© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR.ORG
JOURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Formalistic Occurrence of Vulnerabilities in
Transactions of Blockchain Technology

Dr Challa Narasimham Patnana Meghana Siddamurthi Nitin Reddy
IOCL- Chair Professor Department of CSE, Department of CSE,
Andhra University GMRIT GMRIT
ILABSTRACT

In this research, a robust approach to establishing secure smart contracts devoid of vulnerabilities such as
timestamp manipulation, re-entrancy exploits, and overflow vulnerabilities. Leveraging the versatility of Python,
this method meticulously addresses these critical issues that often plague smart contracts, compromising their
integrity and security. This methodology involves thorough validation mechanisms, specifically designed to
detect and prevent timestamp discrepancies, re-entrancy attacks, and eliminate potential overflow risks within the
smart contract codebase. By integrating these security measures, smart contract implementation ensures a resilient
and tamper-resistant foundation, bolstering the trustworthiness of decentralized applications. This work
contributes to the advancement of secure blockchain technologies, offering a reliable framework for the
development of smart contracts resistant to common vulnerabilities, thereby enhancing the overall security
landscape of decentralized system.

Keywords: Smart contract, Timestamp, Re-entrancy, Overflow, Decentralized

ILINTRODUCTION

The integration of blockchain technology has revolutionized the landscape of smart contracts, enhancing their
standards and robustness. This project explores the pivotal role of blockchain in fortifying smart contract
standards, offering improved security, transparency, and trust in decentralized systems. One of the primary
strengths lies in Ethereum’s pioneering use of blockchain to establish contracts without reliance on traditional
third-party banking sectors. Ethereum, as a decentralized platform, facilitates peer-to-peer transactions and
agreements, eliminating the need for intermediaries and fostering a more efficient and inclusive financial
ecosystem. This section delves into the transformative impact of Ethereum in reshaping contract establishment
by leveraging the power of blockchain. Vulnerabilities such as timestamp manipulation, re-entrancy exploits, and
overflow risks pose significant threats to the integrity of smart contracts. This project critically examines the
adverse effects of these vulnerabilities on the reliability and security of smart contracts, emphasizing the urgency
to address these issues. In response to these challenges, our work proposes a novel method for establishing smart
contracts that mitigates vulnerabilities such as timestamp manipulation, re-entrancy exploits, and overflow risks.
By meticulously addressing these issues, our approach aims to create a more secure foundation for smart contracts,

contributing to the ongoing efforts to fortify the reliability of blockchain-based systems. Through this research,

JETIR2401668 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetirorg | g557

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

we seek to advance the understanding of secure smart contract development and foster the continued evolution of

decentralized technologies.
Vulnerabilities

a) Timestamp:

Timestamp manipulation poses a significant threat to the reliability and security of smart contracts, as malicious
actors may exploit vulnerabilities in the timekeeping mechanism to gain unfair advantages or disrupt the intended
functionality. In the context of smart contracts, timestamps are often utilized to record the exact moment of
contract initiation or execution. However, these timestamps are susceptible to manipulation, allowing bad actors
to tamper with the chronological order of transactions and compromise the integrity of the contract's logic. To
address this concern, a critical aspect of our project involves the implementation of a robust timestamp module
in Python. This module is specifically designed to accurately record and verify timestamps within the smart
contract codebase. By incorporating secure timestamp handling in Python, ensuring the authenticity of temporal
data, reducing the risk of manipulation and providing a more dependable foundation for smart contract execution.
In the coding aspect, our Python module includes measures to prevent timestamp manipulation. For instance, we
enforce a time restriction mechanism, preventing transactions from occurring more than 60 seconds after the
initiation of the smart contract. This restriction acts as a safeguard against potential timestamp manipulations,
enhancing the temporal integrity of the smart contract and reinforcing the overall security of blockchain-based
systems.

b) Re-entrancy:

Re-entrancy exploits represent a critical security concern in smart contracts, where a malicious contract repeatedly
calls back into the same or other contracts before the initial call completes. This type of attack can lead to
unexpected outcomes, including unauthorized fund withdrawals and the manipulation of contract states. The
vulnerability arises when a contract allows external calls before completing its own state changes, enabling
attackers to execute additional functions during the execution of the initial call. To mitigate the risks associated
with re-entrancy exploits, our project incorporates robust prevention measures in the Solidity programming
language. Solidity, a language designed for writing smart contracts on blockchain platforms like Ethereum, offers
features and best practices to prevent re-entrancy vulnerabilities. By strategically placing checks and controls
within the contract code, we ensure that external calls cannot be re-entrant, safeguarding against unauthorized
access and manipulation of contract states. Through the implementation of secure coding practices in Solidity,
our project contributes to the development of smart contracts resilient to re-entrancy exploits, bolstering the
overall security of decentralized applications.

C) Overflow:

In smart contracts, overflow conditions can pose serious security risks. An overflow occurs when a numerical
variable exceeds its maximum representable value, leading to unexpected behaviour and potential vulnerabilities.
To mitigate this risk, it's essential to implement measures such as validating transaction parameters. The provided
Python code snippet addresses overflow concerns by limiting the length of the transaction hash or receiver address
to 32 characters.

JETIR2401668 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetirorg | g558

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

IHI.METHODOLOGY
A smart contract is a self-executing contract where the terms and conditions of an agreement are directly written
into code. These contracts are designed to automatically enforce, execute, or verify the terms of a contract without
the need of trusted third parties.
Ganache:
Ganache is open-source platform in Block chain development tool. It is a user-friendly interface which contains
some accounts that generates address and private key where we can access and use them for to test our own smart

contract. We can connect the Ganache platform to localhost by using RPC server.

& Ganache - o X

(L) Accounts ‘v‘" 9) BLOCKS @ TRANSACTIONS '%) CONTRACTS (N) Ev

CURRENT BLOCK GAS PRICE GAS LIMIT HARDFORK NETWORK ID RPC SERVER MINING STATUS WORKSPACE
2 20000000000 6721975 MERGE 5777 HTTP:/127.0.0.1:7545 AUTOMINING QUICKSTART

TX HASH
0xb0f756417c3545b147eb799c5d3e20678d70e36faa5c19d8d83428980e92d390

FROM ADDRESS TO ADDRESS GAS USED VALUE

©x47B233bC1620D0e44cdOD9eD2C4135CeEC850a47 ©x5FEC5F789C6D1eB779DFFAO8EE2578582aA3ECDO 21000 50000000000000000000
0x6a2059493726b8958792c049a46e889d23a20f8b6a0824522b3¢c777e940251d3

FROM ADDRESS CREATED CONTRACT ADDRESS GAS USED VALUE
0x47B233bC1620D0e44cdOD9eD2C4135CeEc850a47 0x3672807F618cf26365A006190c07d07818a00d5A 2518160)

1) Procedural Design of Time Stamp:

This mechanism helps in avoiding contracts that take an unexpectedly long time, potentially indicating an issue

or manipulation in the contract execution process.

Procedural Design

> Timestamps Recording

—» | Conversion to Datetime Objects

> Time Difference Calculation

. Validity Check

Implementation:

#Time stamp function
def times():

a = time.time()

JETIR2401668 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetirorg | g559

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1

www.jetir.org (ISSN-2349-5162)

return a,time.ctime(a)

Findings:

#Contract creation

signed_tx = w3.eth.account.sign_transaction(transaction_hash, private_key=private_key)

tx_hash = w3.eth.send_raw_transaction(signed_tx.rawTransaction)
tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
print(f"Contract deployed to {tx_receipt.contractAddress}")
tsl,tl=times()

print("Timestamp created at :",tsl1)

print("Time is (in GMT) : ",t1)

Contract deployed to @xd7EF539elf5cB1b2E7FO6B4BFBACA2a9983937c4
Timestamp created at : 1785731886.7598867
Time is (in GMT) : Sat Jan 2@ 11:53:26 2024

print(f"Transaction completed.......... “nTransaction hash: {transaction_hash.hex()}")

ts2,t2=times()

print("Timestamp created at :",ts2)
print("Time is (in GMT) : ",%2)

Transaction completed
Oxeb56b22bBe2edefccBe5eladef286b01c3aT8146593c996c0ba264e745T2c2599
Timestamp created at :
Sat Jan 20 11:54:25 2824

Transaction hash:

Time is (in GMT) :

1785731865.0876222

from datetime import datetime
Convert string timestamps to datetime objects

timestampl
timestamp2

datetime.utcfromtimestamp(tsl)
datetime.utcfromtimestamp(ts2)

Calculate the time difference

time_difference = timestamp2 - timestampl
time_difference Sec=time difference.total seconds()
print(f"Timestamp 1: {timestampll}")

print(f"Timestamp 2: {timestamp2}")

print(f"Time difference: {time_differencel}")

print("Time difference in seconds : ",time_difference_Sec)

Timestamp 1: 2024-01-20 06:23:26.759887
Timestamp 2: 2024-81-28 86:24:25.887622
Time difference: ©:808:58.327735

Time difference in seconds : 58.327735

2) Procedural Design of Re-entrancy:

Re-entrancy Validation

False True

A\ 4 Y

Sets Locked True
Executes the function

Function will not
execute because of
repetition

JETIR2401668 |

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

| 9560

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1

www.jetir.org (ISSN-2349-5162)

Findings:

: contract_source_code = """
pragma solidity "0.6.8;

contract SimpleStorage {

uint256 public storedData;
boel private locked;

modifier nonReentrant() {
require(!locked, "ReentrancyGuard: reentrant call");
locked = true;

_i
locked = false;

1
¥

function set(uint256 x) public nonReentrant {

storedData = x;

1
J

function get() public view returns (uint256) {
return storedData;

1
J

function store(uint256 _walue) public nonReentrant {
storedData = _value;

1
7

function retrieve() public nonReentrant returns (uint256) {

return storedData;

1
7

3) Procedural Design of Overflow:

Not equals to32

A 4

Overflow Validation

Equals to 32

A

Transaction stops

Transaction Continuous

a) Findings:

if len{transaction_hash)==32:

confirmations+=1

print("No overflow in the Transation")

else:

print("Transation overflow")

Mo overflow in the Transation

IV.CONCLUSION:

In conclusion, this research has introduced a robust approach to the establishment of secure smart contracts,

effectively mitigating vulnerabilities such as timestamp manipulation, re-entrancy exploits, and overflow risks.

Leveraging the flexibility and power of Python, our methodology incorporates meticulous validation mechanisms

tailored to detect and prevent discrepancies that commonly compromise the integrity and security of smart

contracts. By integrating these security measures, our approach ensures a resilient and tamper-resistant foundation

for decentralized applications, significantly enhancing the trustworthiness of blockchain technologies. Through

thorough examination and strategic addressing of timestamp-related challenges, re-entrancy risks, and potential

overflow vulnerabilities, our work contributes to the evolution of secure blockchain technologies.

JETIR2401668 |

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetirorg | g561

http://www.jetir.org/

© 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

V.REFERENCES
[1] Sun, Y., & Gu, L. (2021, March). Attention-based machine learning model for smart contract vulnerability
detection. In Journal of physics: conference series (Vol. 1820, No. 1, p. 012004). IOP Publishing.

[2] Singh, A., Parizi, R. M., Zhang, Q., Choo, K. K. R., & Dehghantanha, A. (2020). Blockchain smart contracts
formalization: Approaches and challenges to address vulnerabilities. Computers & Security, 88, 101654.

[3] Sayeed, S., Marco-Gisbert, H., & Caira, T. (2020). Smart contract: Attacks and protections. IEEE Access, 8,
24416-24427.

[4] Perez, D., & Livshits, B. (2019). Smart contract vulnerabilities: Does anyone care?. arXiv preprint
arXiv:1902.06710, 1-15.

[5] Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., & Lee, H. N. (2022). Systematic review of security
vulnerabilities in ethereum blockchain smart contract. IEEE Access, 10, 6605-6621.

[6] Chen, T., Li, X., Luo, X., & Zhang, X. (2017, February). Under-optimized smart contracts devour your money.
In 2017 IEEE 24th international conference on software analysis, evolution and reengineering (SANER) (pp. 442-
446). IEEE.

[7] Dhawan, M. (2017, February). Analyzing safety of smart contracts. In Proceedings of the Conference:
Network and Distributed System Security Symposium, San Diego, CA, USA (pp. 16-17).

[8] Alharby, M., & Van Moorsel, A. (2017). Blockchain-based smart contracts: A systematic mapping study. arXiv
preprint arXiv:1710.06372.

[9] Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., & Lee, H. N. (2022). Ethereum smart contract analysis tools:
A systematic review. IEEE Access, 10, 57037-57062.

[10] Wang, S., Ouyang, L., Yuan, Y., N1, X., Han, X., & Wang, F. Y. (2019). Blockchain-enabled smart contracts:
architecture, applications, and future trends. /[EEE Transactions on Systems, Man, and Cybernetics:

Systems, 49(11), 2266-2277.

JETIR2401668 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetirorg | g562

http://www.jetir.org/

