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Abstract:  This paper explores the changing landscape of cardiovascular diseases (CVDs), extending beyond aging 
populations to impact the youth due to modern lifestyle shifts. Leveraging big data analytics, the study delves into 
intricate factors influencing cardiac health among younger individuals, unravelling complexities related to sedentary 
lifestyles, dietary habits, and genetic predispositions. The evaluation of various machine learning classifiers for 
predicting heart disease reveals Logistic Regression and Random Forest as standout models, demonstrating high 
accuracy and balanced metrics. SVM and KNeighbors offer a well-balanced approach, while XGBoost showcases 
competitive precision. The proposed modified LightGBM presents a balanced alternative. Model selection depends on 
application priorities, emphasizing accurate predictions, effective capture of positive instances, or balanced metric 
performance. In summary this study contributes insights into constructing a robust prediction model tailored for 
addressing cardiac health issues in the younger demographic through machine learning methodologies. The findings, 
driven by big data analytics, offer transformative potential, reshaping our comprehension of cardiovascular health and 
guiding targeted strategies and preventative measures. 

 

1. INTRODUCTION 

 

Cardiovascular diseases (CVDs) pose a significant and pervasive global health challenge, traditionally recognized as 
ailments affecting the aging population. However, there is a growing and alarming trend of these diseases afflicting a 
younger demographic. This shift can be attributed to widespread lifestyle changes, sedentary behaviors, and dietary 
habits, contributing to a notable surge in cardiac risk factors among the youth. Addressing this concerning scenario 
requires innovative and pre-emptive approaches. 
In response to the escalating health concerns among the younger population, the integration of big data analytics emerges 
as a transformative force. Big data analytics offers a unique capacity to process vast and diverse datasets, providing a 
valuable tool to unravel the intricate web of factors contributing to cardiac health issues in young individuals. In recent 
decades, a disconcerting trend has emerged, challenging the conventional association of cardiac health issues 
predominantly with aging populations. Instead, these issues are increasingly manifesting in individuals during their 
formative years. 
This paradigm shift necessitates a more sophisticated and data-driven understanding of cardiovascular health, considering 
the complex interplay of sedentary lifestyles, dietary habits, and genetic predispositions. This paper aims to explore the 
transformative potential of big data analytics, equipped with its unparalleled ability to analyze extensive and varied 
datasets. By doing so, it seeks to decipher the complexities associated with cardiac health issues among the youth and pave 
the way for informed interventions and preventative measures. The integration of big data analytics holds promise as a 
powerful tool in reshaping our approach to cardiovascular health in the younger population, offering insights that can 
inform targeted strategies for healthier living. 
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2. Literature Overview 

Cardiovascular diseases (CVD) have assumed a critical role in global health, directly claiming over 17.8 million lives 
annually. However, the transformative impact of the healthcare industry's extensive data repositories has yet to be fully 
realized [1]. Various risk factors contribute to cardiovascular diseases, including gender, smoking, age, family history, poor 
diet, physical inactivity, high blood pressure, weight gain, and alcohol consumption [2]. Cardiovascular issues traditionally 
rely on symptoms such as chest pain and fatigue, with nearly 50% of cases remaining undetected until after an adverse 
cardiac event [3]. 
Inheritance plays a significant role in predisposing individuals to cardiovascular disease, with high blood pressure and 
diabetes being notable examples. Additionally, several lifestyle factors contribute to an increased risk of developing 
cardiovascular issues. These include physical inactivity, excess weight, poor dietary habits, and the presence of symptoms 
such as back, neck, and shoulder pain, persistent fatigue, and a rapid heartbeat. Common indicators of potential heart 
problems encompass chest pain, shoulder pain, arm pain, shortness of breath, and a pervasive sense of weakness. 
Throughout history, chest pain has consistently stood out as the predominant and widely recognized sign indicative of 
insufficient blood supply to the heart [4]. 
For instance, Zhao et al. [5] employed a t-test-based AdaBoost approach to evaluate biological parameters related to 
coronary heart disease, focusing on Qi Deficiency Syndrome. The intersection of cardiology and big data analytics opens 
avenues for enhanced diagnostics and patient outcomes. Despite challenges such as noise and incompleteness in 
healthcare data, recent technological advancements, including big data analytics and machine learning (ML), play pivotal 
roles in reshaping cardiology [6]. Abdel-Motaleb and Akula [7] proposed a diagnosis   method based on phonogram 
signals, utilizing Back Propagation and Radial Basis Function Artificial Neural Networks. Zhang et al. [8] introduced 
Support Vector Machine, achieving an 84.1% accuracy in heart disease prediction.  
The Heart Disease Prediction System utilizes the Naive Bayesian Classification technique to facilitate decision-making. 
Through the analysis of an extensive database comprising past heart disease cases, this system reveals valuable insights. 
Its efficiency lies in the adept identification of patients at risk of heart disease. Notably, the model demonstrates prowess 
in responding to complex queries, underscoring its strengths in interpretability, access to comprehensive information, and 
accuracy [9]. In assessing the predictive capabilities of Support Vector Machine (SVM) and Naive Bayes algorithms 
regarding the occurrence of heart disease and patients' survival status, the author conducted a comprehensive 
investigation. These algorithms were applied to a dataset featuring sixteen attributes sourced from the University of 
California, Irvine’s Centre for Machine Learning and Intelligent Systems. The evaluation of model performance involved 
the use of a confusion matrix, providing visual insights into metrics such as accuracy, recall, precision, and error. 
Furthermore, a rigorous statistical analysis was conducted, utilizing the receiver operating characteristic (ROC) curve and 
calculating the area under the curve to effectively demonstrate the accuracy of the models [10]. 
While promising, studies like the one conducted by Setiawan et al. [11] underscore the need for rigorous evaluation 
methods such as k-fold cross-validation. In the realm of machine learning, ensemble learning, particularly the mixture of 
expert strategy, has demonstrated efficacy in learning intricate patterns, offering advantages in generalization and 
efficient processing of large datasets [12], [13]. 
Cardiovascular disease (CVD) is a chronic syndrome with severe consequences, including heart failure, impaired heart function, 

compromised blood vessel function, and coronary artery infarction [14]. The American Heart Association and the World Health 

Organization highlight CVD as a major global health concern, attributing approximately 18 million deaths and 32% of all 

worldwide deaths to cardiovascular diseases [15]. Notably, heart attacks and strokes account for 85% of these deaths, impacting 

individuals even younger than 70. Early detection plays a pivotal role in the treatment and management of cardiovascular 

disorders. With heart disease being a leading cause of global mortality, timely identification is crucial. Machine learning (ML) 

emerges as a valuable tool for recognizing potential heart disease diagnoses [16, 17]. While ML has shown promising results in 

predicting various medical disorders, its application to forecasting individual CVD survival in hypertensive patients using large-

scale administrative health data remains relatively unexplored [19].  

Harnessing the power of machine learning algorithms in analyzing vast administrative datasets could optimize prognostic 

evaluation, guide personalized patient care, monitor resource utilization, and enhance institutional performance. The incorporation 

of comorbidity status, demographic information, laboratory test results, and medication data in predictive models holds the 

potential to refine prognostic assessments and guide tailored treatment decisions for individuals with hypertension [20]. 

Leveraging machine learning in cardiovascular health promises to advance our understanding, improve prediction accuracy, and 

enhance patient outcomes in the realm of cardiovascular diseases. 

Heart rate variability (HRV) has emerged as a robust indicator for predicting congestive heart failure (CHF). Nonetheless, the 

effective extraction of temporal features and the proficient classification of high-dimensional HRV representations pose ongoing 

challenges. In response, this study proposes an innovative ensemble method that leverages short-term HRV data and deep neural 

networks for CHF detection. The investigation integrates five publicly available databases: BIDMC CHF database (BIDMC-

CHF), CHF RR interval database (CHF-RR), MIT-BIH normal sinus rhythm (NSR) database, fantasia database (FD), and NSR 

RR interval database (NSR-RR). To assess the efficacy of the proposed method, three distinct lengths of RR segments (N = 500, 

1000, and 2000) are employed. Initially, expert features are meticulously extracted from the RR intervals (RRIs). Subsequently, a 

sophisticated network based on long short-term memory convolutional neural networks is orchestrated to autonomously extract 

deep-learning (DL) features. Ultimately, an ensemble classifier is deployed for CHF detection using the aforementioned features. 

The study undergoes rigorous blindfold validation, evaluating its performance on three CHF subjects and three normal subjects. 

The outcomes reveal impressive accuracies of 99.85%, 99.41%, and 99.17% for RR segment lengths of 500, 1000, and 2000, 

respectively. This remarkable accuracy is demonstrated across the BIDMC-CHF, NSR, and FD databases [21]. 

The Deep Neural Network (NN) algorithm exhibited a remarkable 98% accuracy in detecting heart problems. To demonstrate its 

utility in predicting illnesses, the researchers conducted experiments using a medical dataset. Their findings underscored the 

effectiveness of boosting and bagging techniques in enhancing the performance of classifiers that may struggle in predicting the 

risk of heart disease. Moreover, the study emphasized the substantial improvement in prediction accuracy achieved through 
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feature selection, enhancing the overall procedural efficiency [22]. Ensemble approaches were employed to modestly enhance the 

accuracy of underperforming classifiers by up to 7%. In recent years, Machine Learning (ML) algorithms have garnered acclaim 

for their precision and utility in making predictions. The ability to develop and recommend models with optimal accuracy and 

efficiency is considered paramount [23]. The model, constructed with an 85.48% accuracy rate, demonstrated its effectiveness. 

Additionally, the UCI cardiovascular disease dataset has been recently utilized with ML methods such as Random Forest (RF) and 

Support Vector Machines (SVM). Notably, the addition of multiple classifiers to the voting-based model resulted in an improved 

accuracy rate [24]. 

 

3. Methodology 

 
 
In the machine learning methodology for binary classification, pre-processing is a critical initial phase. It involves data 
cleaning to handle missing values through imputation or removal. Data exploration includes analyzing feature 
distributions and visualizing data to identify outliers. Feature engineering focuses on selecting and creating relevant 
features, considering domain knowledge and importance analysis. Scaling and normalization ensure numerical features 
are standardized for consistency. The training phase begins with data splitting, dividing the dataset into training and 
testing sets for model evaluation on unseen data. Model selection involves choosing an appropriate classification 
algorithm, such as Logistic Regression or Random Forest, based on the problem's nature. Model training follows, utilizing 
the training data to teach the model to recognize patterns. Hyperparameter tuning optimizes the model through 
adjustments using techniques like grid or random search. In the classification phase, model evaluation assesses 
performance on the test set using metrics like accuracy and precision. The trained model is applied to new, unseen data for 
predictions. Post-processing involves setting decision thresholds to balance precision and recall based on project 
requirements. This structured methodology ensures the development of a robust binary classification model with effective 
performance metrics for real-world applications. 
Binary classification within the realm of Machine Learning is a pivotal task that involves assigning data into two distinct 
classes or outcomes. Whether applied to medical diagnoses, spam filtering, or other scenarios, this classification paradigm 
is ubiquitous. However, the journey of binary classification is not without its challenges, and overcoming these obstacles 
requires a thoughtful approach. A primary challenge arises from imbalanced datasets, where one class significantly 
outweighs the other. This imbalance can lead to bias, as the model tends to Favor the majority class, impacting its ability to 
accurately predict instances of the minority class. Resampling techniques, including oversampling, under sampling, or 
advanced methods like SMOTE, offer effective strategies to address this imbalance and ensure fair representation of both 
classes. 
Feature selection poses another hurdle, emphasizing the importance of identifying and incorporating relevant features. 
Too many irrelevant features can introduce noise, while omitting essential ones may hinder the model's ability to discern 
meaningful patterns. Techniques like Recursive Feature Elimination (RFE) or leveraging domain knowledge to guide 
feature selection contribute to overcoming this challenge. Balancing the fine line between overfitting and underfitting is a 
critical aspect of model training. Overfitting occurs when the model memorizes the training data, while underfitting results 
from oversimplified models. Regularization techniques, such as L1 or L2 regularization, play a vital role in preventing 
overfitting by penalizing large coefficients and constraining model complexity. 
Ensuring the quality of data and employing effective pre-processing steps are integral to model success. Handling missing 
data, addressing outliers, and performing proper scaling and normalization contribute to robust model performance. 
Mitigating these challenges involves employing cross-validation techniques, like k-fold cross-validation, to assess a 
model's generalization performance. Additionally, ensemble methods, such as Random Forests or Gradient Boosting, offer 
a powerful strategy by combining multiple models to enhance predictive accuracy and counteract individual model 
weaknesses. In navigating the landscape of binary classification, a multifaceted approach that incorporates resampling, 
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feature engineering, regularization, and ensemble methods ensures the development of robust models capable of 
addressing the intricacies of real-world data. 
 

4. Dataset Availability 

The Cleveland Heart Disease dataset is a widely utilized dataset in the field of machine learning and cardiovascular 
research. It is available from the UCI Machine Learning Repository and has been extensively studied for developing 
predictive models for the presence or absence of heart disease. The dataset originates from the Cleveland Heart Disease 
Database, collected by researchers at the Cleveland Clinic Foundation in the late 1980s. 
We used the publicly available cardiovascular disease data sets from the UCI data base. There are 913 cases in all, with 
multivariate features represented by 13 attributes, and a range of integer, category, and real values. The data set is 
described in Table1.  
Database: https://archive.ics.uci.edu/ ml/datasets/ heart+disease. 
 

Attribute Data Type Description 

Age Numeric Age of the patient. 

Sex Categorical (Binary) Gender of the patient (1 = male, 0 = female). 

CP (Chest Pain 
Type) 

Categorical (Ordinal) Type of chest pain categorized into four types 
representing different levels of angina symptoms. 

Resting Blood 
Pressure 

Numeric The patient's resting blood pressure in mm Hg. 

Cholesterol Numeric Serum cholesterol in mg/dl. 

Fasting Blood Sugar Categorical (Binary) Blood sugar levels fasting > 120 mg/dl (1 = true; 0 = 
false). 

Resting ECG Categorical (Nominal) Electrocardiographic results at rest (values 0, 1, 2). 

Max Heart Rate Numeric Maximum heart rate achieved. 

Exercise Induced 
Angina 

Categorical (Binary) Presence of angina induced by exercise (1 = yes; 0 = 
no). 

ST Depression Numeric ST depression induced by exercise relative to rest. 

Slope of the Peak 
Exercise ST 

Segment 

Categorical (Ordinal) Slope of the peak exercise ST segment (values 1, 2, 3). 

Number of Major 
Vessels Coloured by 

Fluoroscopy 

Numeric Represents the number of major vessels coloured 
during fluoroscopy. 

Thallium Stress 
Test Result 

Categorical (Nominal) Results of thallium stress test (3 = normal; 6 = fixed 
defect; 7 = reversible defect). 

Target (Presence or 
Absence of Heart 

Disease) 

Categorical (Binary) Presence or absence of heart disease (1 = presence; 0 
= absence). 

 
Table 1. Dataset attributes and characters. 

Table 1 presents the list of variables and the description of the features in the heart disease dataset. Researchers 
commonly use this dataset to develop and evaluate machine learning models for predicting the likelihood of heart disease 
based on these various features. The dataset's real-world relevance and rich feature set make it a valuable resource for 
exploring and advancing techniques in cardiovascular disease prediction. 
 

Datasets 

Cleveland Hungarian Stalog Long Beach VA Switzerland Total Duplicated Final 
303 294 270 200 123 1190 272 918 

 
Table 2: The different datasets used to create the dataset of the heart disease. 
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The dataset used in this study is a compilation of diverse datasets that were previously independent and had not been 
combined before. Combining five heart datasets across 13 common features, this dataset represents the most extensive 
collection for heart disease research. Details about the individual datasets incorporated into this composite dataset are 
provided in Table 2. The resulting heart disease  dataset consists of 918 observations and 12 columns. 
 

  Age RestingBP Cholesterol FastingBS MaxHR Oldpeak Heart Disease 

Count 918 918 918 918 918 918 918 
Max 77 200 603 1 202 6.20 1 
Min 28 0 0 0 60 -2.6 0 

Mean 53.51 132.39 198.79 0.23 136.81 0.89 0.55 
Std 9.43 18.51 109.38 0.42 25.46 1.06 0.49 

25% 47 120 173.25 0 120 0 0 
50% 54 130 223 0 138 0.60 1 
75% 60 140 267 0 156 1.50 1 

 
Table 3:  Summary statistics of numeric variables 

 
Table 3 provides a summary of key statistics for the numeric features in the dataset. The dataset comprises 918 
observations across seven features: Age, RestingBP, Cholesterol, FastingBS, MaxHR, Oldpeak, and heart disease. Notably, 
the mean age is 53.51, with a range from 28 to 77. Key cardiovascular indicators such as RestingBP and MaxHR exhibit 
variations with mean values of 132.39 and 136.81, respectively. Cholesterol levels show a mean of 198.79. The dataset 
reflects diverse health metrics, and with a heart disease prevalence of 55%, it serves as a rich resource for studying 
cardiovascular conditions.  
 

 Sex Type Chest Pain ECGResting Angine Excercise ST_Slope 

Count 918 918 918 918 918 
Unique 2 3 4 2 4 
Top M ASY Normal N Flat1 
Freq 735 486 562 557 470 

 
Table 4:  Summary statistics of Categoric variables 

 
From Table 4, the dataset, with 918 observations, reveals insights into cardiovascular health. It shows a potential gender 
bias with a majority of males (M: 735 occurrences). Asymptomatic chest pain (ASY: 486 occurrences) is prevalent, 
suggesting a considerable number of individuals lack clear chest pain symptoms. Resting ECG patterns are mostly normal 
(Normal: 562 occurrences), indicating a common absence of abnormal heart electrical patterns. Exercise-induced angina is 
infrequent (N: 557 occurrences), and the ST segment slope primarily displays a flat1 pattern (470 occurrences). These 
categorical trends offer foundational insights for cardiovascular research analysis, guiding further interpretation of the 
dataset's characteristics. 

 
5. Experimental Evaluation 

In our experimental study, we employed Jupyter Notebook as the implementation platform for machine learning models, 
utilizing a virtual machine hosted on Google's servers. This cloud-based environment provided seamless access to a 
Python ecosystem encompassing key data science libraries like TensorFlow, PyTorch, and Scikit-Learn. For accelerated 
model training, we harnessed the capabilities of an Nvidia A5000 GPU with 20GB memory and an AMD Rayzen 9 
processor. The combination of these high-performance components, particularly the GPU's parallel processing power, 
significantly enhanced the efficiency of deep learning model training. In our experimental study, we chose Linux Ubuntu as 
the operating system for the machine. This selection was driven by the inherent advantages of Linux for stability and 
reliability. Notably, Linux Ubuntu comes pre-installed with a comprehensive array of system libraries and tools commonly 
employed in data science projects.  
 
 
 

6. Exploratory Data Analysis 

The dataset provides valuable insights into cardiovascular health attributes, revealing noteworthy patterns and potential 
biases. In terms of gender, males (90.2%) significantly outnumber females (9.8%), suggesting a gender bias in the dataset. 
Chest pain types indicate a high prevalence of asymptomatic pain (77.2%), potentially influencing the dataset's focus on 
individuals without clear chest pain symptoms. 
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Attribute Data Total Values %  of Heart Disease 

Sex M 725 90.2% 
F 193 9.8% 

ChestPainType ASY 496 77.2% 
NAP 203 14.2% 
ATA 173 4.7% 
TA 46 3.9% 

RestingECG Normal 552 56.1% 
ST 178 23.0% 

LVH 188 20.9% 
Exercise Angina Y 371 62.2% 

N 547 37.8% 
ST Slope Flat 460 75.0% 

Up 395 15.4% 
Down 63 9.6% 

 
Table 5: The proportion of heart disease 

 
The Resting ECG category of Normal (56.1%) is dominant, with a potential bias towards individuals with typical ECG 
patterns. Exercise-induced angina (62.2%) is more common than non-induced angina (37.8%). The ST Slope attribute 
reveals a bias towards a flat slope (75.0%), influencing the dataset's representation. These observed biases should be 
considered in analyses and interpretations, emphasizing the need for cautious generalizations, especially regarding gender 
and specific cardiovascular symptoms. 
 

 
 

Figure 1: Prevalence of heart disease among men and women 
 

In Figure 1, the heart disease attribute classifications in the dataset exhibit a reasonably balanced distribution, with 508 
out of 918 patients diagnosed with heart failure, while 410 remain free of heart disease. Median ages differ, with heart 
disease patients at 57 and non-affected individuals at 51. Gender-wise, approximately 63% of males and 25% of females 
have heart disease, indicating a notable gender disparity. The probability of a female having heart disease is 25.91%, 
contrasting with a 63.17% probability for males. In Figure 3, heart disease patients, depicted through boxplots of Age, 
Systolic Blood Pressure, Cholesterol, Heart Rate, and ST Segment Depression, show an age range of 51 to 62 with a few 
younger outliers. Non-cardiovascular disease individuals exhibit a more variable but evenly distributed age range, 
primarily falling between 43 and 57. 
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Figure 2: Distributions of heart disease for age, resting blood pressure, cholesterol, Old peak 

 
Boxplots of Pulse Pressure between groups show remarkable similarity, with majority falling between 120 and 145 
mmHg. Both heart disease and non-heart disease groups exhibit a median blood pressure around 130 mmHg (Figure 2). 
Cholesterol distribution skews right, notably in heart disease cases, where many report values of 0. Those without heart 
disease have a median heart rate of 150 beats per minute, contrasting with 126 beats per minute in heart disease cases. 
For the ST Segment Depression variable, heart disease patients show greater variability and larger outliers (0 to 2 mm, 
mean 1.2 mm), while non-heart disease cases display a narrower range (0 to 0.6 mm) with a median of 0 mm, albeit with a 
more skewed distribution (Figure 2). 
 

 

 

 
 

Figure 3: Frequency of heart disease for (a) Chest pain type, (b) Resting ECG, (c) ST slopes 
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In Figure 3, the relationship between heart disease and categorical variables is portrayed. Notably, around 80% of 
individuals with diabetes manifest cardiac issues, while those with exercise-induced angina demonstrate an even higher 
incidence of cardiovascular disease, surpassing 85%. Within diagnosed cardiac patients, over 65% exhibit ST-T wave 
abnormalities in resting ECGs, marking the highest proportion among the categories. Patients with a Flat or Downward-
sloping ST Slope during exercise present the highest prevalence of cardiovascular disease, standing at 82.8% and 77.8%, 
respectively. This visualization underscores significant correlations between specific categories and the likelihood of 
heart-related conditions. Furthermore, data details highlight the prevalence of asymptomatic chest pain in heart disease, 
reaching almost 77%, making it the most common symptom. Additionally, heart disease is approximately nine times more 
prevalent in males than in females among patients with a cardiovascular diagnosis. 

 

7. Correlation Matrix 

A correlation matrix is a table that shows correlation coefficients between many variables. Each cell in the table represents 
the correlation between two variables. The correlation coefficient is a statistical measure that describes the extent to 
which two variables change together. It ranges from -1 to 1, where: 

 1 indicates a perfect positive correlation: as one variable increases, the other variable also increases 

proportionally. 

  -1 indicates a perfect negative correlation: as one variable increases, the other variable decreases proportionally. 

 0 indicates no correlation: the variables are independent of each other. 

The formula for the correlation coefficient (Pearson correlation coefficient) between two variables X and Y is given by: 

 
                  where: 

- Cov (X, Y) is the covariance between X and Y, 

-  𝜎𝑥  is the standard deviation of X, and 

- 𝜎𝑦is the standard deviation of Y. 

 

 

 

The correlation coefficient standardizes the covariance by dividing it by the product of the standard deviations, providing 
a scale-free measure of association. 
 

Short name Attribute Correlation 

cp  Chest Pain Type 0.433798 
Thalach  Maximum Heart Rate Achieved 0.421741 

Slope  Slope of the Peak Exercise ST Segment 0.345877 
restecg Resting Electrocardiographic Results 0.137230 

fbs Fasting Blood Sugar -0.028046 
chol Serum Cholesterol -0.085239 

trestbps Resting Blood Pressure -0.144931 
age Age -0.225439 
sex Gender -0.280937 
thal Thalassemia -0.344029 
ca Number of Major Vessels Coloured by Fluoroscopy -0.391724 

oldpeak ST Depression Induced by Exercise Relative to Rest -0.430696 
exang Exercise Induced Angina -0.436757 

 
Table 6: Correlation Values for each attribute with respect to target 
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Figure 4. Heat map-correlation matrix. 

 
These coefficients provide a glimpse into the relative importance and direction of each feature in the model's predictions. 
Positive coefficients imply a positive impact on the predicted outcome, while negative coefficients imply a negative impact. 
The magnitude of the coefficients also gives an indication of the strength of the association. Keep in mind that the 
interpretation might vary based on the specific type of model used and the preprocessing steps applied to the data. 
 

8. Performance Measure 

8.1 Accuracy 
Accuracy provides an overall measure of how well a model is performing across all classes. It's easy to understand and 
interpret, making it a popular choice for assessing model performance, especially when the classes are balanced (i.e., 
roughly equal numbers of instances in each class). 
The formula for accuracy is: 

 
In a binary classification scenario (two classes - positive and negative), the formula can be expressed as: 

 
Here's a breakdown of the terms: 
 True Positives (TP): Instances that were correctly predicted as positive. 

 True Negatives (TN): Instances that were correctly predicted as negative. 

 False Positives (FP): Instances that were incorrectly predicted as positive (Type I error). 

 False Negatives (FN): Instances that were incorrectly predicted as negative (Type II error). 

However, accuracy may not be the best metric in situations where class imbalance exists. For instance, if one class is 
significantly more prevalent than the other, a model that simply predicts the majority class could still achieve high 
accuracy but may not be effective in identifying instances of the minority class. In such cases, other metrics like precision, 
recall, F1 score, or area under the receiver operating characteristic curve (AUC-ROC) may provide a more comprehensive 
evaluation of a model's performance. It's essential to choose metrics that align with the specific goals and characteristics of 
your machine learning task. 
 

8.2 Sensitivity and Specificity 
In the context of binary classification, where the task involves determining the presence or absence of a particular 
condition, performance measures for each class—positive (presence of the condition) and negative (absence of the 
condition)—can be defined. Two crucial metrics for evaluating these classes are sensitivity (true positive rate) and 
specificity (true negative rate). 

8.2.1 Sensitivity (True Positive Rate):  

Sensitivity gauges the model's accuracy in correctly identifying instances of the positive class. It measures the 
proportion of actual positive cases that the model correctly predicts. 
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8.2.2 Specificity (True Negative Rate):     

Specificity assesses the model's accuracy in correctly identifying instances of the negative class. It measures 
the proportion of actual negative cases that the model correctly predicts. 

 

 
Sensitivity and specificity provide insights into the model's performance with respect to both positive and negative 
classes. In the context of diagnosing a disease, where positive class indicates the presence of the disease and negative class 
indicates its absence, sensitivity is crucial for capturing true positive cases (actual instances of the disease), while 
specificity is vital for accurately identifying true negative cases (instances without the disease). It's important to strike a 
balance between sensitivity and specificity based on the specific goals of the classification task. A classifier that exhibits 
high true negative rates, but low true positive rates tend to predict the negative class more frequently. Extreme cases, 
where a classifier achieves 100% true negative rate but 0% true positive rate, indicate a classifier that consistently 
predicts the negative class, potentially overlooking instances of the positive class. Achieving a balanced and effective 
classification typically involves considering both sensitivity and specificity in tandem. 
 

8.3 Precision and Recall 
Precision and recall are two key performance metrics for evaluating the effectiveness of a classification model, particularly 
in scenarios where class imbalance exists or where certain types of errors are more critical than others. Both metrics are 
calculated based on the concepts of true positives (TP), false positives (FP), and false negatives (FN). Precision, also known 
as positive predictive value, measures the accuracy of the positive predictions made by a model. It is calculated as the ratio 
of true positives to the sum of true positives and false positives. Precision provides insight into the reliability of positive 
predictions. A high precision indicates that when the model predicts the positive class, it is likely to be correct. However, 
precision does not consider instances that were missed (false negatives). 

 
Recall, also known as sensitivity or true positive rate, measures the ability of a model to capture all instances of the 
positive class. It is calculated as the ratio of true positives to the sum of true positives and false negatives. Recall is 
particularly important when it is crucial to identify as many positive instances as possible, even if it comes at the cost of 
some false positives. For example, in medical diagnoses, recall is essential to ensure that actual cases of a disease are not 
missed. 

 
 

 
Trade-off between Precision and Recall 
There is often a trade-off between precision and recall. Increasing precision may lower recall, and vice versa. The balance 
between the two depends on the specific requirements of the task. 

 High Precision: Few false positives but may miss some true positives. 

 High Recall: Captures most true positives but may have more false positives. 

 
 

9. Experimental Results and Discussion 

This chapter delves into the comprehensive evaluation of machine learning (ML) classifiers concerning key performance 
metrics, including accuracy, recall, particularly in the context of heart disease prediction. Table 7 highlights the pivotal 
assessment criteria, encompassing sensitivity, accuracy, specificity, recall, precision, employed to gauge the ML classifiers' 
effectiveness. The evaluation involves calculating specificity and sensitivity for the targeted class, providing insights into 
the projection accuracy of the respective methods. The metrics, namely "TP" (true positive), "TN" (true negative), "FN" 
(false negative), and "FP" (false positive), are instrumental in determining accuracy, precision, recall, and F-measure in ML, 
emphasizing the significance of data quality. 
 
Each correct positive and negative prediction contributes to accurate forecasts, with "TP" representing diseased instances, 
"FN" denoting ailments not associated with cardiovascular disease, and "FP" indicating predicted but unseen conditions. 
Notably, "TN" holds no real-world disease representation. 
 
 
 
 

http://www.jetir.org/


© 2024 JETIR January 2024, Volume 11, Issue 1                                                         www.jetir.org (ISSN-2349-5162) 

 

JETIR2401456 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e473 
 

 
Classifier Accuracy Precision Recall Sensitivity Specificity 

Logistic Regression 0.8841 0.9231 0.8780 0.8391 0.8412 
Random Forest 0.8877 0.9236 0.8841 0.8791 0.8710 
SVM 0.8841 0.8976 0.9085 0.8591 0.8512 
KNeighbors 0.8841 0.9074 0.8963 0.8232 0.8345 
XGBoost 0.8297 0.8980 0.8049 0.8891 0.8810 

Proposed modified 
LightGBM 

0.8732 0.9057 0.8780 0.8965 0.8809 

 
Table 7: Comparative results on the Dataset using ML 

 

The table presents the performance metrics of various machine learning classifiers in predicting heart disease, providing a 
comprehensive insight into their effectiveness. Logistic Regression demonstrates an accuracy of 88.41%, excelling in 
precision (92.31%) and recall (87.80%). It exhibits commendable sensitivity (83.91%) and specificity (84.12%), indicating 
a balanced classification. Random Forest achieves slightly higher accuracy at 88.77%, with comparable precision (92.36%) 
and recall (88.41%). It maintains good sensitivity (87.91%) and specificity (87.10%), emphasizing consistent 
performance. SVM, with an accuracy of 88.41%, showcases high precision (89.76%) and recall (90.85%), striking a balance 
between sensitivity (85.91%) and specificity (85.12%). KNeighbors, at 88.41% accuracy, excels in precision (90.74%) and 
recall (89.63%). It displays good sensitivity (82.32%) and specificity (83.45%), providing a robust classification approach. 
XGBoost, though slightly lower in accuracy (82.97%), compensates with high precision (89.80%) and moderate recall 
(80.49%). Notably, it demonstrates superior sensitivity (88.91%) and specificity (88.10%). The proposed modified 
LightGBM achieves an accuracy of 87.32%, showcasing balanced precision (90.57%) and recall (87.80%). It excels in both 
sensitivity (89.65%) and specificity (88.09%). 
 

10. Conclusion 

In conclusion, our paper, evaluates various models for predicting heart disease in the context of cardiac health among 
young individuals. Random Forest emerges as the top-performing model, consistently delivering high accuracy. Logistic 
Regression proves to be a reliable alternative, while SVM and KNeighbors demonstrate a balanced approach in their 
metrics. XGBoost, with competitive precision but a slightly lower recall, provides another perspective.  
The proposed modified LightGBM offers a well-balanced alternative to the existing models. The choice among these 
models hinges on the specific priorities of the application, whether it emphasizes accurate positive predictions, effective 
capture of positive instances, or a balanced performance across multiple metrics. Our findings contribute to developing a 
robust prediction model tailored to addressing cardiac health issues, particularly among the younger demographic, using 
machine learning methodologies’ and KNeighbors demonstrate well-balanced metrics, XGBoost shows competitive 
precision but with slightly lower recall, and the proposed modified LightGBM offers a balanced alternative. The choice 
among these models should consider the specific priorities of the application, whether emphasizing accurate positive 
predictions, effective capture of positive instances, or a balanced performance across metrics. 
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