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 Abstract Radiomics-based studies have demonstrated predictive capabilities using machine learning approaches. However, it is 

still unclear whether different radiomics strategies affect prediction performance. The purpose of this study was to compare the 

predictive performance of commonly used radiographic feature selection and classification methods in glioma staging. 

Quantitative radiomics features were extracted from tumor regions of 210 His MRI glioblastoma (GBM) and 75 low-grade glioma 

(LGG) patients. Then, the diagnostic performance of 16 feature selection and 15 classification methods was evaluated  using two 

different test modes: 10-fold cross-validation and percentage split. The receiver operating characteristics balanced accuracy and 

area under the curve (AUC)  were used to evaluate the predictive performance. Additionally, the number of selected features, 

feature type, MRI modality, and role of tumor subregions were compared to optimize  radiomics-based prediction. Results show 

that the combination of  L1-based linear support vector machine (L1-SVM) feature selection method and classifier multilayer 

perceptron (MLPC) distinguishes between GBM and LGG in both 10-fold cross-validation (balanced) It was shown that the best 

performance was achieved.  Accuracy: 0944, AUC: 0986) and Percent Split (Balanced Accuracy: 0.953, AUC: 0.981). Radiomics 

feature extraction combines the enhancing tumor region (ET)  with necrotic tumor region and non-enhancing tumor region 

(NCR/NET)  in the T1 post-contrast  modality (T1-Gd), and other combinations of tumor regions and MRI modalities.A more 

significant tumor-related phenotype was obtaine .In our comparative study, we found that both feature selection methods and 

machine learning classifiers influenced predictive performance in glioma staging. Furthermore, a cross-combination strategy 

comparing radiomics feature selection and classification methods provided a way to find the best machine learning model for 

future radiomics-based predictions. 

Index Terms Glioma grade, machine learning, feature classification, feature selection, radiomics. 

I. INTRODUCTION 

Glioma is the most common primary intracranial tumor in 

adults [1]. It can occur anywhere in the brain and exhibits 

strong spatiotemporal heterogeneity. According to the WHO, 

gliomas can be classified into grades I to IV based on their 

histological malignant behavior [2]. Patients with low-grade 

glioma (LGG, grades I and II)  typically have a life expectancy 

of 5 years or more. The associate editor who coordinated the 

review of this manuscript and approved it for publication was 

Yi Zhang. The survival rate is 4,444, but only 3-5% of 

glioblastoma (GBM, grade IV) patients survive for more than 

5 years, with a median survival of approximately 12 months [3 

]. GBM is the most common histological type of glioma, 

accounting for 70% of primary brain tumors. Preoperative 

classification of gliomas, especially the distinction between 

GBM and LGG, is of great importance for  diagnostic decisions 

in clinical practice [4]. 

 MRI offers the possibility of non-invasive classification of 

gliomas with high spatial resolution and unique contrast 

between brain tissue and tumor  [5], [6]. A comprehensive view 

of brain structures and tumors reveals a high degree of 

heterogeneity  in  histological tumor subregions. Quantitative 

analysis can then be performed on tumor regions of interest 

(ROIs) to explore the relationship between tumor 
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characteristics and clinical diagnosis. Radiomics is one of the 

analysis techniques that converts image data into resolvable 

features with high throughput [7], [8]. This is based on the 

hypothesis that these image-based features capture phenotypic 

differences in tumors and have the potential to be  used as 

diagnostic features for clinical outcomes. Radiomics provides 

a non-invasive method to study the relationship between 

gliomas and image-based descriptors such as tumor 

appearance, shape, size, intensity, location, and texture [9]. 

Current quantitative radiomics-based diagnostic models have 

shown high clinical potential to predict glioma malignancy 

[10], gene expression patterns [11], and genetic mutations [12]. 

Current radiomics-based MRI grading of gliomas uses 

different radiomics features, feature selection methods, and 

classification or regression models that exhibit identical 

diagnostic performance. As the extracted radiomics feature 

types, histogram-based features [4], shape features [13], 

texture features [14]-[16], and wavelet features [17] are 

designed. Then, feature selection strategies such as filter-based 

[18] and embedding methods [19], [20] are applied to identify 

features that are valuable for glioma grading. Next is the 

machine learning classifier. Random forest [21], logistic 

regression [13], and support vector machine [22] are used to 

classify histological glioma types. Additionally, 

multiparameter MRI sequences are used to extract image 

features for grading gliomas [23], [24]. Most of the radiomics-

based studies have demonstrated the predictive ability of a 

number of machine learning approaches [9], [25]. Few recent 

studies have compared the diagnostic performance of different 

radiomics feature selection and classification models [26]–

[31]. However, it is still unknown whether different feature 

selection and classification methods affect the performance of 

radiomics-based predictions in glioma staging. In this regard, 

the use of reliable machine learning strategies for effective 

image feature extraction and comparison in glioma grading is 

desirable.  

In this study, we investigated the diagnostic value of 

commonly used machine learning approaches and the 

inconsistency of different radiomics features for predicting 

glioma grade. Sixteen feature selection methods and 15 

classification methods were evaluated for popularity, 

effectiveness, and complexity in the literature. To reduce bias, 

commonly available implementations of feature extraction, 

selection, and classification strategies were adopted.  A total of 

210 GBM subjects and 75 LGG subjects were used to obtain 

balanced accuracy and area under the curve (AUC) for receiver 

operating characteristics in both iterative 10-fold cross-

validation mode and percentage-split test mode. The 

diagnostic performance was estimated. 

 Additionally, the role of selected feature number, feature type, 

MRI modality, and tumor subregion was evaluated to optimize  

radiomics-based glioma grade prediction. 

II. Method and materials 

A. PATIENTS AND IMAGE PREPROCESSING 

The  Multimodal Brain Tumor Segmentation Challenge 

(BraTS) 2018 public magnetic resonance imaging (MRI) 

dataset was used for this study [32], [33]. This dataset was 

provided by the Cancer Genome Atlas (TCGA) Glioma 

Phenotyping Research Group. A total of 210 his GBM  and 75 

LGG patients were included.  Four MRI modalities were 

provided to each subject, including native T1-weighted (T1), 

T1 post-contrast (T1-Gd), T2-weighted (T2), and T2 fluid-

attenuated inversion recovery (FLAIR). The subject's tumor 

region and three types of tumor subregions (enhancing tumor 

region, ET, peritumoral edema region, ED, necrotic and non-

enhancing tumor region, NCR/NET) were provided. Image 

processing details are described in a previous study [32]. All 

provided images were released from the skull and mapped to 

the same anatomical structure through a rigorous registration 

model using a mutual information similarity metric. All image 

volumes were then resampled to an isotropic resolution of 1 

mm in the standardized axial direction using a linear 

interpolator. 

The BraTS group did not use a nonparametric nonuniform 

intensity normalization algorithm  to correct for the intensity 

nonuniformity caused by the scanner magnetic field 

inhomogeneity during image acquisition. Because it was 

observed that the T2 FLAIR signal decreases when applying 

such an algorithm.[32]. To ensure  comparability of intensity-

based features, we performed image intensity normalization 

using a hybrid white stripe approach.  It has been shown to be 

robust to intensity normalization of MRI data  [34].  

Additionally, we performed intensity discretization using a 

fixed bin number method for the next texture feature 

extraction. 

B.  RADIOMICS FEATURE EXTRACTION 

To extract radiomics features from tumor regions, the publicly 

available open-source pyradiomics feature extraction package 

(V1.3.0) was used [35]. This package was used to extract  three 

categories of features  from the original images, including 

shape-based features, first-order statistical features, and texture 

features. Texture features include gray level co-occurrence 

matrix (GLCM) features, gray level run-length matrix 

(GLRLM) features, gray level size zone matrix (GLSZM) 

features, adjacent gray tone difference matrix (NGTDM), and 

gray level dependence matrix. 

 (GLDM) included.) Features. Additionally, the 

aforementioned texture features (GLCM, GLRLM, GLDM, 

NGTDM) were also extracted from the images preprocessed 

with a Gaussian Laplace (LoG) bandpass filter and a wavelet 

filter. Definitions of specific features can be found in [35]. 

 Overall,  the radiomics features of each lesion were extracted 

from both the original and filtered images. 

 All  features were available at that time Images extracted from 

four types of MRI modality images (T1, T1-Gd, T2, FLAIR). 
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     To investigate the relationship between glioma grade and 

radiomic features that can be extracted from different lesion 

types and MRI modalities,  tumor subregions were divided into 

seven  ROIs (ET, NCR/NET, ED, ET + NCR/ NET, 

NCR)./NET + ED, ET + ED, ET + NCR/NET + ED. Radiomic 

features were then extracted from the ROIs  in different MRI 

modalities. Since the extracted radiomics features are of 

multiple centers and scales, feature normalization was 

performed with a mean of 0 and a standard deviation of 1 (Z-

score transformation). 

C. FEATURE SELECTION METHODS 

Considering the popularity, validity, and complexity reported 

in previous related studies [26]–[28],  chi-square score 

(CHSQ), t-test score (TSQ), Wilcoxon (WLCX), variance ( 

VAR) , Relief (RELF), Mutual Information (MI), Minimum 

Redundancy Maximum Relevance Ensemble (mRMRe), 

Random Forest (RF), Extra Tree Ensemble (ETE), Gradient 

Boosting Decision Tree (GBDT), xgboost (XGB), L1 based 

Logistic Regression (L1-LGR), L1-based Linear Support 

Vector Machine (L1-SVM), Least Absolute Shrinkage and 

Selection Operator (LASSO), Elastic Net (EN), and Principal 

Component Analysis (PCA).There are two types of feature 

selection methods: filter methods and embedding methods. 

Filtering methods are computationally efficient and classifier 

independent, whereas embedding methods involve feature 

selection as  part of the training process Filtering methods are 

highly versatile, and embedding methods have generally 

achieved high accuracy in previous research [28]. CHSQ, 

TSQ, WLCX, and VAR are univariate filter feature selection 

methods that evaluate feature relevance, while RELF, MI, and 

mRMRe are multivariate filters that examine both feature 

relevance and redundancy.Embedding methods  mainly consist 

of penalty-based methods and tree-based methods. Typical 

penalty-based embedding methods include L1-LGR, L1-SVM, 

LASSO, and EN, and tree-based embedding methods include 

RF, ETE, GBDT, and XGB. Unlike other types, PCA is an 

important feature extraction strategy that can generate features 

of new specified dimensions and achieve high performance 

through dimensionality reduction [36]. Wrappers for feature 

selection methods were not considered in this paper due to 

their computationally complex nature [37].B.Boruta has 

proven valuable in  data preparation [38]. 

     Another feature selection method called hybrid method, 

which can be formed by combining several different feature 

selection methods [39], was also not investigated in this work. 

This comparison is considered useful as the  single feature 

selection method serves as a reference for  the  hybrid feature 

selection method. 

D.  CLASSIFICATION METHODS 

We considered 15 machine learning classifiers: Gaussian 

Naive Bayes (GNB), Multinomial Naive Bayes (MNB), 

Bernoulli Naive Bayes (BNB), k-Nearest Neighbors (KNN), 

Random Forests (RF), and Bagging (BAG).Decision Tree 

(DT) ), Gradient Boosting Decision Tree (GBDT), Adaptive 

Boosting (Adaboost), xgboost (XGB), Linear Discriminant 

Analysis (LDA), Logistic Regression (LGR), Linear Support 

Vector Machine (Linear- SVM), Radial Basis Function 

Support-Vector Machine (RBF-SVM) and Multilayer 

Perceptron (MLPC). Table 1 lists the acronyms for each feature 

selection  and classification method. All  feature selection and 

classification methods were implemented using the scikit-learn 

package in Python [40] (scikit-learn version 0.21, Python 

version 36.3). 

We used a cross-combination strategy  to compare the 

performance of feature selection and classification methods. 

Specifically, each feature selection method was combined with 

all 15 classification methods, and each classification method 

was combined with all 16 feature selection methods. In the 

end, we obtained 240 combinations of feature selection and 

classification strategies. 

 

 

 

E.  EXPERIMENTAL DESIGN 

1) DEFINING PREDICTION PERFORMANCE MATRIX 

In this radiomics study, the performance of the feature 

reduction and classification method was determined using two 

different testing modes: k-fold cross-validation and percentage 

splitting [41]. 

 a) k-fold cross-validation: We used 10-fold cross-validation by 

splitting the data into 10 equal parts and alternating  using 9 

parts for training and the rest  for testing. 

TABLE 1. Summary of the used feature selection and classification methods with the acronyms and full names. 
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 b) Data percentage split criteria: The dataset was split into 

training data and testing data with a certain percentage ratio. 

Here, for a total of 210 his GBM subjects and 75 LGG subjects,  

228 patients (147 GBM, 53 LGG) were assigned to the training 

set and 57 patients (63 GBM, 22 LGG) were assigned to the 

test set. assigned to.This corresponds to a ratio of 73.The Da 

dataset is unbalanced, with the GBM group being about 3 times 

larger than his LGG group, which may have been biased by the 

unbalanced distribution of the samples. We performed a 

synthetic minority oversampling technique (SMOTE) [42], 

[43] to oversample the LGG group to have the same number of 

instances as the HGG group in the training procedure. The 

balance accuracy and AUC defined by equation (3)  were used  

as diagnostic indicators. True positives (TP, number of 

correctly predicted positive instances), false positives (FP, 

number of incorrectly predicted positive instances), false 

negatives (FN, number of incorrectly predicted negative 

instances), and true negatives (TN, number of correctly 

predicted positive instances). was used to calculate the 

indicator. 

 Sensitivity = TP/(TP + FN) (1) 

 Specificity = TN/(TN + FP) (2) 

Balanced accuracy = (Sensitivity + Specificity)/2 (3) 

2) EVALUATION OF SELECTED FEATURE NUMBER IN PREDICTING 

GLIOMA 

Prediction accuracy was used to evaluate the number of 

features selected by different feature selection methods. 

 To reduce the performance distortion caused by different 

classifiers, we evaluate the predictive performance of the 

classification method using balanced accuracy, select the top 

four classifiers, and calculate the average of the selected 

feature numbers. Obtained a balanced accuracy.For each type 

of feature selection method, a range of feature numbers from 

10 to 160 in 5 intervals was selected. We then repeated the 10-

fold cross-validation strategy using the top four classifiers  to 

evaluate  prediction accuracy. 

3) EVALUATION OF FEATURE TYPE, MRI MODALITY AND TUMOR 

REGION 

To explore the diagnostic value of different feature types,  

normalized feature type importance (NFTI) coefficients were 

defined to describe the  feature types selected by each feature 

selection method. 

 Specifically, we counted the number of selected features 

corresponding to the radiomics type as described in the 

“Radiomics feature extraction” section. This number was first 

normalized by the  feature number extracted for each type and 

then  by the  feature number selected for all feature types. 

Finally, during feature selection, we obtain her NFTI 

coefficients for each feature type. Here, the averaged NFTI was 

collected with selected feature numbers between 40 and 80 in 

5 intervals to reduce bias.Furthermore, we compared the 

predictive accuracy of the extracted features across four MRI 

modalities and seven combinations of tumor subregions to 

determine the predictive value of the extracted features. It 

should be noted, especially in LGG patients, that not all  

patients clinically exhibit ET, ED, or NCR/NET subregions. In 

this study, we considered the radiomics features of the 

defective region as a specific feature, as the absence of specific 

subregions may also correlate with  glioma grading. 

III. RESULTS 

A. COMPARISON OF FEATURE SELECTION 

ANDCLASSIFICATION METHODS 

To compare different machine learning methods for radiomics 

models of glioma patients, we extracted quantitative features 

from the entire tumor region and  multiparametric 

sequences.The diagnostic performance of the feature selection 

and classification methods was evaluated using an iterative 10-

fold cross-validation and percentage split strategy. In this 

current study,  diagnostic performance was quantified by 

balanced accuracy and AUC. 

 We investigated 240 combinations of feature selection and 

classification methods. Figures 1 and 2 show balanced 

accuracy and AUC results for 10-fold cross-validation 

iterations. Figures 3 and  4 show the results of the percentage 

split strategy. In 10 rounds of cross-validation, the  feature 

selection method L1-SVM + classifier MLPC achieves the 

highest prediction accuracy (accuracy: 0944, AUC: 0986), 

followed by XGB + classification MLPC (accuracy: 0.932, 

AUC : AUC: Ikatorlda (Accuracy:  0930, AUC: 0.988).For the 

accuracy of percentage split test set, the feature selection 

method L1-SVM + classifier MLPC has the highest prediction 

accuracy (Accuracy: 0953, AUC: 0.981), followed by LASSO 

+ classifier LDA (accuracy: 0942, AUC: 0.974). and L1-

SVM+ClassifierLDA (accuracy: 0936, AUC: 0.985). 

L1-SVM, LASSO, XGB, and GBDT feature selection methods 

demonstrated valuable balanced accuracy and AUC 

performance for most classifiers. 

 Meanwhile, among the classifiers, XGB, LDA, LGR, and 

MLPC showed higher stability for most feature selection 

methods. However, the VAR feature selection method showed 

a lower average accuracy for the majority classifier, and the 

MNB classifier showed a lower average accuracy. 
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validation. 

B. SELECTED FEATURE NUMBER SLIGHTLY 

INFLUENCEDPREDICTION ACCURACY 

To investigate the relationship between the number of selected 

features and diagnostic accuracy, we tuned the feature selection 

parameters of each method to obtain a set of selected features. 

In this study, the  selected feature numbers ranged from 5 to 

160 in 5 intervals, as shown in Figure 5. 

 The four most accurate classifiers LDA, LGR, MLPC, and 

XGB were used to reduce the bias in prediction accuracy 

caused by the classifiers. selected in the diagnostic evaluation 

step.each subset 

A selection of selected features was then trained by  four 

classifiers  with 10 iterations of cross-validation each.L1-SVM 

and LASSO outperformed  other feature selection methods for 

most feature counts, with average balance accuracies of  0.951 

± 0.014 and 0946 ± 0. 015, respectively.EN, L1-LGR, XGB, 

GBDT, ETE, RF, and MI achieved average accuracies above 

09, while the remaining methods (e.g., B.VAR and RELF had 

lower average accuracies of ). 

. 

 

FIGURE 1. Balanced accuracy heatmap of feature selection methods (in columns) and feature classification methods (in rows) in ten-fold cross validation. 

 

FIGURE 2. AUC heatmap of feature selection methods (in columns) and feature classification methods (in rows) in ten-fold cross 

 

FIGURE 3. Balanced accuracy heatmap of feature selection methods (in columns) and feature classification methods (in rows) in percentage split. 

 

FIGURE 4. AUC heatmap of feature selection methods (in columns) and feature classification methods (in rows) in percentage split. 

http://www.jetir.org/


© 2024 JETIR January 2024, Volume 11, Issue 1                                                          www.jetir.org (ISSN-2349-5162) 

 

JETIR2401554 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f465 
 

We also found that the predictive accuracy of most feature 

selection methods remained relatively stable as the number of 

selected features increased. 

C. IDENTIFYING SELECTED FEATURE TYPES FOR PREDICTION 

A total of 16 feature selection types were used in this article, 

as described in the “Radiomics Feature Selection” 

section.This evaluation excluded the PCA feature selection 

method. As  can be seen from Figure 6, for  feature selection 

methods with high average accuracy, e.g, L1-SVM and 

GBDT, the selected features included almost all types of 

feature types, while for low-performance For the method 

B.VAR, a partial object type was selected. Most feature 

selection methods often select first-order statistical, GLCM, 

and GLRLM texture  feature types. 

D. EXTRACTING PREDICTIVE RADIOMICS FEATURES 

The diagnostic value was then evaluated for different MRI 

modalities and tumor subregions. To reduce the prediction 

accuracy bias caused by feature selection methods and 

classifiers, we used the four most accurate feature selection 

methods (L1-SVM, LASSO, XGB, and GBDT) and the four 

most accurate classifiers (LDA, LGR, MLPC, and XGB). For 

average performance, balanced diagnostic  accuracy and AUC 

evaluation according to Table 2 in 10-fold cross-validation. 

The ET + NCR/NET tumor region of T1-Gd modality achieved 

the best diagnostic performance with a balanced accuracy of 

0.901 and AUC of 0953. 

For each tumor subregion, T1-Gd had the highest average 

balance accuracy. For each MRI modality, the ET + NCR/NET 

tumor region showed the highest average balance accuracy. 

 

IV. DISCUSSION 

Radiomics is an emerging and rapidly growing field that 

converts medical images into quantitatively usable data [ 44]. 

 In this study, we investigated different methods for selecting 

and classifying radiomics features to evaluate their 

inconsistent performance in predicting glioma malignancy. 

 Additionally, other controllable variables, such as number of 

selected features, type of features, MRI modality, and tumor 

ROI, are also discussed for optimal radiological prediction of 

glioma grade. We found that the L1-SVM + MLPC machine 

learning strategy achieved the best prediction performance in 

both iterative 10-fold cross-validation mode and percentage-

split testing mode. Feature selection methods L1-SVM, 

LASSO, XGB, and GBDT showed valuable and balanced 

prediction accuracy and AUC performance for most 

classifiers.Meanwhile, among the classifiers, XGB, LDA, 

LGR, and MLPC showed higher stability for most feature 

selection methods.Regarding the extraction of radiomics 

features, the ET + NCR/NET region in T1-Gd modality 

provided important tumor-related phenotypes in glioma 

grading. 

 

FIGURE 5. The balanced accuracy (in columns) for different feature selection methods with different selected feature numbers (in rows). 
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Sixteen feature selection methods and 15 classification 

methods were investigated for radiomics-based glioma grade 

prediction.Our results showed that the L1-SVM feature 

selection method combined with MLPC classification method 

had the highest diagnostic performance than  other crossover 

methods in predicting the malignancy of glioma. 

 Then, among the feature selection methods, L1-SVM, 

LASSO, XGB, and GBDT showed relatively high predictive 

performance for most classifiers. It is noted that LASSO has 

previously been shown to be an efficient strategy for feature 

selection  [26]. Among the classification methods, MLPC, 

LDA, LGR, and XGB performed better than other classifiers 

in most cases when combined with specific selected features. 

 In a previous evaluation of filter-based feature selection 

strategies for radiomics analysis, WLCX achieved satisfactory 

results in NSCLC survival prediction [28]. 

 In our study,  WLCX performed better than  other filter 

feature selection methods, but worse than embedding feature 

selection methods.RF classifiers are widely used in machine 

learning [45] and have been proven to be  efficient and 

powerful tree-based classification algorithms [30]. However, 

in this study, the prediction performance was not outstanding 

compared to his other two boosting methods, XGB and GBDT. 

We note that there are few studies comparing RF methods with 

high predictive performance classifiers for radiomics-based 

clinical prediction that we previously provided in the article. 

Furthermore, by using a cross-combination strategy for feature 

selection and classification method comparison, we were able 

to identify the most suitable radiomics-based framework for 

glioma staging. Cross-combination strategies may help provide 

a framework for  future radiomics-based analyses. 

Only a few studies have investigated and compared the 

number of features and types of features in radiomics-based 

studies [46], [47]. 

 In our study,  the diagnostic performance of most feature 

selection and classification methods was consistent with the 

corresponding  methods used in previous results [28]. The best 

performing characteristic numeric interval for predicting 

glioma grade was approximately 40–80. On the other hand, 

when the  number of features exceeds 100, it tends to decrease 

slightly. This may indicate that the prediction results benefited 

from feature selection. In other words, feature selection is an 

effective strategy to improve radiomics-based prediction 

studies Feature type analysis showed that features selected by 

 

FIGURE 6. The NFTI coefficients of selected feature in each feature type for the fifteen feature selection methods. 

TABLE 2. Diagnostic evaluation for each MRI modality combined with different tumor sub-regions. 
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high-precision feature selection methods have relatively richer 

coverage feature types than low-precision feature selection 

methods.This may be because different feature types contain 

different tumor features [48] and a comprehensive feature 

extraction strategy is likely to improve the prediction of clinical 

outcomes. 

 These results provide important feature extraction aspects 

for feature selection and classification, and thus for overall 

clinical analysis.The results of MRI modality and tumor region 

analysis showed that the ET + NCR/NET region of T1-Gd 

modality achieved the most valuable tumor heterogeneity. This 

improved his diagnosis of GBM and LGG when using MRI-

based non-invasive and cost-effective radiomics glioma 

grading. ET + NETs are routinely treated as solid tumor regions 

and have been widely considered as ROIs for radiomics feature 

extraction in many previous studies [4], [49]. Our results 

further support that  solid tumor regions are more associated 

with tumor grade than other tumor subregions or their 

combinations. Furthermore, comparing the  diagnostic 

performance results, we found that the diagnostic value of the 

combination of radiomics features in all multiparametric MRI 

modalities exceeds that of a single MRI modality. 

 This study also had some limitations. First, only four  MRI 

modalities were used in this study. Quantitative imaging has 

benefited from  innovations and advances in medical imaging 

hardware, imaging agents, standard protocols, and image 

analysis strategies. Newer parametric MRI modalities such as 

apparent diffusion coefficient (ADC) [50] and diffusion 

kurtosis imaging (DKI) [10] also have great potential for 

glioma grading, although they were not investigated in our 

study.It shows gender. Second, the predictive value of 

radiomics for other clinical glioma outcomes, such as 

progression survival, overall survival, and surgical recurrence, 

is expected to be discussed in future studies. Third, deep 

learning,  one of the most recent representative developments 

in radiomics analysis, is not discussed in this study [51], [52]. 

Unlike traditional image features,  deep imaging capabilities 

may have other diagnostic radiomics capabilities for glioma 

grading, and deep learning strategies can provide accurate 

classification of glioma grades. 

 may contribute to. 

 Finally, his MRI scans of glioma patients were collected 

from multiple institutions, increasing the heterogeneity of  

image quality. Future radiomics research should consider 

standardizing image acquisition and reconstruction or feature 

harmonization methods such as ComBat [53]. 

V. CONCLUSIONS 

In conclusion, our study compared different radiomics 

strategies in terms of glioma grading. After comparing  feature 

selection and classification methods, we found that the 

combination of L1-SVM feature selection and MLPC 

classification methods provided the highest diagnostic 

performance. On the other hand, feature selection methods 

such as L1-SVM, LASSO, XGB, and GBDT and feature 

classification methods such as LDA, MLPC, LGR, and XGB 

showed high diagnostic performance. Regarding the extraction 

of radiomics features, the ET + NCR/NET region in the T1-Gd 

modality may provide important tumor-related phenotypes in 

tumor grading, but other MRI modalities and tumor regions 

also causes heterogeneity. Our comparative study could serve 

as an important reference in identifying reliable and effective 

machine learning methods for radiology-based diagnostic 

analysis in non-invasive grading of gliomas. there is. 
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