
 © 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401668 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g557

Formalistic Occurrence of Vulnerabilities in

Transactions of Blockchain Technology
Dr Challa Narasimham

IOCL- Chair Professor

Andhra University

Patnana Meghana

Department of CSE,

GMRIT

Siddamurthi Nitin Reddy

Department of CSE,

GMRIT

I.ABSTRACT

In this research, a robust approach to establishing secure smart contracts devoid of vulnerabilities such as

timestamp manipulation, re-entrancy exploits, and overflow vulnerabilities. Leveraging the versatility of Python,

this method meticulously addresses these critical issues that often plague smart contracts, compromising their

integrity and security. This methodology involves thorough validation mechanisms, specifically designed to

detect and prevent timestamp discrepancies, re-entrancy attacks, and eliminate potential overflow risks within the

smart contract codebase. By integrating these security measures, smart contract implementation ensures a resilient

and tamper-resistant foundation, bolstering the trustworthiness of decentralized applications. This work

contributes to the advancement of secure blockchain technologies, offering a reliable framework for the

development of smart contracts resistant to common vulnerabilities, thereby enhancing the overall security

landscape of decentralized system.

Keywords: Smart contract, Timestamp, Re-entrancy, Overflow, Decentralized

II.INTRODUCTION

The integration of blockchain technology has revolutionized the landscape of smart contracts, enhancing their

standards and robustness. This project explores the pivotal role of blockchain in fortifying smart contract

standards, offering improved security, transparency, and trust in decentralized systems. One of the primary

strengths lies in Ethereum's pioneering use of blockchain to establish contracts without reliance on traditional

third-party banking sectors. Ethereum, as a decentralized platform, facilitates peer-to-peer transactions and

agreements, eliminating the need for intermediaries and fostering a more efficient and inclusive financial

ecosystem. This section delves into the transformative impact of Ethereum in reshaping contract establishment

by leveraging the power of blockchain. Vulnerabilities such as timestamp manipulation, re-entrancy exploits, and

overflow risks pose significant threats to the integrity of smart contracts. This project critically examines the

adverse effects of these vulnerabilities on the reliability and security of smart contracts, emphasizing the urgency

to address these issues. In response to these challenges, our work proposes a novel method for establishing smart

contracts that mitigates vulnerabilities such as timestamp manipulation, re-entrancy exploits, and overflow risks.

By meticulously addressing these issues, our approach aims to create a more secure foundation for smart contracts,

contributing to the ongoing efforts to fortify the reliability of blockchain-based systems. Through this research,

http://www.jetir.org/

 © 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401668 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g558

we seek to advance the understanding of secure smart contract development and foster the continued evolution of

decentralized technologies.

Vulnerabilities

a) Timestamp:

Timestamp manipulation poses a significant threat to the reliability and security of smart contracts, as malicious

actors may exploit vulnerabilities in the timekeeping mechanism to gain unfair advantages or disrupt the intended

functionality. In the context of smart contracts, timestamps are often utilized to record the exact moment of

contract initiation or execution. However, these timestamps are susceptible to manipulation, allowing bad actors

to tamper with the chronological order of transactions and compromise the integrity of the contract's logic. To

address this concern, a critical aspect of our project involves the implementation of a robust timestamp module

in Python. This module is specifically designed to accurately record and verify timestamps within the smart

contract codebase. By incorporating secure timestamp handling in Python, ensuring the authenticity of temporal

data, reducing the risk of manipulation and providing a more dependable foundation for smart contract execution.

In the coding aspect, our Python module includes measures to prevent timestamp manipulation. For instance, we

enforce a time restriction mechanism, preventing transactions from occurring more than 60 seconds after the

initiation of the smart contract. This restriction acts as a safeguard against potential timestamp manipulations,

enhancing the temporal integrity of the smart contract and reinforcing the overall security of blockchain-based

systems.

b) Re-entrancy:

Re-entrancy exploits represent a critical security concern in smart contracts, where a malicious contract repeatedly

calls back into the same or other contracts before the initial call completes. This type of attack can lead to

unexpected outcomes, including unauthorized fund withdrawals and the manipulation of contract states. The

vulnerability arises when a contract allows external calls before completing its own state changes, enabling

attackers to execute additional functions during the execution of the initial call. To mitigate the risks associated

with re-entrancy exploits, our project incorporates robust prevention measures in the Solidity programming

language. Solidity, a language designed for writing smart contracts on blockchain platforms like Ethereum, offers

features and best practices to prevent re-entrancy vulnerabilities. By strategically placing checks and controls

within the contract code, we ensure that external calls cannot be re-entrant, safeguarding against unauthorized

access and manipulation of contract states. Through the implementation of secure coding practices in Solidity,

our project contributes to the development of smart contracts resilient to re-entrancy exploits, bolstering the

overall security of decentralized applications.

c) Overflow:

In smart contracts, overflow conditions can pose serious security risks. An overflow occurs when a numerical

variable exceeds its maximum representable value, leading to unexpected behaviour and potential vulnerabilities.

To mitigate this risk, it's essential to implement measures such as validating transaction parameters. The provided

Python code snippet addresses overflow concerns by limiting the length of the transaction hash or receiver address

to 32 characters.

http://www.jetir.org/

 © 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401668 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g559

III.METHODOLOGY

A smart contract is a self-executing contract where the terms and conditions of an agreement are directly written

into code. These contracts are designed to automatically enforce, execute, or verify the terms of a contract without

the need of trusted third parties.

Ganache:

Ganache is open-source platform in Block chain development tool. It is a user-friendly interface which contains

some accounts that generates address and private key where we can access and use them for to test our own smart

contract. We can connect the Ganache platform to localhost by using RPC server.

1) Procedural Design of Time Stamp:

This mechanism helps in avoiding contracts that take an unexpectedly long time, potentially indicating an issue

or manipulation in the contract execution process.

Implementation:

#Time stamp function

def times():

 a = time.time()

Procedural Design

Timestamps Recording

Time Difference Calculation

Validity Check

Conversion to Datetime Objects

http://www.jetir.org/

 © 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401668 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g560

 return a,time.ctime(a)

Findings:

2) Procedural Design of Re-entrancy:

`

Re-entrancy Validation

Locked

True False

Function will not

execute because of

repetition

Sets Locked True

Executes the function

http://www.jetir.org/

 © 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401668 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g561

Findings:

3) Procedural Design of Overflow:

a) Findings:

IV.CONCLUSION:

In conclusion, this research has introduced a robust approach to the establishment of secure smart contracts,

effectively mitigating vulnerabilities such as timestamp manipulation, re-entrancy exploits, and overflow risks.

Leveraging the flexibility and power of Python, our methodology incorporates meticulous validation mechanisms

tailored to detect and prevent discrepancies that commonly compromise the integrity and security of smart

contracts. By integrating these security measures, our approach ensures a resilient and tamper-resistant foundation

for decentralized applications, significantly enhancing the trustworthiness of blockchain technologies. Through

thorough examination and strategic addressing of timestamp-related challenges, re-entrancy risks, and potential

overflow vulnerabilities, our work contributes to the evolution of secure blockchain technologies.

Overflow Validation

len(Tx_Hash)

Transaction stops Transaction Continuous

Equals to 32 Not equals to32

http://www.jetir.org/

 © 2024 JETIR January 2024, Volume 11, Issue 1 www.jetir.org (ISSN-2349-5162)

JETIR2401668 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org g562

V.REFERENCES

[1] Sun, Y., & Gu, L. (2021, March). Attention-based machine learning model for smart contract vulnerability

detection. In Journal of physics: conference series (Vol. 1820, No. 1, p. 012004). IOP Publishing.

[2] Singh, A., Parizi, R. M., Zhang, Q., Choo, K. K. R., & Dehghantanha, A. (2020). Blockchain smart contracts

formalization: Approaches and challenges to address vulnerabilities. Computers & Security, 88, 101654.

[3] Sayeed, S., Marco-Gisbert, H., & Caira, T. (2020). Smart contract: Attacks and protections. IEEE Access, 8,

24416-24427.

[4] Perez, D., & Livshits, B. (2019). Smart contract vulnerabilities: Does anyone care?. arXiv preprint

arXiv:1902.06710, 1-15.

[5] Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., & Lee, H. N. (2022). Systematic review of security

vulnerabilities in ethereum blockchain smart contract. IEEE Access, 10, 6605-6621.

[6] Chen, T., Li, X., Luo, X., & Zhang, X. (2017, February). Under-optimized smart contracts devour your money.

In 2017 IEEE 24th international conference on software analysis, evolution and reengineering (SANER) (pp. 442-

446). IEEE.

[7] Dhawan, M. (2017, February). Analyzing safety of smart contracts. In Proceedings of the Conference:

Network and Distributed System Security Symposium, San Diego, CA, USA (pp. 16-17).

[8] Alharby, M., & Van Moorsel, A. (2017). Blockchain-based smart contracts: A systematic mapping study. arXiv

preprint arXiv:1710.06372.

[9] Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., & Lee, H. N. (2022). Ethereum smart contract analysis tools:

A systematic review. IEEE Access, 10, 57037-57062.

[10] Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. Y. (2019). Blockchain-enabled smart contracts:

architecture, applications, and future trends. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 49(11), 2266-2277.

http://www.jetir.org/

