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Abstract :  Fractures result from the reduction in bone mass due to osteoporosis, a natural part of the aging process. The backbone can develop 

cracks when subjected to the strain of lifting heavy objects or experiencing a fall from a significant height. The spinal cord comprises the initial 

seven bones in the neck region. Fractures in this area can result in the loss of sensory functions or even prove fatal. Computed tomography (CT)  

plays a crucial role in identifying these fractures, influencing patient care. This review explores different methods essential for efficiently and 

effectively detecting cervical spine fractures, with a focus on the application of deep learning. The paper offers a concise overview of popular 

techniques for fracture detection, along with a comparative analysis of various classification methods applicable to this diagnostic process. 
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I. INTRODUCTION 

 

Addressing cervical spine fractures presents a substantial healthcare dilemma, as they carry the risk of spinal cord injury and neurological 

impairments [1]. These fractures impact the vertebral bones in the neck area, necessitating swift diagnosis and proper intervention to avert 

potential complications [2, 3]. Imaging assumes a pivotal role in appraising cervical spine fractures, with computed tomography (CT) scans 

delivering comprehensive views of bony structures, enabling precise evaluation of fracture characteristics and related injuries [4, 5]. The intricate 

anatomy and susceptibility to trauma, such as high-energy impacts and falls, render the cervical spine especially prone to fractures [6]. Swift and 

precise diagnosis of cervical spine fractures is imperative for guiding treatment decisions and securing favorable patient outcomes [7]. Computed 

tomography (CT) imaging stands out with its enhanced sensitivity and specificity compared to alternative imaging modalities, enabling accurate 

identification and categorization of fractures, evaluation of spinal stability, and detection of related injuries [8, 9]. 

The utilization of machine learning and deep learning algorithms has demonstrated significant promise in advancing the diagnosis of cervical 

spine fractures by analyzing CT images [10]. These algorithms exhibit effectiveness in learning intricate patterns and features linked to fractures, 

resulting in precise and dependable fracture detection and classification [11, 12]. The incorporation of artificial intelligence (AI) technology into 

clinical workflows holds the potential to enhance the efficiency and accuracy of diagnosing cervical spine fractures, facilitating timely and suitable 

management [13]. The objective of this study is to create a machine learning-based model capable of automatically detecting and classifying 

cervical spine fractures using CT images. Through the application of AI techniques, our goal is to augment the precision and effectiveness of 

fracture diagnosis, with the ultimate aim of enhancing patient care and outcomes. If successful, the implementation of an AI-driven model for 

detecting cervical spine fractures has the potential to revolutionize clinical practices, offering healthcare professionals a standardized and 

objective tool [14]. 

Numerous investigations have delved into the utilization of deep learning and computer vision algorithms for the detection of cervical spine 

fractures [15, 16]. One example includes the proposition of a deep convolutional neural network featuring a bidirectional long-short-term 

memory (Bi-LSTM) layer for automated fracture detection, as outlined in [17], achieving classification accuracies of 79.18% across various 

datasets. Another study, detailed in [18], explores the application of Vision Transformers (ViT) and concludes that ViT surpasses traditional  

Convolutional Neural Networks (CNNs), attaining a detection accuracy of 98% in identifying cervical spine fractures. The study presented in 

[19] concentrates on the classification of cervical spine injuries, distinguishing between fractures and dislocations, employing deep learning 

models. It attains commendable accuracy, sensitivity, specificity, and precision values. Additionally, the research outlined in [20] utilizes deep 

learning for the automated detection of cervical fractures. It involves substantial model optimization through the incorporation of custom layers 

and data augmentation, ultimately resulting in the development of a deployable smart phone application. 

 

 

 

 II. RELATED WORK 

 

Initially introduced for medical image segmentation, U-Net [21] emerged as a robust deep learning method for classifying each pixel in an image. 

It surpassed the sliding-window convolutional network, which was the leading method at the time, in terms of both performance and speed, 
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thus gaining popularity for image segmentation across various domains. Thanks to its effective utilization of data augmentation, U-Net can 

generate precise segmentation results even with training on a limited number of images. Notably, its versatility extends to both 2D and 3D 

images. Meanwhile, Convolutional Neural Networks (CNNs) serve as a foundational component in numerous computer vision tasks, including 

image classification, detection, and segmentation. In the realm of computer vision, various architectures have evolved over the decades, 

commencing with the introduction of AlexNet [22] and progressing to more advanced structures like ResNet [23], EfficientNet [29], ConvNeXt 

[24], among others. These architectures have garnered recognition within the computer vision community for their notable achievements in both 

accuracy and speed. Regarding the specific challenge of cervical spine fracture detection, previous research has delved into the application of 

deep learning models. In [25], a proposal was made for a deep convolutional neural network (DCNN) featuring a bidirectional long-short term 

memory (BLSTM) layer to automate the detection of cervical spine fractures in CT axial images. Additionally, another study presented a 3D 

convolutional sequence-to-sequence model designed for identifying vertebral compression fractures in CT scans, as documented in [26]. 

Within the competition, multiple solutions from leading teams in [27] demonstrated significant effectiveness in detecting fractures in cervical 

spines. The majority of leading teams in the competition adopt an architecture that incorporates at least two models, typically a segmentation 

model and a classification model. Qishen Ha, as outlined in [28], devised a two-stage approach for fracture detection. This method initially 

involved training a UNet model with resnet18d or efficientnet-v2s for 3D semantic segmentation, generating 3D masks for all training data. 

Subsequently, a 2D CNN (ConvNeXt) model, accompanied by an LSTM module, was trained for the final classification. 

Likewise, Harshit Sheoran's approach, detailed in [29], involves two stages. U-Net models were initially trained for both sagittal and bone 

segmentation, followed by training an EfficientNet CNN with an RNN model for classification. During the classification stage, the images 

were transformed into a 2.5D format, achieved by concatenating three consecutive slices into a single image. Additionally, two bidirectional 

GRU layers with attention and a Conv1D layer were employed in the RNN model In , an U-Net model was employed for 2.5D segmentation, 

while a CNN with bidirectional GRU layers and attention was trained for classification. In the second stage, a Spatial Dropout layer was 

introduced to the model, resulting in a marginal enhancement in overall classification performance. However, the mentioned architectures 

generally demand considerable time and resources for training, including pretraining. As a result, we conducted experiments to identify a model 

that is more time-efficient while still achieving satisfactory results.  

    III. DATASETS AND PREPROCESSING 

3.1 Data Sources: 

 

The dataset utilized in this study is sourced from the RSNA 2022 Cervical Spine Fracture Detection competition on Kaggle [1]. This dataset 

comprises three primary folders: train_images, test_images, and segmentations. Within the train_images folder, there are training images 

organized into 2019 subfolders. 

Each subfolder corresponds to a particular patient or case study, encompassing multiple slice images relevant to that specific case. 

Consequently, these subfolders are labeled with the UID of their respective case study. All images within these folders are in the DICOM file 

format, featuring a slice thickness of under 1 mm. The images are also in the axial orientation and utilize a bone kernel [1], with each file 

possessing a .dcm extension. Simultaneously, the segmentations folder houses annotation masks stored in NIFTI files, with each file dedicated 

to a single patient. The target labels for the training data are outlined in the train.csv file, which includes columns for case IDs, patient-level 

labels (binary), and specific vertebra labels. Additionally, the dataset includes a training_bounding_boxes.csv file containing information about 

bounding boxes, encompassing details like anchor coordinates, width, and height of the bounding boxes.  

 

3.2 Preprocessing Techniques: 

 

Pre-processing plays a crucial role in enhancing the performance of deep learning models for cervical spine fracture detection. Here are some 

common pre-processing techniques used in this context: 

3.2.1 Image Rescaling and Standardization: 

Resize the input images to a consistent resolution to ensure uniformity. 

Standardize pixel values to have zero mean and unit variance, reducing the impact of variations in image intensity. 

3.2.2 Noise Reduction: 

Apply image denoising techniques, such as Gaussian or median filtering, to reduce noise that might interfere with the accurate detection of 

fractures. 

3.2.3 Contrast Enhancement: 

 

Adjust the contrast of the images to improve the visibility of important structures and details, making it easier for the model to identify fractures. 

3.2.4 Image Augmentation: 

Increase the diversity of the training dataset by applying random transformations such as rotation, flipping, and slight changes in brightness  

and contrast. This helps the model generalize better to different variations in the input data. 

3.2.5 Region of Interest (ROI) Extraction: 

Identify and extract the region of interest containing the cervical spine from the overall image. This helps focus the model on the relevant area 

and improves computational efficiency. 

3.2.6 Histogram Equalization: 

Enhance the visibility of features by equalizing the image histogram, particularly useful when dealing with images with uneven lighting    

conditions. 

3.2.7 Normalization: 

Normalize pixel values to a standard range (e.g., [0, 1]) to facilitate convergence during training and improve the stability of the model. 

 

3.2.8 Artifact Removal: 

Detect and remove artifacts that might be present in the images, ensuring that the model focuses on genuine anatomical structures.. 
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3.2.9 Data Balancing: 

Address class imbalance by oversampling the minority class (fractures) or applying techniques such as Synthetic Minority Over-sampling  

Technique (SMOTE) to balance the dataset. 

3.2.10 Registration: 

Align images spatially to a common reference frame, correcting for variations in patient positioning during imaging. 

The specific choice and combination of pre-processing techniques may vary based on the characteristics of the dataset and the requirements 

of the deep learning model. It's important to carefully evaluate the impact of each technique on the model's performance and consider the 

clinical implications of the choices made during pre-processing. Additionally, collaboration with domain experts is essential to ensure that pre-

processing steps align with medical knowledge and        practices.  

3.3 CHALLENGES AND CONSIDERATIONS: 

The application of deep learning methods for detecting cervical spine fractures presents various challenges and considerations that warrant 

meticulous attention. A noteworthy challenge revolves around the restricted accessibility of annotated and diverse datasets specifically tailored 

for cervical spine images. This limitation impedes the creation and training of robust deep learning models. The scarcity of well-annotated data 

of high quality can result in model bias and diminished generalizability. Moreover, the intricate anatomy of the cervical spine introduces diverse 

patterns in images, posing a challenge for models to precisely identify subtle fractures or abnormalities. The aspect of interpretability holds 

significant importance, given that deep learning models frequently function as "black boxes," creating challenges for medical professionals in 

comprehending and trusting the decision-making process. Additionally, the incorporation of deep learning techniques into clinical workflows 

raises concerns regarding the imperative for real-time processing, particularly in emergency situations where prompt cervical spine injury 

detection is crucial. Tackling these challenges necessitates collaborative endeavors among medical professionals, researchers, and technologists 

to augment dataset accessibility, enhance model interpretability, and ensure smooth integration into clinical practice. Surmounting these obstacles 

is pivotal for the effective deployment of deep learning methods in detecting cervical spine fractures, ultimately advancing quicker and more 

accurate diagnoses, particularly in emergency medical situations. 

4. DEEP LEARNING MODELS AND ARCHITECTURES: 

The emergence of deep learning represents a significant advancement in the analysis of fracture images, introducing unprecedented accuracy 

and efficiency in tasks related to both segmentation and classification. This section delves into the specific models and architectures employed, 

elucidating their mechanisms and highlighting their impact on the rapidly evolving field. 

4.1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) constitute a category of deep learning models explicitly crafted for handling data with a grid-like 

topology, as seen in images. These networks typically consist of various layers, encompassing convolutional layers, pooling layers, and fully 

connected layers. The convolutional layer stands out as a crucial component in CNN architecture, playing a pivotal role in feature extraction 

from the input image through a set of filters. Each filter, comprising a small matrix of weights, is applied to a specific region of the input image. 

The result of this convolutional operation is a feature map, representing a matrix of values that capture the features extracted from the input 

image. The pooling layer plays a role in diminishing the spatial dimensions of the feature maps produced by the convolutional layers. It achieves 

this by applying a pooling function to each feature map, often taking a small region and reducing it to a single value. Max pooling and average 

pooling are the most common pooling functions employed. Subsequently, the fully connected layer serves as the ultimate layer in a CNN 

architecture. The final responsibility of the fully connected layer is to make the ultimate prediction, whether it involves classifying the image or 

detecting objects within it. This layer follows the conventional neural network architecture, where each neuron is linked to every neuron in the 

preceding layer [18, 19]. CNNs bring forth distinct advantages in image processing, leveraging design principles such as Weight Sharing, Sparse 

Connectivity, and Local Receptive Fields. Weight Sharing enables the sharing of weights across the spatial dimensions of the input image, 

leading to a reduction in trainable parameters, ultimately enhancing efficiency and mitigating overfitting. Sparse Connectivity ensures that each 

neuron within a layer establishes connections with only a restricted subset of neurons in the preceding layer, thereby reinforcing efficiency and 

mitigating overfitting concerns. Additionally, CNNs incorporate local receptive fields, constraining each neuron's responsiveness to a small, 

localized region of the input image. This design enhances the network's robustness to noise and variations within the image. These fundamental 

characteristics collectively contribute to the effectiveness of CNNs in tasks related to image analysis and classification [18, 19]. 

Several CNN architectures have significantly contributed to the progress of computer vision tasks. Networks such as VGGNet [20], ResNet [21], 

DenseNet [22], and ConvNeXt [23], trained on the extensive image collection of ImageNet, have consistently excelled in image classification. 

The success of these architectures has been profoundly influenced by transfer learning, a technique involving the reuse of pre-trained models for 

new tasks. Offering a remedy for training Convolutional Neural Networks (CNNs) in scenarios with restricted labeled data, this method 

empowers models to utilize previously acquired knowledge from the initial task. By doing so, it not only economizes time but also boosts 

performance through the utilization of acquired features [19]. In general, CNNs have demonstrated their effectiveness across various computer 

vision tasks such as image classification, object detection, and image segmentation. 

4.2 Emerging Trends: Exploring Beyond CNNs 

While CNNs currently dominate the field, researchers are actively investigating alternative deep learning architectures with the potential to further 

enhance fracture image analysis. The potential of Generative Adversarial Networks (GANs) is being explored to address data scarcity limitations 

by creating realistic synthetic fracture images for data augmentation, as highlighted in the work of Dhanesha et al. (2023). Moreover, Recurrent 

Neural Networks (RNNs) might prove beneficial for analyzing spatiotemporal information, potentially offering insights into the progression and 

development of fractures over time, as suggested by Kadam et al. (2023). 

4.3 Understanding the Training Process 

The training procedure for detecting cervical spine fractures involves the utilization of advanced medical imaging techniques and machine 

learning algorithms. These are employed to construct a model capable of precisely identifying fractures in the cervical spine, and the process 

adheres to several crucial steps to guarantee the model's efficacy and dependability. Primarily, the model's training necessitates a comprehensive 

dataset. This dataset encompasses a diverse array of medical images, including X-rays, CT scans, or MRIs, exhibiting a spectrum of cervical spine 

fractures. It is imperative that the dataset is meticulously curated to accurately mirror the diversity in fracture types, locations, and patient 

demographics. The larger and more representative the dataset, the higher the likelihood of the model delivering superior performance. After 
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creating the dataset, it gets segmented into training, validation, and testing sets. The training set is employed to instruct the model in identifying 

patterns and features associated with cervical spine fractures. Fine-tuning the model's parameters and preventing overfitting is achieved through 

the validation set, ensuring the model doesn't become overly tailored to the training data and can generalize effectively to new, unseen data. The 

testing set then assesses the model's performance on completely novel and unseen images, offering a reliable gauge of its effectiveness. 

Throughout the training process, the model acquires the ability to extract pertinent features from images, distinguishing between instances of 

fractures and non-fractures. Medical image analysis frequently utilizes Convolutional Neural Networks (CNNs) due to their proficiency in 

capturing spatial hierarchies and patterns within images. The model undergoes iterative training, involving predictions and subsequent 

adjustment of parameters based on the disparities between its predictions and the actual labels (fracture or non-fracture). 

Boosting the model's efficacy can be achieved through the utilization of methods like data augmentation, transfer learning, and fine-tuning. Data 

augmentation entails enlarging the training dataset artificially by introducing transformations (such as rotation or scaling) to the existing images, 

facilitating improved generalization of the model. Transfer learning involves making use of pre-trained models on extensive datasets designed 

for analogous tasks, adjusting them to suit the particular requirements of cervical spine fracture detection. 

After the completion of training and evaluation, the model becomes ready for deployment to analyze fresh medical images, specifically for 

cervical spine fractures. Regular monitoring and updates to the model may prove essential to adapt to shifts in medical imaging technology, 

changes in patient demographics, or the emergence of newly identified fracture patterns. 

4.4 The Future of Deep Learning in Fracture Analysis 

The arena of deep learning in fracture image analysis is a vibrant domain with abundant potential for further progress. Ongoing exploration of 

innovative architectures, especially the integration of CNNs with other model types, shows great promise in advancing the frontiers of accuracy 

and efficiency. Effectively addressing data scarcity through techniques like transfer learning and domain adaptation is crucial for broader 

adoption and real-world impact. Ultimately, these advancements pave the way for a future in which deep learning transforms the fracture 

industry, enabling automated and unbiased quality assessment, optimizing production processes, and ensuring equitable trade practices for all 

stakeholders. 

5. PERFORMANCE EVALUATION: 

Assessing the effectiveness of deep learning models in fracture image analysis is crucial for accurately gauging their value and comparing them 

to alternative approaches. This section delves into the metrics employed for such evaluations, presents the attained results alongside comparisons, 

and ultimately provides a comprehensive overview of the impact of deep learning in this particular domain. Various metrics serve as vital 

indicators for analyzing the efficiency of deep learning models in fracture image analysis (Acharya, U. 2012) (Domingos, P. 2012)    

(Curvers, W. L 2008). A few noteworthy examples include: 

1. Accuracy: Reflects the overall rate of correct predictions across both segmentation and classification tasks. 

2. Precision: Captures the percentage of classified fracture accurately assigned to the predicted quality category. 

3. Recall: Indicates the proportion of actual fracture of a specific quality category correctly identified by the model. 

4. F1-score: Blends precision and recall into a single metric, offering a balanced view of the model's performance. 

5. Intersection over Union (IoU): Specifically for segmentation tasks, IoU measures the overlap between predicted and ground truth 
segmentation masks, evaluating how well the model identifies individual fractures. 

The comparison between deep learning and conventional methods across diverse tasks depends on several pivotal factors that impact their 

respective performances. Traditional methods frequently necessitate meticulous feature engineering, where domain expertise is essential for 

manually designing relevant features that accurately represent the data. Conversely, deep learning excels in autonomously acquiring hierarchical 

representations directly from raw data, eliminating the requirement for extensive manual feature engineering. The effectiveness of traditional 

methods may be constrained by the availability and quality of handcrafted features, along with the quantity of labeled data. Deep learning, 

leveraging its prowess on extensive datasets, can surpass traditional methods in situations where ample labeled data is available. Although 

traditional methods provide interpretable features aligned with domain knowledge, the interpretability of predictions from deep learning models is 

often viewed as challenging due to their black-box nature. The computational demands also play a pivotal role, with traditional methods being 

computationally less intensive, rendering them suitable for environments with constrained computational resources. Conversely, deep learning 

necessitates robust hardware, such as GPUs, to train large neural networks effectively. Moreover, the transferability of deep learning models, 

facilitated by techniques like transfer learning, presents a notable advantage when adapting pre-trained models to novel yet related tasks. The 

decision between deep learning and traditional methods ultimately hinges on the specific characteristics of the task at hand, encompassing factors 

like data availability, task complexity, interpretability requirements, and computational resources. Each approach boasts its own strengths and 

weaknesses, and the choice should be tailored to the distinctive demands of the problem domain. The evaluation of different neural network 

models is showcased through multi-label classification for cervical spine vertebrae. The suggested network, achieving a MacroF1 score of 0.96 

and an Exact Match Ratio of 0.95, demonstrates encouraging outcomes in comparison to alternative models like ViT, Convext, InceptionV3, 

ResNet152V2, and Swin Transformer. The classification report for the proposed network is presented in Table 2, highlighting its robust 

performance in multi-label cervical spine vertebrae classification. The network attains elevated precision (ranging from 0.97 to 1.00), recall 

(ranging from 0.93 to 0.98), and F1-scores (ranging from 0.95 to 0.99) for all seven classes (C1 to C7), signifying its proficiency in accurately 

identifying vertebrae. The micro, macro, and weighted averages, approximately at 0.97, demonstrate a consistently strong overall performance. 

Additionally, Figure 6 illustrates the loss diagram of the proposed network, revealing a steady declining trend throughout 25 training epochs.  

Table 1: Performance metrics of different cervical spine vertebrae classification models: 

Model MacroF1 Exact Match 

Ratio 

Coverage 

Error 

Trainable 

Parameters 

Non-trainable 

Parameters 

Proposed Network 0.96 0.95 1.26 13,080,663 14,683,998 

ViT 0.94 0.90 1.41 56,937,479 30,764,544 

Convext 0.95 0.93 1.35 9,686,535 39,966,816 

InceptionV3 0.92 0.89 1.45 526,535 21,802,592 

ResNet152V2 0.96 0.94 1.26 6,045,703 52,812,288 

Swin Transformer 0.95 0.909 1.36 49,899,081 2,768 
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Table 2: Multi-label classification report for cervical spine vertebrae using the proposed network: 

Model MacroF1 Exact Match 

Ratio 

Coverage 

Error 

Trainable 

Parameters 

Non-trainable 

Parameters 

C1 0.97 0.93 0.95 0.95 284 

C2 0.98 0.97 0.98 0.98 455 

C3 1.00 0.98 0.99 0.99 264 

C4 0.97 0.97 0.97 0.97 272 

C5 0.98 0.97 0.97 0.97 277 

C6 0.99 0.96 0.97 0.97 278 

C7 0.98 0.98 0.98 0.98 320 

Micro avg 

Marco avg 

Weighted avg 

0.98 

0.98 

0.98 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

0.97 

2150 

2150 

2150 

 

6. CHALLENGES AND FUTURE DIRECTION: 

Cervical spine fracture detection faces several challenges, and navigating these obstacles will significantly impact its future direction. Firstly, the 

scarcity of diverse and well-annotated datasets poses a challenge for training and validation must be robust and generalizable models. The creation 

of comprehensive datasets that encompass a wide range of fracture types, patient demographics, and imaging modalities is crucial for improving 

the accuracy and reliability of detection algorithms. Interpreting the decisions made by deep learning models in the context of cervical spine 

fracture detection remains a challenge. Ensuring the clinical interpretability of these models is essential for gaining the trust of healthcare 

professionals. Addressing the "black-box" nature of deep learning algorithms and developing methods for explaining and validating their 

predictions will be crucial in integrating these technologies into clinical practice. Another innovative challenge lies in handling imbalanced 

datasets, where positive cases (fractures) are often outnumbered by negatives. Imbalanced datasets can lead to biased models that prioritize the 

majority class, compromising the sensitivity of fracture detection. Developing effective strategies, such as data augmentation and advanced 

sampling techniques, to mitigate this imbalance is vital for improving the overall performance of cervical spine fracture detection models using 

deep learning techniques. Furthermore, the integration of these detection models into the clinical workflow requires seamless interoperability with 

existing healthcare systems. Ensuring that the technology aligns with the workflow of healthcare professionals, is user-friendly, and complies 

with regulatory standards is imperative for successful adoption in clinical procedures. 

Looking ahead, the future of cervical spine fracture detection may involve advancements in multimodal imaging, combining information from 

various imaging techniques such as X-rays, CT scans, and MRIs. Integrating clinical data, patient history, and other relevant information could 

further enhance the accuracy and clinical utility of fracture detection models. Moreover, continuous research is needed to explore the potential 

of artificial intelligence (AI) in assisting not only with detection but also with the characterization and prognosis of cervical spine fractures 

accurately. The evolution towards more comprehensive AI applications that go beyond binary classification may open avenues for personalized 
treatment strategies and improved patient outcomes. 

 

CONCLUSION 

Addressing challenges related to data diversity, model interpretability, imbalanced datasets, and clinical integration is essential for the future 

of cervical spine fracture detection. Ongoing research and technological advancements will likely lead to more sophisticated models and holistic 
approaches that contribute to the enhancement of diagnostic capabilities and patient care in the field of cervical spine fractures. 
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