JETIR.ORG

ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

OPTIMIZATION OF WELDING PROCESS PARAMETERS TO IMPROVE THE MECHANICAL STRENGTH OF WELD JOINTS USING RESPONSE SURFACE **METHODOLOGY**

Jagdish Prajapat ¹, Dheeraj Mandliya ², Dilip Gehlot ³

¹M.Tech. Scholar, Department of Mechanical Engineering, Malwa Institute of Technology, Indore, M.P., India ^{2,3} Assistant Professor, Department of Mechanical Engineering, Malwa Institute of Technology, M.P., Indore, India

ABSTRACT

In the current work, we focus on optimizing weld joints made of AISI 304 Stainless steel by employing Taguchi and ANOVA statistical methodologies. We evaluate weld distortion and depth of penetration across various samples. These samples are produced using different combinations of welding current, gas flow rate, root face, and welding speed settings. By applying Taguchi and ANOVA analyses, we predict and compare the values of weld distortion and depth of penetration against the actual measurements. The close alignment between predicted and observed values validates the chosen experimental parameters. Moreover, the ANOVA outcomes delineate the contributions of individual process parameters to weld reinforcement, thereby guiding operational decisions effectively.

Key words: Optimization, ANOVA, Gas flow rate, Welding current, Root face, Welding speed

1. Introduction

Welding is a pivotal process in fabrication, offering speed and cost-efficiency unmatched by other methods. It finds extensive application across diverse sectors including shipbuilding, railway equipment, automotive manufacturing, boiler construction, nuclear power plants, pipeline infrastructure, aerospace, and automotive industries. Various welding techniques are available, including Tungsten Inert Gas (TIG), Metal Inert Gas (MIG), Shielded Metal Arc Welding (SMAW), Plasma Arc Welding (PAW), Flux Cored Arc Welding (FCAW), Submerged Arc Welding (SAW), Gas Metal Arc Welding (GMAW), Electro Slag Welding (ESW), and Oxyacetylene (OA) Welding.

Among these methods, TIG and MIG/MAG are widely adopted. TIG welding employs a non-consumable electrode, while MIG welding utilizes a fed wire to fuse metals. The MIG process includes an AC motor heat exchanger, a consumable electrode, and water cooling for both parent metals and fillers, serving as a temporary heat source to join materials.

Parameters like arc current, arc voltage, and welding speed significantly influence welding quality, productivity, and costs. Welding enables the permanent joining of materials, such as metals, alloys, or plastics, through heat and pressure. During welding, workpieces melt and solidify to form a durable bond. Fillers may be introduced to create a molten weld pool between workpieces, ensuring a robust connection. Challenges include rapid solidification leading to hardness changes, oxidation risks from atmospheric exposure, and the potential for weld defects like porosity The Taguchi process is a mathematical method developed by Genichi Taguchi to improve the performance and quality of products. Based on Taguchi, the main point just before the analysis was the establishment of the study. Only in this way, it is possible to improve the quality of the process. This method can achieve the final output value and reduce the variance from the output value at a lower cost. He believes that the easiest way to improve quality is to build and build on the product. The main purpose of this method is to create a good product that is not expensive for the manufacturer. Taguchi has developed an experimental design approach to test how different parameters affect the meaning and variability of a process performance. The new layout that is easily designed by Taguchi includes the introduction of orthogonal layouts to develop guidelines that affect the path and the number at which it should be varied. Instead of tackling exploring all possible mixes as a true make-up, the real Taguchi method examines people for integration. The following will allow most of the facts needed to determine which variables are most likely to contribute to higher productivity using a low-volume trial, thus saving your time and resources. Taguchi arrangements are usually produced or tested small arrangements usually go slowly by hand; large-scale editing can be based on determination algorithms. Generally, the order can be purchased online. The setting is easily selected by the number of guidelines (variable) and the number of grades (levels).

2. Literature review

Sudhir Kumar et al. (2023) research work, AISI 1018 steel samples are inserted into the V-butt by a combined arrangement using MIG welding. The test design is Taguchi based Orthogonal Array (L9). The effect of process parameters such as current temperatures, voltages and pre-temperature is studied and the welds are tested using X-ray radiographic examination. Weld quality is tested in terms of solid metal structures such as high strength and percentage elasticity. Process parameters are optimized using a Taguchi-based gray method.

Himanshu Yadav, et al. (2023) focuses on building performance of these frameworks to achieve the best parameter combination of targeted quality. In the fine-tuning of these parameters, the Taguchi method has emerged as the most widely accepted method by researchers for the across the globe.

Ravinder Kumar, et al. (2022) most widely studied Argon and Helium blend is preferred for improved welding quality because it does not respond to each other. Argon and Helium gases protect the welding area

from the outside and help keep the arc stable due to low energy ionization. Aluminum is lightweight and is very effective in the aerospace, aviation, maritime, automotive, defense and other industries. TIG welding parameters such as current welding, flow rate and welding voltage are considered to affect the tensile strength, Hardness and Toughness of the aluminum weld joint. Welding parameters are controlled by electronic control units. The AC power supply prefers the use of aluminum as compared to DC electric power due to the melting of its aluminum melting point at lower levels.

Prakash BabuKanakavalli, et al. (2022) discussed the use of Taguchi and Gray-related analytical methods in determining the appropriate MIG Welding process criteria presented. The Taguchi method is widely used in constructing valid tests, while the gray relationship analysis assists decision-making when considering multiple approaches; this combination serves as an effective tool in determining the correct process parameters. In the current welding work current, voltage, speed, bevel angle were considered as the input parameters for combining two different metals (AISI1010 and AISI1018), as these influence the output characteristics such as tensile strength and stiffness, these parameters need to be adjusted.

Ashish Chafekar, in al. (2021) discussed the MIG semi-automatic welding machine according to the recurring L9 orthogonal array. Process parameters viz. welding voltage, wire feed rate and dynamic are important for a smart MIG welding machine that is considered flexible. Responses such as tensile strength, hardness and thermal conductivity (HAZ) of AA6061-T6 aluminum alloy welded joints were investigated and adjusted using gray-related gray matter analysis. From this multi-purpose use, it has been found that current welding is the most important parameter followed by the supply chain level and the dynamic power of the smart welding machine under consideration.

Dharmendra et al. (2021) presented the effect of welding parameters such as current welding, welding voltage and flow rate at penetration depth and strength of the strength using the Taguchi process. Two types of oxides MgCO3 and Cr2O3 were used to test the effects of flow flow in the steel entry Fe 410 size $100 \times 65 \times 6$ mm by GMAW with V-groove weld design combined. Cr2O3 was found to be the leading vehicle leading to high penetration. Nine Cr2O3 (L9) test runs are used based on orthogonal listing. The most important factor and the correct parameter estimates were identified using the ANOVA and S / N ratios. With the power of the tensile the dominant object was present, and then the rate of gas flow and electric power respectively. Results were obtained next to the expansion results after performing a confirmation test.

3. Methodology

Butt weld joints are arranged utilizing GTAW under changed interaction boundaries of welding as given by L9 symmetrical exhibit of Taguchi strategy under argon gas protecting. As the metal testimony rate if there should be an occurrence of gas tungsten curve welding is basically administered by welding current, gas stream rate, welding speed (welding time) and somewhat root face. In this way, these information boundaries have been thought about for the investigation and examination. The three levels of every one of the information boundaries have been taken for present investigation dependent being investigated try delivering sound weld without any imperfections of porosity and absence of combination. They chosen

cycle boundaries and their levels are given in Table. 1. The welding machine is Lincoln Electric Italia make with 3 stages, 400V. Treated steel welded test got together with the extremity of direct current terminal negative using diverse cycle boundaries have been portrayed in Table 1.

Table 1 Input parameters and their level						
D4	Levels					
Process parameters	1	2	3			
Welding current, A (A)	90	100	110			
Gas flow rate, LPM (B)	1.0	1.5	2.0			
Root face, mm (C)	1.0	1.5	2.0			
Welding speed ,mm/min (D)	15.384	21.428	31.578			

Figure 1 Welded specimen

Table 2 Chemica <mark>l Propertie</mark> s of AISI 304 Stainless Steel								
(Base Metal: AISI 304 SS)								
Element	C	Cr	Mn	Ni	P	S	Si	Fe
Wt. (%)	0.02	18.90	2.00	10.0	0.043	0.02	0.87	Balance
(Filler Metal: ER SS304L)								
Element	C	Cr	Mn	Ni	P	S	Si	Fe
Wt. (%)	0.03	18-19	2	8-12	0.045	0.03	0.75	Balance

The range of the TIG welding parameters selected under this currents study and the constant parameters are shown in Table 1. In the present study, the Taguchi method was applied to experimental data using statistical software MINITAB 16. The number of parameters under study is four and the level of each parameter is three. The degree of freedom of all the three parameters is 8. Hence, L9 orthogonal array is selected for the present work.

• The number of D.O.F. for a factor = Number of level-1

- The number of D.O.F. for current = 3 1 = 2
- The number of D.O.F. for gas flow rate= 3 1 = 2
- The number of D.O.F. for root face = 3 1 = 2
- The number of D.O.F. for welding speed = 3 1 = 2

Since there is no interaction between parameters, then total degree of freedom is 2+2+2+2=8.

The details of the selected OA were presented and the S/N ratio for each level of the parameters is computed.

The quality characteristics i.e. distortion of the welds was evaluated for all the trials and then statistical analysis of variance (ANOVA) was carried out. The contribution of each process parameters in influencing the quality characteristic is evaluated using ANOVA. The optimum parameters combination are presented and verified. Before welding, edges were cleaned in order to remove dirt, oil and grease. The plates are then kept on backing bars and ends were clamped in order to maintain the root gap and alignment. Then the welds are made 30 mm apart. Table shows the welding conditions. Joints are prepared in single roots passes. Weld beads of 50 mm were deposited along the width using 2.4 mm filler wires of ER SS304L.

4. Results and Discussion

Table 3 Distortion and depth of penetration (DOP) in weld joints at different							
combination of GTAW Parameters							
S. No.	Welding	Gas Flow	Roots	Welding	Weld	Depth	
	Currents	Rate	Faces	Speed	Distortion	ofs bead Penetration	
	(A)	(LPM)	(mm)	(mm/min)	(mm)	(DOP)s (mm)	
1	90	8	1	15.384	1.0	241.25	
2	90	10	1.5	21.428	0.15	36.187	
3	90	12	2	31.578	0.35	84.437	
4	100	8	1.5	31.578	0.6	144.75	
5	100	10	2	15.384	1	241.25	
6	100	12	1	21.428	1	241.25	
7	110	8	2	21.428	0.55	132.687	
8	110	10	1	31.578	0.09	21.712	
9	110	12	1.5	15.384	2.4	579	

Figure 2 Main effects plots of Mean (weld distortion)

Table 4 Results of confirmation test for weld distortion							
Predicted and Experimental results							
Performance	Optimal settings	Predicted	Experimental				
measure	of parameters	optimal value	value	%Error			
		(mm)	(mm)				
Weld Distortion	I1GFR2RF1WS3	2.3996	2.2587	5.871			

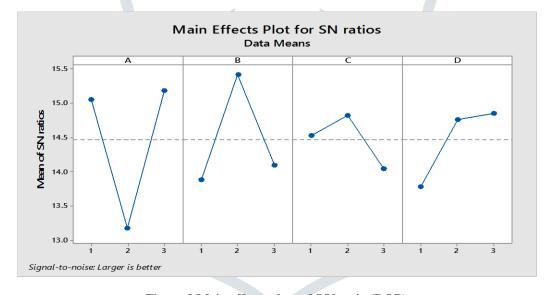


Figure 3 Main effects plots of S/N ratio (DOP)

Table 5 Results of confirmations test for DOP							
Performance Optimal settings of Predicted and Experimental results							
measure	parameters	Predicted	Experimental	%Error			
		optimal value	value				
DOP	I3GFR2RF2WS3	5.6961	5.4962	3.5094			

5. Conclusion

This study focuses on enhancing the parameters of gas tungsten arc welding to address weld distortion and depth of weld penetration as response variables. The following conclusions can be drawn for effective stainless steel plate welding using the gas tungsten arc welding process:

- Welding speed (WS) emerges as the primary parameter influencing distortion during gas tungsten arc welding. The recommended combination of parameters for optimal distortion control includes welding current (90 A), gas flow rate (10 LPM), root face (1 mm), and welding speed (31.578 mm/min), resulting in an optimal response value of 2.3996 mm.
- A verification experiment was conducted to validate the effectiveness of the Taguchi method. The experimental value obtained from the optimal welding parameter settings yielded a distortion of 2.2587 mm. The percentage error between the predicted optimal and experimental values of metal deposition rate was found to be 5.871%.
- Welding current (A) is identified as the primary parameter affecting the depth of bead penetration (DOP) during gas tungsten arc welding. The recommended combination of parameters for achieving optimal depth of bead penetration comprises welding current (110 A), gas flow rate (10 LPM), root face (1.5 mm), and welding speed (31.578 mm/min.), resulting in an optimal response value of 5.6961 mm.
- A verification analysis was conducted to verify the efficacy of the Taguchi method. The
 experimental value obtained from the optimal welding parameter settings yielded a depth of bead
 penetration of 5.4962 mm. The percentage error between the predicted optimal and experimental
 values of metal deposition rate was found to be 3.5094%.

Reference

- [1] Kumar, S., & Singh, R. (2019). Optimization of process parameters of metal inert gas welding with preheating on AISI 1018 mild steel using grey based Taguchi method. *Measurement*, *148*, 106924.
- [2] Yadav, H., & Niranjan, M. S. (2019). A Review on Parametric Optimization of Aluminium Alloy 5754 for MIG Welding.
- [3] Kumar, R., & Kumar, D. D. (2019). Optimization of Process Parameters on TIG Welding to Enhance Mechanical Properties of AA-6351 T6 Alloy. International Journal of Trend in Scientific Research and Development, 3, 505-509.
- [4] Kanakavalli, P. B., Babu, B. N., & Sai, C. P. V. (2019). A hybrid methodology for optimizing MIG welding process parameters in joining of dissimilar metals. *Materials Today: Proceedings*.
- [5] Chafekar, A., & Sapkal, S. (2020). Multi-objective Optimization of MIG Welding of Aluminum Alloy. In *Techno-Societal 2018* (pp. 523-530). Springer, Cham.
- [6] Dharmendra, B. V., Kodali, S. P., & Boggarapu, N. R. (2019). Multi-objective optimization for optimum abrasive water jet machining process parameters of Inconel718 adopting the Taguchi approach. *Multidiscipline Modeling in Materials and Structures*.

- Shinde, P. D., & Madavi, K. R. (2018). Experimental Investigation for Parametric Optimization of [7] Gas metal arc welding process by using Taguchi technique on mild steel Fe 410.
- Ghosh, N., Pal, P. K., & Nandi, G. (2018). Investigation on dissimilar welding of AISI 409 ferritic [8] stainless steel to AISI 316L austenitic stainless steel by using grey based Taguchi method. Advances *in Materials and Processing Technologies*, 4(3), 385-401.
- [9] Khan, A., Agrawal, B. P., Siddique, A. N., & Satapathy, S. N. (2018). An Investigation on Cladding of Stainless Steel on Mild Steel using Pulse Current GMAW. International Journal of Engineering *Trends and Applications (IJETA)*, 5(2).
- [10] Rizvi, S. A., & Ali, W. (2018). Optimization of Welding Parameters and Microstructure and Fracture Mode Characterization of GMA Welding by Using Taguchi Method on SS304H Austenitic Steel. Mechanics and Mechanical Engineering, 22(4), 1121-1131.
- Srivastava, S., & Garg, R. K. (2017). Process parameter optimization of gas metal arc welding on IS: [11] 2062 mild steel using response surface methodology. Journal of Manufacturing Processes, 25, 296-305.
- Ghosh, N., Pal, P. K., & Nandi, G. (2017). GMAW dissimilar welding of AISI 409 ferritic stainless [12] steel to AISI 316L austenitic stainless steel by using AISI 308 filler wire. Engineering science and technology, an international journal, 20(4), 1334-1341.
- [13] Sivaraman, A., & Paulraj, S. (2017). Multi-Response Optimization of Process Parameters for MIG Welding of AA2219-T87 by Taguchi Grey Relational Analysis. *Materials Today: Proceedings*, 4(8), 8892-8900.
- [14] Anand, K. R., & Mittal, V. (2017). Parameteric Optimization Of Tig Welding On Joint Of Stainless Steel (316) & Mild Steel Using Taguchi Technique. Int. Res. J. Eng. Technol, 2395-56.
- Songsorn, K., Sriprateep, K., & Rittidech, S. (2017). Optimization of Metal Inert Gas Pulse Brazing [15] Process on Galvanized Steel Sheets Based on Taguchi Method. The Journal of Industrial Technology, 13(2), 78-95.