identifying dangerous behaviour in real-time, which contributes to a deeper

comprehension of Android malware.

Fan et al., [35] provides a novel method that analyses and detects Android malware by utilising graph embeddings and

unsupervised learning. The results of the experiments show that it is superior to existing methods and highlight its potential

for improving malware detection and family analysis in the Android ecosystem.

Singh et al.,[36] establish a method for detecting malware on Android devices by utilising static properties such as normal

permissions, nonstandard permissions, and API-calls. The key features were chosen with the help of FSTs. According to

the findings of the study, integrated features are superior to individual features when it comes to detecting malicious

software on Android. Using the BI-Normal Separation FST and L-SVM classifier allowed for the achievement of the best

possible detection accuracy, which was 99.6%.

Singh & Singh,[37] investigate seven different machine learning classifiers that detect malware by making API calls. The

research shows that ensemble algorithms have the highest accuracy due to the fact that they are optimised versions of

conventional ML methods. The choice of parameters is determined by the type of dataset and its distribution. The balance

that needs to be struck between parameters such as the n-estimator and the learning rate in ensemble methods and the

regularisation parameter value and the margin between distinct classes is discussed. The research analyses modified

machine learning algorithms by testing them on 6434 benign and 8634 malicious samples. Random forest demonstrates

the greatest accuracy of 99.1% in binary classification.

Zhu et al.,[38] presents a classification model that improves feature extraction and classification capabilities by making

use of several convolutional neural networks. A backtracking method that can provide high-fidelity explanations of deep

learning detection algorithms is also shown here. The transparent, multimodal CNN-based Android malware detection

framework has been built, with the goal of delivering large time cost improvements while yet keeping superior

classification performance.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e312

Ye et al. [39]proposes to prevent ever-evolving Android malware threats by extracting API call sequences from runtime

Android applications and conducting semantic research. They suggest the HG-Learning approach for effective

categorization and introduce HG as a way for modelling complex interactions among entities of multiple types. AiDroid

is a DNN classifier that was developed specifically for Android malware detection in real time, and it outperforms other

systems. The solution has been incorporated into Tencent Mobile Security, which will safeguard millions of users

throughout the globe.

Hou et al., [40](Make Evasion Harder: An Intelligent Android Malware Detection System)This study examines Android

malware assaults by examining the relationships that exist between apps and application programming interfaces (APIs)

through the utilisation of a structured heterogeneous information network (HIN). The meta-path-based approach is used

to characterise semantic relatedness, and HinDroid outperforms existing Android malware detection systems. The findings

from the experiments show some encouraging results

Xiao et al.,[41]In this paper, a behavior-based deep learning malware detection system for IoT contexts is presented. The

framework combines behaviours with Stack AutoEncoder for maximum performance. There is a potential for SAE-based

models to be applied in classification, as they increase detection accuracy by 1.5%.(Malware Detection Based on Deep

Learning of Behavior Graphs)

The significance of dataset construction and evaluation approaches is emphasised in the review paper. To properly train

and assess malware detection models, Garg & Yadav[42]stress the importance of using vast and diverse datasets.

Accuracy, precision, recall, and F1-score are only some of the evaluation metrics they cover.

Sample Android apps were classified as benign or malicious using a combination of permissions and API calls, as well as

machine learning algorithms, as demonstrated by Peiravian and Zhu [43]. They may train a classifier to determine if an

app is safe or dangerous based on the permissions and API calls it makes. In order to verify their method, they conducted

experiments on real-world apps using 1,260 harmful samples and 1,250 benign samples. Tests used 10-fold cross

validation using Support Vector Machines (SVM), Decision Tree (DT) of J48, and Bagging to compare these three

categorization strategies. WEKA's J48 is a decision tree method that uses the C4.5 algorithm. They used 1,456 features

(130 permissions + 1,326 APIs) to reach a 96.88% accuracy rate, which is rather good.

Aafer et al.,[44] retrieved API-level malware behaviour features to distinguish dangerous and benign programmes. APIs

and frequency analysis identified malicious patterns. 71% of benign programmes had advertising packages, and certain

APIs were identical in malicious instances. The K-Nearest Neighbour classifier had 99% accuracy and 2.2% FPR after

data flow analysis.

Goyal et al.,[45] created SafeDroid, an open-source Android malware detection service. Based on API calls, the micro-

service classifies apps as good or bad. 743 dangerous APIs and 300 top-ranked features were found by SafeDroid. With

99.51% accuracy and 0.017 FPR, Random Forest performed best.

Jung et al. [46] provides an efficient machine learning-based Android malware detection approach. It ranks APIs from

30,159 benign and 30,084 harmful apps. The classifier uses the top 50 benign and harmful APIs. The Random Forest

classifier detects the top 50 API list better than the malicious list. The paper will compare SVM and ANN malware

detection methods.

In Kim et al. [47] ,Convolution neural networks (CNN) are used by MAPAS to analyse API call graphs of malicious apps.

CNN is exclusively used by MAPAS to find common malware API call graph features. MAPAS is a lightweight classifier

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e313

to detect malware by comparing API call graphs used for harmful activities to those of apps to be classed. MAPAS's

efficacy and efficiency are demonstrated by implementing and evaluating a prototype. MaMaDroid, a cutting-edge

Android malware detection method, is compared to MAPAS. Our test shows that MAPAS classifies applications 145.8%

faster and consumes 10 times less RAM than MaMaDroid. MAPAS outperforms MaMaDroid in detecting unknown

malware (91.27% vs. 84.91%). Additionally, MAPAS can accurately detect any malware.

Zhang et al.,[48] presents a method-level behavioural semantic analysis Android malware detection system. Static analysis

extracts method-level information from Android apps to create a behavioural model of normal app behaviour. It detects

viruses using similarity-based matching.

Sequence-based analysis and natural language processing are used to detect Android malware in Zhang et al., [49]. It

analyses Android API requests using an n-gram model and NLP methods like word embeddings. Using modified

sequences, the CNN model classifies apps as harmful or benign. The hybrid approach detects malware more accurately

than separate methods.

Naval et al.,[50] suggested an updated API sequence model. A series of trials showed that the method was effective when

compared to existing malicious code detectors. Using function call graphs of apps as social networks, Wu et al.,[51]

suggests a simple graph-based method for finding malware on Android. A total of 15,285 good samples and 15,430 bad

samples are used to test the system called MalScan. There are results that show it can find Android malware faster than

two state-of-the-art methods, with up to 98% success in just one second. Through finding 18 examples of zero-day

malware in a Google Play app market, MalScan also showed that it could be used to scan entire markets for malware.

Apposcopy[52] is a semantics-based approach for identifying Android malware that steals user information. It uses a high-

level language for specifying signatures and a static analysis to determine if an application matches a malware signature.

The algorithm uses static taint analysis and Inter-Component Call Graph to efficiently detect Android applications with

specific control and data-flow properties. Apposcopy can detect malware with high accuracy and is resilient to various

program obfuscations. Future work includes improving efficiency and precision, de-obfuscating apps, and learning

malware signatures from labelled apps.

Feng et al. [53] provides a minimal-sample method for learning Android semantic malware signatures. It finds maximally

suspicious common subgraphs (MSCS) shared by all malware families. The method uses static analysis and a new

approximate signature matching algorithm to match Android apps. The ASTROID-implemented method improves

malware detection accuracy, precision, interpretability, and resistance to behavioural obfuscation.

In the article Zou et al.,[54] detects Android malware using social-network-analysis and graph-based approaches. Social-

network-based centrality analysis identifies important nodes in function call graphs by treating them as complicated social

networks. IntDroid tests 3,988 benign and 4,265 malicious samples. It identifies Android malware with a 97.1% F-measure

and 99.1% True-positive Rate. IntDroid can find 28 GooglePlay zero-day viruses faster than MaMaDroid.

Attackers target Android OS-based mobile devices because of their convenience and features. For real-world apps,

researchers are creating Android malware analyzer frameworks. Permissions, intentions, and API requests are covered in

Taheri et al.,[55]The two-layer Android malware analyzer has 95.3% static-based binary classification, 83.3% dynamic-

based category classification, and 59.7% dynamic-based family classification

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e314

A graph convolutional network malware classifier was developed to adapt to different characteristics by Li et al.,[56]. The

method extracts API call sequences, generates directed cycle graphs, extracts feature maps, and designs a classifier. The

results show superior performance in detection and accuracy, with a 98.32% FPR and stability.

Amer et al.,[57] introduces multi-perspective malware detection methods utilising statistical, contextual, and graph

mining. It performs well with shifting API calling sequences. The models cluster API calls and visualise malware and

goodware. These models are 0.997 and 0.977 accurate against Windows and Android malware, respectively. A algorithm

for detecting bogus goodware sequences is proposed to adapt to new malware threats.

Feng et al., [58] suggests a new way to find malware on Android devices that uses lightweight static analysis and the

graph neural network (GNN). Instead of getting information about API calls, the writers look at the source code of Android

apps to get high-level semantic data. As a result of function invocation relationships, they make rough call graphs and

pull out characteristics within functions. A graph neural network creates a vector representation of the programme.

Malware detection is then done on this matrix. According to the results of experiments, this method works better than the

best current identification methods. Malware attacks are becoming easier to do on Android because it is becoming more

popular. Based on static analysis of the Android APK, this study entitled Graph Approach for Android Malware Detection

Using Machine Learning Techniques,[59] shows how to use machine learning to find malware. The technique makes use

of the Drebin and Malgenome files, which have a lot of malware and goodware in them. It did a great job of classifying

data: 98.19% of the time with the Drebin dataset, 96.27% with the RF dataset, and 98.84% with the Malgenome dataset.

This method works better than the best recognition methods currently available.

Because Android malware is getting smarter and more complex, machine learning methods are a better way to find it.

Existing feature representations for system call analysis methods, on the other hand, have a lot of dimensions and don't

show how one thing depends on another. Surendran et al., [60] suggests a new way to find Android malware apps using

low-dimensional features that are represented and extracted using graph signals. A smart expert system based on machine

learning uses this low-dimensional feature to make the detection job automatic. Using random forest classifiers,

experiments show that a feature vector with 16 dimensions is enough to classify malware with a maximum accuracy of

0.99.

CYBERSECURITY

Computers, servers, mobile devices, electronic systems, networks, and data can all be protected from malicious attacks

with the use of a practise known as cybersecurity. It requires the use of many layers of protection, which include people,

procedures, and technology. Computer network security, application security, information security, operational security,

business continuity and disaster recovery, and end-user education are among the most important aspects of operational

security. These precautions make it easier for companies to deal with breaches in their cyber security and the loss of data.

The three phases of threat management—detection, investigation, and remediation—can all be automated using a single

threat management system. It is essential for users to have a fundamental understanding of data security and to adhere to

its best practises in order to protect their devices and systems[61]

CYBER SECURITY THREATS:

Phishing: Phishing involves sending fake emails from trusted sources. Sensitive data like Credit card and login data are

targeted. It is the most prevalent cyberattack.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e315

Ransomware: Ransomware is harmful malware. It blocks access to files or the computer system to extort money. Ransom

payment does not ensure file recovery or system restoration.

Malware: Malware is a sort of malicious software that is meant to obtain unauthorised access to a computer or to cause

damage to the system.

Social engineering: Social engineering is a trick used by opponents to get sensitive information. They can demand money

or access your private info. Social engineering can make you click on links, download malware, or believe a fraudulent

source when combined with any of the other risks.

SQL injection: SQL (structured language query) injections steal database data and seize control. Data-driven apps are

vulnerable to SQL injection attacks by cybercriminals. They can access crucial database information.

MIM attack: A cybercriminal intercepts two people's communication to steal data in a man-in-the-middle attack. An

attacker could intercept data from the victim's device and the network on an unprotected WiFi network.

Denial-of-service attack: By flooding networks and servers with traffic, fraudsters block a computer system from

delivering genuine requests. The system is unusable, preventing an organisation from performing key operations.

Dridex malware: Dridex, a financial trojan, has many skills. Since 2014, it has infected systems using phishing emails

or malware. It has caused hundreds of millions of dollars in financial damages by collecting passwords, banking details,

and personal data. This harmful campaign affects the people, government, infrastructure, and business globally. In reaction

to the Dridex attacks, the U.K.'s National Cyber Security Centre encourages the public to "ensure devices are patched,

anti-virus is turned on and up to date and files are backed up".

Dating scams: The FBI warned Americans in February 2020 about cybercriminals' confidence fraud on dating sites, chat

rooms, and smartphones. Victims are duped into giving up personal data by perpetrators. The FBI claims that romance

cyber threats cost New Mexico 114 victims $1.6 million in 2019.

Malware Emotet: In late 2019, the Australian Cyber Security Centre cautioned national organisations about Emotet

malware's global cyber danger. Emotet, a complex trojan, may steal data and load additional infections. Emotet thrives on

simple passwords, emphasising the need for strong passwords to protect against cyberattacks.

End user protection: Endpoint security or end-user protection is vital to cyber security. The end-user often unwittingly

uploads malware or other cyber threats to their desktop, laptop, or mobile device.

Level of difficulty caused by Cybercrime

Data breaches continue to grow as the global cyber threat evolves. Data breaches compromised 7.9 billion records in the

first nine months of 2019, according to RiskBased Security. In 2018, 112% of records were revealed. Medical services,

shops, and public bodies were most breached by malevolent attackers. Because they collect financial and medical data,

some of these sectors are more attractive to cybercriminals, but all firms that use networks can be targeted for customer

data, corporate espionage, or customer attacks. As the cyber threat grows, worldwide cybersecurity investment will climb.

Cybersecurity investment will reach $188.3 billion in 2023 and $260 billion globally by 2026, according to Gartner. The

growing cyber threat has prompted governments worldwide to provide advice on cyber-security.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e316

The U.S. National Institute of Standards and Technology (NIST) developed a cyber-security architecture. Continuous,

real-time monitoring of all electronic resources is recommended by the framework to counteract malicious code and

enable early discovery.[62]

CYBERTHREAT TYPES

Cyber-security addresses three threats:

1. Cybercriminals attack systems for profit or disruption.

2. Cyberattacks often collect political data.

3. Cyberterrorism destabilises electronic systems to generate panic.

SAFETY TIPS

1. Update the software and operating system.

2. Use anti-virus software.

3. Use strong passwords.

4. Don not open email attachments/click on links in email from unknown senders or unfamiliar websites.

5. Avoid using unprotected public WiFi networks.

MACHINE LEARNING & MALWARE ANALYSIS

Malware analysis is the process of understanding the behaviour and the objective of a suspicious file or URL. It is vital

to do Android malware analysis to understand and mitigate the hazards posed by malicious software that targets Android

devices. It utilises both static and dynamic methodologies, such as signature-based identification, behavioural analysis,

machine learning, and static and dynamic analyses, respectively. The difference between static analysis and dynamic

analysis is that the former examines the code, resources, and manifest files without executing them, while the latter

monitors runtime behaviour in controlled circumstances. The behaviour of an application is monitored using behavioural

analysis, which identifies potentially hostile activity such as data exfiltration, unauthorised access, and aggressive

advertising. Signature-based detection examines apps' signatures to see if they match known malware signatures, however

it may have trouble identifying zero-day or polymorphic varieties of malware. Techniques such as machine learning and

deep learning improve the accuracy and effectiveness of detection. In general, Android malware analysis is necessary for

the purpose of protecting user data and devices from the ever-evolving dangers that are present.[63] The fig 2 shows the

various malware detection approaches and features.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e317

Fig 2: A flow chart of malware detection approaches and features.

(https://images.app.goo.gl/qkg4hiGCQLMnJJ2YA)

TYPES OF MALWARE ANALYSIS

Different types of analysis can be performed on Android malware:

1. Static analysis

2. Dynamic analysis

3. Hybrid analysis

 Static Analysis

 Analysing code can also be referred to as static analysis. The programme code of the malicious software is seen and then

the process is repeated, going through the code one instruction at a time. It does this without actually running the code, so

it may review the files for any indications of malicious intent. It is possible that doing so will help you detect malicious

infrastructure, libraries, or compressed files. Analysis that is static is known as signature-based analysis. It is also

comparable to analyses that are statistically based. Virus scans, fingerprinting, and other security measures are involved.

Static analysis relies on the practise of reverse engineering.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e318

Dynamic Analysis

When it comes to the delivery of results, dynamic analysis is superior to static analysis. Analysis of behaviour can also be

referred to as dynamic analysis. The malicious code is run in a protected and managed setting known as a sandbox for the

purpose of performing dynamic analysis, which investigates the behaviour of the malware when it is run. It is more

difficult to undertake dynamic analysis due to the fact that they may make unforeseen modifications to the system, and

the majority of malicious software is able to mask their run time actions to some level.

Hybrid Analysis

Static analysis and dynamic analysis, when combined into a single process known as hybrid analysis, can compensate for

each other's shortcomings. In other words, it does an analysis on the malware's signature, and then it continues the study

by combining the signature with several different behavioural patterns. The advantages of static analysis and the

drawbacks of dynamic analysis can be mitigated with the help of hybrid analysis.

MALWARE ANALYSIS PROCESS

There are various steps involved in the process of detecting malware on Android, and these steps can change based on the

method or system that is being used to identify the malware. [64]. The fig 3 is an outline of the overall procedure and

organisational structure of Android malware detection:

Fig 3: Android malware detection model(https://images.app.goo.gl/1BhX5yabGW4zL92v6)

Data Collection: The very first thing that must be done in order to complete the detection process is to gather data about

Android applications. This data may comprise the application's code, permissions requested, API calls made, system call

sequences, network traffic, and any other features that are pertinent to the situation. Data can be collected from a wide

variety of sources, including programme stores, malware repositories, user devices, and so on.

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e319

Preprocessing: After the data have been collected, they are put through preprocessing so that relevant features can be

extracted from them, and they are made ready for analysis. This may require parsing the code of the programme, extracting

permissions, locating API calls, and translating the data into a format that is acceptable for further analysis.

Feature Extraction: The process of detecting and extracting relevant traits or patterns from the data is referred to as

"feature extraction." During this stage, we will attempt to identify the characteristics that set malicious programmes apart

from legitimate software and distinguish them from one another. API call sequences, permission usage patterns, code

structure, resource file behaviour, and network activity are all examples of common features that are employed in Android

malware detection.

Model Training: Training the Models During this stage of the process, either machine learning or deep learning models

are trained using labelled datasets. The labelled collection includes examples of both malicious software and programmes

that are safe to use. In order for the models to be trained, the extracted features are utilised as input, which enables the

models to learn the patterns and characteristics of malware. When it comes to training, you have the option of using a

number of different machine learning methods, such as decision trees, support vector machines (SVM), random forests,

or even deep learning models, such as convolutional neural networks (CNN) or recurrent neural networks (RNN).

Model Evaluation: After training, the performance of the detection model is then evaluated using evaluation measures

such as accuracy, precision, recall, and F1-score. This takes place after the training phase. Evaluation is often carried out

on separate datasets, each of which contains examples of known and unknown forms of malware. During this step, the

model's capacity to accurately classify malicious software and benign programmes is evaluated, and insights into the

model's efficiency and areas in which it could be improved are provided.

Detection and Classification: After the model has been educated and assessed, it may then be used to detect malicious

software on Android devices. When a new programme is encountered, its features are parsed out, and the trained model

is used to determine whether or not the application is dangerous. The decisions that the model makes are determined by

the patterns and traits that it has acquired throughout the training phase. The outcome of the categorization decides whether

or not the application is marked as having the potential to be malicious or as being safe.

Post-processing and Remediation: The post-processing step is when further analysis or checks to validate the

categorization results can be carried out. This could involve conducting more behavioural analysis, running the

programme in a sandbox, or running the application in a controlled environment to observe its behaviour. On the basis of

the results of the categorization and any extra analysis that may be performed, suitable actions may be made. These may

include isolating or destroying any malware that has been discovered, informing users, or applying remediation steps.

It may include additional phases or modifications depending on the malware detection system or approach that is being

utilised. The detection of malware on Android is an ever-evolving field, and researchers and practitioners are continually

looking into new approaches and methods to enhance the accuracy and effectiveness of detection systems.

Android malware analysis today

Analysis of Android malware is a fast-developing area that makes use of a wide variety of strategies to identify,

investigate, and neutralise potential dangers. Feature extraction and behaviour analysis, obfuscation and evasion

techniques, collaborative and crowdsourced analysis, mobile threat intelligence platforms, and app store security are some

of the essential components of this field. These techniques assist detect and neutralise dangers posed by malware based

on learnt patterns and behaviours. As a result, detection is made more accurately and efficiently. It is necessary for

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e320

researchers, security businesses, and the larger community to work together in order to stay current on evolving threats

and develop effective solutions. Mobile threat intelligence services give real-time information on newly discovered

threats, while app store security measures and analyses assist in preventing the dissemination of dangerous mobile

applications. It is essential to maintain an up-to-date knowledge of the most recent research and breakthroughs to

effectively resist threats, as the field of Android malware analysis is continuously undergoing evolution.

Research Gap

Android malware analysis can reveal research gaps. Sophisticated evasion techniques, zero-day malware detection,

context-aware analysis, sophisticated machine learning, malware analysis automation, dynamic analysis scalability, and

privacy-preserving analysis are lacking. Addressing these restrictions improves malware analysis systems' detection

accuracy, scalability, and efficacy. Research could improve machine learning, automate analysis, optimise emulator

performance, and ensure privacy throughout analysis.

Research questions

(a) whether the use of the ranked list of API calls in apps as the feature of a machine learning-based algorithm is effective

for Android malware detection

(b) how to choose the effective subset of API calls for Android malware detection.

(c) What is the ML/DL based methods that can be used to detect malware in Android?

SWOT ANALYSIS

The term "SWOT analysis" is commonly used to refer to a strategic planning tool that is utilised in the business world to

determine a company's strengths, weaknesses, opportunities, and threats respectively. Here we discuss the strengths,

weaknesses, opportunities and threats in the Android Malware Analysis field.

STRENGTHS: makes the researchers to gain deep insights into malware behaviour and characteristics.

 Advanced techniques

 Growing expertise

 Automated analysis platforms

WEAKNESS: Evasion strategies can produce false negatives and undetected viruses.

 Evasion methods

 Changing threat landscape

 Imbalanced data

The requirement for continuous advancements in machine learning and context aware analysis

OPPORTUNITIES

Opportunities for Android malware analysis include advancements in machine learning, which can improve the accuracy

and efficiency of malware detection and analysis. Context-aware analysis, which considers user behaviour, device settings,

and network conditions, can lead to more precise and contextual detection

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e321

THREATS: threats include zero-day malware, which exploits unknown vulnerabilities and requires continuous research

and development of proactive analysis techniques. Privacy and ethical concerns are essential in the analysis process, as

accessing sensitive user data and interacting with malicious code is crucial.

CONCLUSION

In Android malware research, graph-based algorithms are helpful for recognising known and unknown samples, finding

harmful patterns, and capturing runtime behaviours. Scalability, intricacy, and evasion methods continue to be difficulties,

though. In the future, research should concentrate on areas such as scalability, efficient algorithms, and machine learning.

Malware detection that is based on the GCN can accommodate variations in viruses by extracting API call sequences,

directed cyclic graphs, characteristics, and the GCN itself for categorization purposes. It’s possible to adapt the

technology. To reduce malware detection staff expenses, GCN-based adaptive detection methods will be studied.

REFERENCES

1. https://www.cisco.com/c/en_in/products/security/what-is-

2. Bhat, P., & Dutta, K. (2019, February 13). A Survey on Various Threats and Current State of Security in Android

Platform. ACM Computing Surveys, 52(1), 1–35. https://doi.org/10.1145/3301285

3. Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner: Mining API-Level Features for Robust Malware Detection

in Android. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, 86–103. https://doi.org/10.1007/978-3-319-04283-1_6

4. Qiao, M., Sung, A. H., & Liu, Q. (2016, July). Merging Permission and API Features for Android Malware

Detection. 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI).

https://doi.org/10.1109/iiai-aai.2016.237

5. Chan, P. P. K., & Wen-Kai Song. (2014, July). Static detection of Android malware by using permissions and API

calls. 2014 International Conference on Machine Learning and Cybernetics.

https://doi.org/10.1109/icmlc.2014.7009096

6. Wang, Z., Cai, J., Cheng, S., & Li, W. (2016, September). DroidDeepLearner: Identifying Android malware using

deep learning. 2016 IEEE 37th Sarnoff Symposium. https://doi.org/10.1109/sarnof.2016.7846747

7. Singh, A. K., Jaidhar, C. D., & Kumara, M. A. A. (2019, May 30). Experimental analysis of Android malware

detection based on combinations of permissions and API-calls. Journal of Computer Virology and Hacking

Techniques, 15(3), 209–218. https://doi.org/10.1007/s11416-019-00332-z

8. Li, W., Ge, J., & Dai, G. (2015, November). Detecting Malware for Android Platform: An SVM-Based Approach.

2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing.

https://doi.org/10.1109/cscloud.2015.50

9. Kumar, R., Zhang, X., Wang, W., Khan, R. U., Kumar, J., & Sharif, A. (2019). A Multimodal Malware Detection

Technique for Android IoT Devices Using Various Features. IEEE Access, 7, 64411–64430.

https://doi.org/10.1109/access.2019.2916886

10. Koli, J. D. (2018, March). RanDroid: Android malware detection using random machine learning classifiers. 2018

Technologies for Smart-City Energy Security and Power (ICSESP). https://doi.org/10.1109/icsesp.2018.8376705

11. Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E. D., Ross, G., & Stringhini, G. (2019, April 9).

MaMaDroid. ACM Transactions on Privacy and Security, 22(2), 1–34. https://doi.org/10.1145/3313391

http://www.jetir.org/
https://www.cisco.com/c/en_in/products/security/what-is-
https://doi.org/10.1145/3301285
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1109/iiai-aai.2016.237
https://doi.org/10.1109/icmlc.2014.7009096
https://doi.org/10.1109/sarnof.2016.7846747
https://doi.org/10.1007/s11416-019-00332-z
https://doi.org/10.1109/cscloud.2015.50
https://doi.org/10.1109/access.2019.2916886
https://doi.org/10.1109/icsesp.2018.8376705
https://doi.org/10.1145/3313391

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e322

12. Cai, L., Li, Y., & Xiong, Z. (2021, January). JOWMDroid: Android malware detection based on feature weighting

with joint optimization of weight-mapping and classifier parameters. Computers & Security, 100, 102086.

https://doi.org/10.1016/j.cose.2020.102086

13. Muzaffar, A., Ragab Hassen, H., Lones, M. A., & Zantout, H. (2022, October). An in-depth review of machine

learning based Android malware detection. Computers & Security, 121, 102833.

https://doi.org/10.1016/j.cose.2022.102833

14. Guerra-Manzanares, A., Bahsi, H., & Nõmm, S. (2021, November). KronoDroid: Time-based Hybrid-featured

Dataset for Effective Android Malware Detection and Characterization. Computers & Security, 110, 102399.

https://doi.org/10.1016/j.cose.2021.102399

15. Shatnawi, A. S., Yassen, Q., & Yateem, A. (2022). An Android Malware Detection Approach Based on Static

Feature Analysis Using Machine Learning Algorithms. Procedia Computer Science, 201, 653–658.

https://doi.org/10.1016/j.procs.2022.03.086

16. McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao,

Z., Doupé, A., & Joon Ahn, G. (2017, March 22). Deep Android Malware Detection. Proceedings of the Seventh

ACM on Conference on Data and Application Security and Privacy. https://doi.org/10.1145/3029806.3029823

17. Ismail, Mohmand, M. I., Hussain, H., Khan, A. A., Ullah, U., Zakarya, M., Ahmed, A., Raza, M., Rahman, I. U.,

& Haleem, M. (2022). A Machine Learning-Based Classification and Prediction Technique for DDoS Attacks.

IEEE Access, 10, 21443–21454. https://doi.org/10.1109/access.2022.3152577

18. Chen, L., Hou, S., Ye, Y., & Chen, L. (2017). An Adversarial Machine Learning Model Against Android Malware

Evasion Attacks. Web And Big Data, 43–55. https://doi.org/10.1007/978-3-319-69781-9_5

19. Zhai, S., Chang, K. H., Zhang, R., & Zhang, Z. M. (2016, August 13). DeepIntent. Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

https://doi.org/10.1145/2939672.2939759

20. Shabir, A. G., & Sabahat, N. (2020, November 5). A Review of Hybrid Malware Detection Techniques in

Android. 2020 IEEE 23rd International Multitopic Conference (INMIC).

https://doi.org/10.1109/inmic50486.2020.9318117

21. Wang, W., Gao, Z., Zhao, M., Li, Y., Liu, J., & Zhang, X. (2018). DroidEnsemble: Detecting Android Malicious

Applications With Ensemble of String and Structural Static Features. IEEE Access, 6, 31798–31807.

https://doi.org/10.1109/access.2018.2835654

22. Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017, March). AndroDialysis: Analysis

of Android Intent Effectiveness in Malware Detection. Computers & Security, 65, 121–134.

https://doi.org/10.1016/j.cose.2016.11.007

23. Haq, I. U., Khan, T. A., Akhunzada, A., & Liu, X. (2021, August 2). MalDroid: Secure DL‐enabled intelligent

malware detection framework. IET Communications, 16(10), 1160–1171. https://doi.org/10.1049/cmu2.12265

24. Zhu, H., et al.: Sedmdroid: An enhanced stacking ensemble of deep learning framework for android malware

detection. IEEE Trans. Netw. Sci. Eng.(2020)

25. Bibi, I., et al.: A dynamic dl-driven architecture to combat sophisticated android malware. IEEE Access 8,

129600–129612 (2020)

26. Amin, M., et al.: Static malware detection and attribution in android byte-code through an end-to-end deep system.

Future Gener. Comput. Syst.102, 112–126 (2020)

http://www.jetir.org/
https://doi.org/10.1016/j.cose.2020.102086
https://doi.org/10.1016/j.cose.2022.102833
https://doi.org/10.1016/j.cose.2021.102399
https://doi.org/10.1016/j.procs.2022.03.086
https://doi.org/10.1145/3029806.3029823
https://doi.org/10.1109/access.2022.3152577
https://doi.org/10.1007/978-3-319-69781-9_5
https://doi.org/10.1145/2939672.2939759
https://doi.org/10.1109/inmic50486.2020.9318117
https://doi.org/10.1109/access.2018.2835654
https://doi.org/10.1016/j.cose.2016.11.007
https://doi.org/10.1049/cmu2.12265

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e323

27. Xiao, X., et al.: Android malware detection based on system call sequences and lstm. Multimedia Tools Appl.

78(4), 3979–3999 (2019)

28. Li, J., et al.: Significant permission identification for machine-learningbased android malware detection. IEEE

Trans. Ind. Inf. 14(7), 3216–3225 (2018)

29. Zhang, C., et al.: Deep learning in mobile and wireless networking: A survey. IEEE Commun. Surv. Tutorials

21(3), 2224–2287 (2019)

30. Suarez-Tangil, G., Stringhini, G.: Eight years of rider measurement in the android malware ecosystem. IEEE

Trans. Dependable Secure Comput. 99 (2020)

31. Singh, A. K., Jaidhar, C. D., & Kumara, M. A. A. (2019, May 30). Experimental analysis of Android malware

detection based on combinations of permissions and API-calls. Journal of Computer Virology and Hacking

Techniques, 15(3), 209–218. https://doi.org/10.1007/s11416-019-00332-z

32. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D., & McDaniel, P. (2014,

June 5). FlowDroid. ACM SIGPLAN Notices, 49(6), 259–269. https://doi.org/10.1145/2666356.2594299

33. Hou, S., Ye, Y., Song, Y., & Abdulhayoglu, M. (2017, August 13). HinDroid. Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

https://doi.org/10.1145/3097983.3098026

34. Gao, H., Cheng, S., & Zhang, W. (2021, July). GDroid: Android malware detection and classification with graph

convolutional network. Computers & Security, 106, 102264. https://doi.org/10.1016/j.cose.2021.102264

35. Fan, M., Luo, X., Liu, J., Wang, M., Nong, C., Zheng, Q., & Liu, T. (2019, May). Graph Embedding Based

Familial Analysis of Android Malware using Unsupervised Learning. 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). https://doi.org/10.1109/icse.2019.00085

36. Singh, A. K., Jaidhar, C. D., & Kumara, M. A. A. (2019, May 30). Experimental analysis of Android malware

detection based on combinations of permissions and API-calls. Journal of Computer Virology and Hacking

Techniques, 15(3), 209–218. https://doi.org/10.1007/s11416-019-00332-z

37. Singh, J., & Singh, J. (2020, February 26). Assessment of supervised machine learning algorithms using dynamic

API calls for malware detection. International Journal of Computers and Applications, 44(3), 270–277.

https://doi.org/10.1080/1206212x.2020.1732641

38. Zhu, D., Xi, T., Jing, P., Wu, D., Xia, Q., & Zhang, Y. (2019, November 25). A Transparent and Multimodal

Malware Detection Method for Android Apps. Proceedings of the 22nd International ACM Conference on

Modeling, Analysis and Simulation of Wireless and Mobile Systems. https://doi.org/10.1145/3345768.3355915

39. Ye, Y., Hou, S., Chen, L., Lei, J., Wan, W., Wang, J., Xiong, Q., & Shao, F. (2019, August). Out-of-sample Node

Representation Learning for Heterogeneous Graph in Real-time Android Malware Detection. Proceedings of the

Twenty-Eighth International Joint Conference on Artificial Intelligence. https://doi.org/10.24963/ijcai.2019/576

40. Hou, S., Ye, Y., Song, Y., & Abdulhayoglu, M. (2018, July). Make Evasion Harder: An Intelligent Android

Malware Detection System. Proceedings of the Twenty-Seventh International Joint Conference on Artificial

Intelligence. https://doi.org/10.24963/ijcai.2018/737

41. Xiao, F., Lin, Z., Sun, Y., & Ma, Y. (2019, February 11). Malware Detection Based on Deep Learning of Behavior

Graphs. Mathematical Problems in Engineering, 2019, 1–10. https://doi.org/10.1155/2019/8195395

http://www.jetir.org/
https://doi.org/10.1007/s11416-019-00332-z
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/3097983.3098026
https://doi.org/10.1016/j.cose.2021.102264
https://doi.org/10.1109/icse.2019.00085
https://doi.org/10.1007/s11416-019-00332-z
https://doi.org/10.1080/1206212x.2020.1732641
https://doi.org/10.1145/3345768.3355915
https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.24963/ijcai.2018/737
https://doi.org/10.1155/2019/8195395

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e324

42. Garg, V., & Yadav, R. K. (2019, November). Malware Detection based on API Calls Frequency. 2019 4th

International Conference on Information Systems and Computer Networks (ISCON).

https://doi.org/10.1109/iscon47742.2019.9036219

43. Peiravian, N., & Zhu, X. (2013, November). Machine Learning for Android Malware Detection Using Permission

and API Calls. 2013 IEEE 25th International Conference on Tools With Artificial Intelligence.

https://doi.org/10.1109/ictai.2013.53

44. Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner: Mining API-Level Features for Robust Malware Detection

in Android. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, 86–103. https://doi.org/10.1007/978-3-319-04283-1_6

45. Goyal, R., Spognardi, A., Dragoni, N., & Argyriou, M. (2016, November). SafeDroid: A Distributed Malware

Detection Service for Android. 2016 IEEE 9th International Conference on Service-Oriented Computing and

Applications (SOCA). https://doi.org/10.1109/soca.2016.14

46. Jung, J., Kim, H., Shin, D., Lee, M., Lee, H., Cho, S. J., & Suh, K. (2018, September). Android Malware Detection

Based on Useful API Calls and Machine Learning. 2018 IEEE First International Conference on Artificial

Intelligence and Knowledge Engineering (AIKE). https://doi.org/10.1109/aike.2018.00041

47. Kim, J., Ban, Y., Ko, E., Cho, H., & Yi, J. H. (2022, February 9). MAPAS: a practical deep learning-based android

malware detection system. International Journal of Information Security, 21(4), 725–738.

https://doi.org/10.1007/s10207-022-00579-6

48. Zhang, H., Luo, S., Zhang, Y., & Pan, L. (2019). An Efficient Android Malware Detection System Based on

Method-Level Behavioral Semantic Analysis. IEEE Access, 7, 69246–69256.

https://doi.org/10.1109/access.2019.2919796

49. Zhang, N., Xue, J., Ma, Y., Zhang, R., Liang, T., & Tan, Y. (2021, July 12). Hybrid sequence‐based Android

malware detection using natural language processing. International Journal of Intelligent Systems, 36(10), 5770–

5784. https://doi.org/10.1002/int.22529

50. Naval, S., Laxmi, V., Rajarajan, M., Gaur, M. S., & Conti, M. (2015, December). Employing Program Semantics

for Malware Detection. IEEE Transactions on Information Forensics and Security, 10(12), 2591–2604.

https://doi.org/10.1109/tifs.2015.2469253

51. Wu, Y., Li, X., Zou, D., Yang, W., Zhang, X., & Jin, H. (2019, November). MalScan: Fast Market-Wide Mobile

Malware Scanning by Social-Network Centrality Analysis. 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE). https://doi.org/10.1109/ase.2019.00023

52. Feng, Y., Anand, S., Dillig, I., & Aiken, A. (2014, November 11). Apposcopy: semantics-based detection of

Android malware through static analysis. Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering. https://doi.org/10.1145/2635868.2635869

53. Feng, Y., Bastani, O., Martins, R., Dillig, I., & Anand, S. (2017). Automated Synthesis of Semantic Malware

Signatures using Maximum Satisfiability. Proceedings 2017 Network and Distributed System Security

Symposium. https://doi.org/10.14722/ndss.2017.23379

54. Zou, D., Wu, Y., Yang, S., Chauhan, A., Yang, W., Zhong, J., Dou, S., & Jin, H. (2021, May 8). IntDroid. ACM

Transactions on Software Engineering and Methodology, 30(3), 1–32. https://doi.org/10.1145/3442588

http://www.jetir.org/
https://doi.org/10.1109/iscon47742.2019.9036219
https://doi.org/10.1109/ictai.2013.53
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1109/soca.2016.14
https://doi.org/10.1109/aike.2018.00041
https://doi.org/10.1007/s10207-022-00579-6
https://doi.org/10.1109/access.2019.2919796
https://doi.org/10.1002/int.22529
https://doi.org/10.1109/tifs.2015.2469253
https://doi.org/10.1109/ase.2019.00023
https://doi.org/10.1145/2635868.2635869
https://doi.org/10.14722/ndss.2017.23379
https://doi.org/10.1145/3442588

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401437 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e325

55. Taheri, L., Kadir, A. F. A., & Lashkari, A. H. (2019, October). Extensible Android Malware Detection and Family

Classification Using Network-Flows and API-Calls. 2019 International Carnahan Conference on Security

Technology (ICCST). https://doi.org/10.1109/ccst.2019.8888430

56. Li, S., Zhou, Q., Zhou, R., & Lv, Q. (2021, August 24). Intelligent malware detection based on graph

convolutional network. The Journal of Supercomputing, 78(3), 4182–4198. https://doi.org/10.1007/s11227-021-

04020-y

57. Amer, E., Zelinka, I., & El-Sappagh, S. (2021, November). A Multi-Perspective malware detection approach

through behavioral fusion of API call sequence. Computers & Security, 110, 102449.

https://doi.org/10.1016/j.cose.2021.102449

58. Feng, P., Ma, J., Li, T., Ma, X., Xi, N., & Lu, D. (2021, June 4). Android Malware Detection via Graph

Representation Learning. Mobile Information Systems, 2021, 1–14. https://doi.org/10.1155/2021/5538841

59. Graph Approach for android malware detection using machine learning techniques. (2021, November

1). Humanitarian and Natural Sciences Journal, 2(11). https://doi.org/10.53796/hnsj21115

60. Surendran, R., Thomas, T., & Emmanuel, S. (2020, November). GSDroid: Graph Signal Based Compact Feature

Representation for Android Malware Detection. Expert Systems With Applications, 159, 113581.

https://doi.org/10.1016/j.eswa.2020.113581

61. https://u-next.com/blogs/cyber-security/malware-

analysis/#:~:text=Malware%20analysis%20can%20be%20described,incident%20responders%20and%20securit

y%20analysts.

62. https://www.kaspersky.co.in/resource-center/definitions/what-is-cyber-security

63. https://u-next.com/blogs/cyber-security/malware-

analysis/#:~:text=Malware%20analysis%20can%20be%20described,incident%20responders%20and%20securit

y%20analysts.

64. https://www.researchgate.net/publication/344455629_Deep-

Droid_Deep_Learning_for_Android_Malware_Detection

http://www.jetir.org/
https://doi.org/10.1109/ccst.2019.8888430
https://doi.org/10.1007/s11227-021-04020-y
https://doi.org/10.1007/s11227-021-04020-y
https://doi.org/10.1016/j.cose.2021.102449
https://doi.org/10.1155/2021/5538841
https://doi.org/10.53796/hnsj21115
https://doi.org/10.1016/j.eswa.2020.113581
https://u-next.com/blogs/cyber-security/malware-analysis/#:~:text=Malware%20analysis%20can%20be%20described,incident%20responders%20and%20security%20analysts
https://u-next.com/blogs/cyber-security/malware-analysis/#:~:text=Malware%20analysis%20can%20be%20described,incident%20responders%20and%20security%20analysts
https://u-next.com/blogs/cyber-security/malware-analysis/#:~:text=Malware%20analysis%20can%20be%20described,incident%20responders%20and%20security%20analysts
https://www.kaspersky.co.in/resource-center/definitions/what-is-cyber-security
https://u-next.com/blogs/cyber-security/malware-analysis/#:~:text=Malware%20analysis%20can%20be%20described,incident%20responders%20and%20security%20analysts
https://u-next.com/blogs/cyber-security/malware-analysis/#:~:text=Malware%20analysis%20can%20be%20described,incident%20responders%20and%20security%20analysts
https://u-next.com/blogs/cyber-security/malware-analysis/#:~:text=Malware%20analysis%20can%20be%20described,incident%20responders%20and%20security%20analysts

