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Abstract: This research work presents a novel optimization Technique to VLSI (Very Large-Scale 

Integration) floor planning combining the Firefly and Tabu Search Techniques (FTS). This algorithm 

combines the exploration capabilities of the Firefly Algorithm with the local search capabilities of Tabu 

Search. The primary focus is on enhancing the floor planning process through the integration of the firefly 

algorithm. The proposed methodology aims to address the challenges associated with traditional floor 

planning techniques presented in the literature. By leveraging the firefly algorithm's optimization capabilities, 

the study demonstrates improvements in floor plan quality and efficiency. The results show that this approach 

has potential to contribute to more streamlined and effective VLSI design processes. The effectiveness of 

proposed optimization Technique is demonstrated with MATLAB R2021b software.  
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I. INTRODUCTION 
 

VLSI (Very Large-Scale Integration) floorplanning is a critical step in chip design, where the placement and 

arrangement of different components on a chip are determined. With the increasing complexity of modern 

ICs, achieving an optimal floorplan that satisfies multiple criteria has become a challenging task. In this 

context, multicriteria optimization techniques have gained significant attention as powerful tools for 

addressing conflicting objectives in VLSI floorplanning. The literature survey aims to provide an overview 

of multicriteria optimization techniques and their application in VLSI floorplanning. It explores the challenges 

faced in traditional single-objective optimization approaches and highlights the benefits of incorporating 

multiple criteria in the optimization process [1]. By considering multiple design objectives simultaneously, 

multicriteria optimization techniques offer the potential to improve chip performance, power consumption, 

area utilization, and other important metrics, leading to more efficient and effective VLSI floorplans. 

II. LITERATURE SURVEY 

This section presents a survey of the work that has been done to achieve optimization in VLSI floorplanning. 
 

(Srinivasan, B. et al., (2023) [2] presented a novel approach using the Firefly Algorithm and ACO for VLSI 

circuit partitioning and floorplanning. The algorithm is evaluated on benchmark circuits, and results show 

improved performance compared to traditional methods. 

In (Chen, J. et al., (2017) [3],  proposed a modified Firefly Algorithm for VLSI floorplanning. The algorithm 

is compared with other optimization techniques, and experimental results demonstrate its effectiveness in 

terms of convergence speed and solution quality. 
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 (Cui et al., 2017) [4], proposed a hybrid approach combining the Firefly Algorithm (FA) with a Simulated 

Annealing algorithm for VLSI floorplanning. Experimental results demonstrate the effectiveness of the hybrid 

approach in terms of area minimization and wirelength reduction. 

(Derrac et al., 2011) [5],  presented an Ant Colony Optimization (ACO)-based approach for VLSI 

floorplanning. The algorithm is evaluated on benchmark circuits, and results show improved performance in 

terms of wirelength reduction and area minimization. 

In (Dhiraj et al., 2012) [6], the authors proposed a hybrid Ant Colony Optimization algorithm that combines 

ACO with a Genetic Algorithm for VLSI floorplanning. The hybrid algorithm is compared with traditional 

methods, and experimental results demonstrate its effectiveness in terms of wirelength reduction and area 

optimization. 

In (Funke, J., Hougardy, S. and Schneider, J., 2016) [7], the authors presented an Ant Colony Optimization-

based approach for VLSI floorplanning. The algorithm is evaluated on benchmark circuits, and results show 

improved performance in terms of area utilization, wirelength, and timing constraints. 

In (Anand, S., Saravanasankar, S. and Subbaraj, P., 2013) [8], the authors proposed a hybrid Ant Colony 

Optimization algorithm that combines ACO with a Particle Swarm Optimization technique for VLSI 

floorplanning. The hybrid approach is evaluated on benchmark circuits, and results demonstrate its 

effectiveness in terms of area optimization and wirelength reduction. 

(Feng, Y. et al., (2017) [9], proposed an Ant Colony Optimization approach for VLSI floorplanning with an 

adaptive pheromone update strategy. The algorithm is evaluated on benchmark circuits, and results 

demonstrate its effectiveness in terms of wirelength reduction and area minimization. 

 Chen, J., Zhu, W. and Ali, M.M., (2011) [10], presented an Ant Colony Optimization algorithm with a 

modified pheromone update strategy for VLSI floorplanning. improved performance in terms of wirelength 

reduction, area utilization, and power consumption. 

(Srinivasan, B. and Venkatesan, R., 2021) [11], provided application and effectiveness of Firefly in VLSI 

floorplanning, highlighting their contributions, advantages, and to traditional approaches. 

In (Anand, S., Saravanasankar, S. and Subbaraj, P., 2013) [12], the authors proposed a hybrid Ant Colony 

Optimization algorithm that combines ACO with a Particle Swarm Optimization technique for VLSI 

floorplanning. The hybrid approach is evaluated on benchmark circuits, and results demonstrate its 

effectiveness in terms of area optimization and wirelength reduction. 

 

III. Methodology of Proposed Work 

The flowchart is shown in Fig 1. The first step is to initialize the population of fireflies. 

Here is an outline of an algorithm that combines Firefly Algorithm and Tabu Search for VLSI floorplanning: 

 Initialize the population of fireflies with random floorplan layouts. 

 Evaluate the fitness of each firefly in the population using a fitness function that considers objectives 
such as area utilization, wirelength, and timing constraints. 

 Identify the best firefly (i.e., the one with the highest fitness) as the global best solution. 

 Initialize the Tabu Search parameters, including the tabu list length and the number of iterations. 

 Enter the main loop of the algorithm: 
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                                                    Fig 1: Flowchart of the proposed work    

                     

a). Apply the Firefly Algorithm phase: 

i. Update the attractiveness of each firefly based on their fitness and proximity to other fireflies. 

ii. Move the fireflies towards more attractive positions by adjusting their positions in the solution space. 

iii. Evaluate the fitness of the updated fireflies. 

b). Apply the Tabu Search phase: 

i. Select a firefly as the current solution. 

ii. Generate a set of neighboring solutions by applying local search operations such as swapping, flipping, or 

repositioning modules. 

iii. Evaluate the fitness of each neighboring solution. 

iv. Select the best neighboring solution that improves the fitness and is not in the tabu list. 

v. Update the tabu list to prevent revisiting recently explored solutions. 

vi. Replace the current solution with the selected neighboring solution. 

c). Update the global best solution if a new solution with higher fitness is found. 

d). Repeat steps (a-c) until the termination condition is met (e.g., a maximum number of iterations or 

convergence criterion). 
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Output the best solution found during the algorithm execution. 

This algorithm combines the exploration capabilities of the Firefly Algorithm with the local search capabilities 

of Tabu Search. The Firefly Algorithm helps to explore the solution space and discover promising regions, 

while Tabu Search performs local optimization by iteratively improving the current solution through 

neighborhood exploration while avoiding previously visited solutions. 

IV. Results and Discussion 

The results obtained with proposed method in terms of Accuracy, Precision, Recall and Execution Time taking 

sample space from 50 to 250 and the same results are then compared with different algorithms applied by 

different researchers in the existing literature to prove the effectiveness of the method in the VLSI floor 

planning. Four different algorithms are – Genetic Algorithm (GA), Ant Colony Optimization (ACO), Firefly 

Algorithm (FA), Firefly and Tabu Search (FTS). 

 

i. Accuracy: Accuracy is a fundamental metric used to assess the performance of an optimization 

algorithm. It refers to how close a measurement is to the true value. The % Accuracy obtained 

with different algorithms taking different sample space is shown in Table 1 and Fig.2 shows the 

% Accuracy comparison of different Algorithms. 

. 

 
                           Table 1: % Accuracy obtained with different algorithms with different sample space 

Sample 

Space 

% Accuracy with Different Algorithms 

GA 

 

ACO 

 

FA 

 

FTS 

50 89.5 92.3 88.7 94.2 

100 87.2 94.6 89.8 95.5 

150 85.8 93.1 90.5 94.8 

200 88.4 91.2 87.6 95.4 

250 86.9 95.3 88.3 98.1 

 

In the above Table, accuracy percentages are presented for four different algorithms – GA, ACO, FA and FTS 

taking sample spaces from 50 to 250. With GA, the accuracy percentage ranges from 85.8% to 89.5% for 

different sample space indicating the percentage of optimal or near-optimal solutions found by GA. whereas, 

the Ant Colony Optimization shows a relatively consistent accuracy ranging from 91.2% to 95.3%. This 

suggests that ACO consistently performs well across different sample spaces. The Firefly Algorithm 

demonstrates accuracy ranging from 87.6% to 90.5%. It performs reasonably well, but there is some 

variability in its accuracy. However, with proposed method, i.e The Firefly and Tabu Search combination 

achieves accuracy between 94.2% and 98.1%. It shows a better performance, in comparison to the other 

algorithms. A highly accurate algorithm consistently identifies solutions that are closer to the optimal ones. 

Fig.2 shows the % Accuracy comparison of different Algorithms. As shown in Fig. 2, the proposed FTS 

algorithm achieved higher performance as compared to GA, ACO and FA for the all the sample space. The 

proposed FTS algorithm achieves the highest accuracy (98.1%) among the evaluated algorithms. 
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                         Fig 2: % Accuracy comparison of different Algorithms with different sample space 

 

ii. Precision: The % Precision obtained with different algorithms taking different sample space is 

shown in Table 2 and Fig.3 shows the % Precision comparison of different Algorithms. Precision 

refers to how close measurements of the item are to each other. Precision is the ratio of true positive 

predictions to the total predicted positives. Precision is crucial, especially when the cost of false 

positives is high. It helps in understanding the reliability of the positive predictions made by an 

algorithm. 

                         Table 2: % Precision obtained with different algorithms with different sample space 

Sample 

Space 

% Precision with Different Algorithms 

 

GA ACO FA FTS 

50 91.2 88.7 90.3 91.9 

100 89.8 91.5 88.9 92.3 

150 87.6 89.2 91.8 93.0 

200 90.4 87.9 89.7 93.9 

250 88.1 92.3 87.4 94.8 

 

                  

In the above Table, the precision percentages offer valuable insights into the algorithm ability to provide 

accurate and reliable results. GA exhibits precision percentages ranging from 87.6% to 91.2%. This suggests 

that GA is effective in ensuring that the solutions it identifies as positive are indeed relevant to the optimization 

problem. ACO demonstrates precision percentages varying from 87.9% to 92.3%. The consistent and 

relatively high precision values indicate that ACO excels in minimizing false positives.  

The precision percentages for FA range from 87.4% to 91.8%. FA's precision values indicate a commendable 

ability to minimize false positives, emphasizing its reliability in selecting solutions that are truly 

advantageous. Whereas, with proposed FTS, a hybrid approach, displays precision percentages between 

91.9% and 94.8%. The incorporation of Tabu Search likely contributes to FTS's ability to refine and enhance 
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precision. Precision values in this range indicate that FTS maintains a balance between accuracy and reliability 

in its positive predictions. The combination of the exploration-exploitation capabilities of FTS results in 

solutions with higher confidence in their optimality. Here, we compare the Precision results of FTS algorithm 

with other optimization algorithms with sample spaces taking from 50 to 250. Fig.3 shows the % Precision 

comparison of different Algorithms. 

 

                           Fig. 3: % Precision comparison of different Algorithms with different sample space. 

As shown in fig. 3, our proposed FTS algorithm achieved higher precision values as compared to GA, ACO 

and FA.  

The proposed FTS algorithm achieves the highest precision (94.8%) among the evaluated algorithms. 

 

iii. Recall: Recall is the as sensitivity or true positive rate. It measures the proportion of true positives 

that are correctly identified by the model. The % Recall obtained with different algorithms taking 

different sample space is shown in Table 3 and Fig.4 shows the % Recall comparison of different 

Algorithms. 

                             Table 3: % Recall obtained with different algorithms with different sample space 

Sample Space Recall (%) with Different Algorithms 

GA ACO FA FTS 

50 89.5 92.3 88.7 93.1 

100 87.2 94.6 89.8 95.3 

150 85.8 93.1 90.5 95.8 

200 88.4 91.2 87.6 93.8 

250 86.9 95.3 88.3 95.9 

 

In the realm of optimization algorithms, the evaluation of their performance is paramount for understanding 

their efficacy in solving complex problems. The provided data presents the recall percentages of four different 

optimization approaches. GA, a bio-inspired optimization technique, exhibits recall percentages ranging from 

85.8% to 89.5%. These recall values affirm that GA is adept at identifying and including relevant instances 

in its optimization process. ACO, inspired by the foraging behavior of ants, demonstrates recall percentages 

ranging from 91.2% to 95.9%. It implies that ACO is robust in capturing and optimizing scenarios relevant to 

the given problem, making it a promising choice for certain optimization tasks. However, the Firefly 

Algorithm displays recall percentages ranging from 87.6% to 90.5%. While these values indicate a reasonable 

ability to identify positive instances, there is a bit more variability compared to ACO. The provided recall 

values indicate that FA has a solid ability to capture relevant instances in the optimization process. Moreover, 
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FTS, showcases recall percentages between 93.1% and 95.9%. This hybrid approach seems to benefit from 

the exploration-exploitation balance provided by both algorithms. The recall values suggest that FTS 

effectively captures positive instances, potentially outperforming standalone FA. The incorporation of Tabu 

Search, which introduces memory into the optimization process, likely contributes to FTS's ability to 

navigate the solution space more comprehensively. Here, we compare the recall results of FTS algorithm 

with other optimization algorithms with 50-250 sample spaces. Fig.4 shows the % Recall comparison of 

different Algorithms  

 

 

 

 

 

 

 

 

                  Fig. 4: % Recall comparison of different Algorithms with different sample space. 

As shown in fig. 3, proposed FTS algorithm achieved higher recall values as compared to GA, ACO and FA.  

The proposed FTS algorithm achieves the highest recall percentage (95.9%) among the evaluated 

algorithms. A high recall indicates that the algorithm is effective in capturing a significant proportion of these 

relevant solutions. The recall values suggest that FTS effectively captures positive instances. It provides 

insights into how well the algorithm identifies and includes instances that are beneficial or advantageous in 

the optimization process. 

iv. Execution Time: Execution time refers to the total time taken by an algorithm to complete its 

operation, from the initiation to the termination. In the context of optimization algorithms, it 

measures the computational efficiency of the algorithm in finding a solution to a given problem.  

 
                             Table 4: % Execution Time obtained with different algorithms with different sample 

 

Sample 

Space 

Execution Time (ms) 

GA ACO FA FTS 

50 1200 850 950 700 

100 2500 1800 2000 750 

150 3800 2900 3200 800 

200 5100 4200 4500 850 

250 6500 5600 6000 900 

 

The execution time is crucial for evaluating the practical feasibility of optimization algorithms. In the above 

table, Execution time (ms) is also presented for four different algorithms for taking sample spaces as for other 

parameters. GA's execution time can be influenced by factors such as population size, crossover rate, and 

mutation rate. Larger populations and higher genetic diversity may lead to longer execution times. GA's 

strength lies in parallel processing, which can expedite the search for optimal solutions. Whereas, ACO is an 

iterative algorithm where ants collectively explore the solution space. The execution time can be influenced 

by the number of iterations and the convergence speed. ACO might require more time for convergence in 

larger problem instances. 
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FA is known for its simplicity and efficiency. Its execution time is generally lower compared to more complex 

algorithms. FA's iterative nature involves the movement of fireflies towards brighter solutions, contributing 

to a relatively fast convergence. But, the incorporation of Tabu Search in FTS introduces additional 

considerations, potentially affecting execution time. Tabu Search adds a memory mechanism to guide the 

search process. While this can enhance solution quality, it also contributes to decreased execution time 

compared to other optimization algorithms. Here, we compare the execution time of FTS algorithm with 

other optimization algorithms with sample spaces taking from 50 to 250.Fig.5 shows the Execution Time 

comparison of different Algorithms. 

 

Fig. 5: % Execution Time comparison of different Algorithms with different sample space. 

     

As shown in Fig.5, proposed FTS algorithm achieved less execution time as compared to other evaluated algorithms. Result shows 

that all performance parameters-Accuracy, Precision, Recall and Execution time of proposed algorithms are better 

than all other optimization algorithms. Hence, FTS outperforms other algorithms in terms of all parameters. 

FTS have better accuracy and much faster as compared to others in terms of execution time also.   

v. Conclusion 

The proposed FTS algorithm achieves the highest accuracy (98.1%) among the evaluated optimization 

algorithms. Moreover, the FTS algorithm outperforms other optimization algorithms when it comes to 

precision, recall and execution time. The results indicates the effectiveness of the algorithm to predict positive 

instances correctly. 

The experimental results and comparative analysis provide insights into the strengths and weaknesses of the 

combined algorithm. The algorithm demonstrates its ability to converge towards high-quality solutions, 

exhibiting improvements in solution quality, convergence speed, and computational efficiency compared to  

traditional approaches. Furthermore, the algorithm shows promising results in handling complex 

floorplanning problems and exhibits scalability on larger-scale circuits. 
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