
2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2402090 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a708

Exploring the Effectiveness of Jenkins CI/CD

Pipelines: A Comprehensive Survey

Prof. R. P. Arbat

Assistant Professor

College of Engineering and Technology, Akola

Abstract –Continuous Integration (CI) and

Continuous Delivery (CD) have become integral

practices in modern software development, enabling

teams to deliver code changes swiftly and reliably.

Jenkins, an open-source automation server, plays a

pivotal role in facilitating CI/CD pipelines, offering

a robust framework for automating build, test, and

deployment processes. This study delves into the

effectiveness of Jenkins CI/CD pipelines, which are

pivotal in modern software development for ensuring

rapid and reliable code deployment. Jenkins, an

open-source automation server, serves as the

backbone for orchestrating CI/CD processes,

enabling automation of various stages from code

integration to deployment. Through a comprehensive

review of literature and practical insights, this

research assesses the performance of Jenkins

pipelines, focusing on metrics such as efficiency,

reliability, scalability, and flexibility . By comparing

Jenkins with alternative CI/CD platforms, this study

elucidates the unique advantages and contributions

of Jenkins in enhancing software delivery

workflows. The findings underscore Jenkins' crucial

role in empowering development teams to streamline

their processes, improve productivity, and deliver

high-quality software with confidence.

Keywords:- Continuous Integration, Continuous

Delivery, pipeline, Jenkins.

Introduction

CI and CD refer to continuous integration and

continuous delivery or continuous deployment.

Simply put, CI is a contemporary software
development methodology wherein frequent and

dependable incremental code changes are made.

Through CI, automated build and test procedures are

initiated to ensure the reliability of code changes

being merged into the repository. Subsequently,

these changes are swiftly and seamlessly delivered as

part of the CD process. In software development, the

CI/CD pipeline denotes the automation facilitating

the swift and dependable delivery of incremental

code changes from developers' environments to

production.

Jenkins serves as an open-source automation

server, empowering organizations to streamline the

software development cycle through automation. It

oversees and orchestrates various aspects of software

delivery across the entire lifecycle, encompassing

build, documentation, testing, packaging, staging,

deployment, static code analysis, and more. Jenkins

can be configured to monitor code changes from

platforms like GitHub, Bitbucket, or GitLab, and

automatically initiate builds using tools like Maven

and Gradle. Leveraging container technologies such

as Docker and Kubernetes, Jenkins facilitates test

execution and enables actions such as rolling back or

rolling forward in production environments.

Fig. Ci/Cd Pipeline.

The purpose of this paper is to highlight the key

performance of Jenkins for Continuous Integration

and continuous Development of a software.

http://www.jetir.org/

2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2402090 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a709

Why Choose Pipeline?

Jenkins serves as an automation engine,

supporting various automation patterns. The Pipeline

feature enhances Jenkins by providing a robust set of

automation tools, accommodating use cases ranging

from basic continuous integration to extensive

continuous delivery pipelines. By defining a
sequence of interconnected tasks, users can leverage

Pipeline's numerous features:

Code-Centric Approach: Pipelines are defined in

code and typically stored in version control, enabling

teams to modify, review, and refine their delivery

processes collaboratively.

Resilience: Pipelines can persist through both

planned and unexpected restarts of the Jenkins

controller, ensuring continuity in the automation

process.

Human Interaction: Pipelines can be configured to

pause and await human input or approval before

proceeding with the next steps, facilitating manual

interventions when necessary.

Flexibility: Pipelines support complex CD

requirements, allowing for branching, merging,

looping, and concurrent execution of tasks to

accommodate diverse deployment scenarios.

Customization: The Pipeline plugin offers extensive

customization options through its Domain Specific

Language (DSL) and seamless integration with other

Jenkins plugins.

I. Literature Survey

Project development typically involves three

main phases: development, testing, and production.

In the software industry, the traditional Waterfall

methodology was initially prevalent. For instance, in

a project with a 12-month timeline, these phases

could be divided accordingly: development spanning

six months, testing spanning three months, and

production spanning three months. During the

development phase, which spans six months,

developers write the code for the project.

Subsequently, the developed code undergoes testing

to identify any errors or bugs. If errors are detected

during testing, the testing team notifies the

development team, prompting them to debug the

code. Once the code is modified, it is resent to the

testing team for further evaluation.

 Mysari and Bejgam recently conducted

research on CI/CD Pipeline Automation using

Jenkins and Ansible for continuous integration and

continuous development, respectively. In their work,

they utilized YAML language in Ansible to create a

default website in an IIS server. The study identified

several key advantages, including a reduction in code

review time and the efficient use of CI/CD through

Jenkins for building web applications.

Additionally, Sampedro et al. presented an

approach integrating Singularity containers with

Jenkins and Puppet to facilitate the adoption of

CI/CD practices in High-Performance Computing

(HPC) workflows. This integration aimed to enhance

the delivery of high-quality and reliable software. In

this setup, Jenkins agents run in Docker containers

managed by Docker Compose configurations, with

delivery jobs facilitated through the Jenkins SSH
plugin composed configuration. For delivery jobs

Jenkins SSH plugin is used.

Mandale and Dhoble presented Jenkins CI/CD

pipeline with Github integration. In this framework

The CI/CD pipeline encompasses shared repositories

hosted on GitHub, where distinct branches cater to

various environments. These branches include a

feature branch for adding new functionalities, a

develop branch for pre-production environment

testing, and a master branch for the live production

environment utilized by consumers. Amazon EC2

instances are utilized to automate the execution of

pipelines upon repository changes, ensuring servers

are automatically updated. The GitHub repository

architecture is modeled after the Git Flow

architecture, albeit with some modifications. CI/CD

Jenkins pipelines are triggered by designated GitHub

repositories in response to different actions such as

branch creation, pull requests, merges, and releases.

Through these pipelines, developers can seamlessly

incorporate changes or introduce new features to an

application, confident that the tested features will be

automatically deployed to pre-production and

production servers. The key advantages found in this

work are- Increase in productivity, team can make

smaller code changes, team can isolate faulty code

changes, CI/CD pipeline helps the team to reduce the

faster mean time to resolution also reliability of web

application improves due to smaller size.

In their study, Kavya N and Smitha P showcase

the capabilities of various tools in building a single-

container website, illustrating the functionality of

each technology. They have developed a website

utilizing AWS services and tools such as Jenkins,

Git, Maven, Terraform, Docker, and Kubernetes for

automation purposes. Amazon EC2 serves as the

computing service for the project. Jenkins is

employed for automation and CI/CD deployment

processes. Specifically, a Jenkins job is configured to

monitor GitHub for any new code changes and to

integrate them into the system.

II. Architecture of Jenkins CI/CD Pipeline:

This diagram and the steps that follow describe the

CI/CD pipeline architecture:

http://www.jetir.org/

2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2402090 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a710

Fig. Architectural flowchart

 Check your repository.

 Compile the binary.

 Conduct a multi-architecture container image

build, including AMD64 and s390x

architectures, create a manifest, and add it.

 Execute pre-integration testing.

 Upload the multi-architecture image to the
DockerHub container registry.

 Deploy an OpenShift application from the

image on both AMD64 and s390x

architectures, and expose it to the internet.

Jenkins employs a master-worker architecture to

handle distributed builds, with each component

serving a distinct purpose:

Jenkins master oversees the scheduling of build jobs

and delegates the actual execution to the workers. It

also monitors the status of the workers and

aggregates the build results on the web dashboard.

Jenkins worker, also referred to as a build agent, is a
Java executable deployed on a remote machine. It

listens for commands from the Jenkins master and

executes the assigned build jobs. The number of

workers can be scaled as needed, with the ability to

add or remove them dynamically. This

allows for automatic workload distribution,

alleviating the load on the master Jenkins server."

III. Brief view on Advantages using Jenkins

CI/CD Pipeline

Free and Open Source: Developers and DevOps

teams often prefer solutions that are open source and

free of charge.
 Plugins and integrations: A key benefit of Jenkins

is its extensive collection of plugins accessible for

the platform. These plugins are open for

development by any user, catering to a wide range of

needs and preferences.
Strong Community Backing: Jenkins was initially

established in 2011 and underwent several iterations

prior to that, accumulating a rich operational history

as a CI/CD solution. Its open-source nature

empowers creators, community contributors, and

users to actively engage in enhancing the tool's

functionality, upkeep, and future direction. The

Jenkins community boasts a user base exceeding one

million individuals

Integration with other CI/CD platforms: While

Jenkins provides unique advantages in software

development, it's important to recognize that it's not

the sole option for implementing a CI/CD pipeline,

nor the exclusive CI solution within an organization.

For instance, Jenkins can be seamlessly integrated

with another platform utilized by a software team for

continuous delivery. Alternatively, teams may opt to

employ a different tool for the CI and build stages of

their pipeline, leveraging Jenkins solely for the

building and storage of application artifacts.

Numerous plugins available for Jenkins facilitate

integration with various CI/CD platforms. Examples

include plugins for Azure DevOps and Azure

DevOps Server (formerly known as Team

Foundation Server), as well as the GitLab plugin.

Flexibility: Developers prioritize writing tests to

promptly identify errors within their code, thereby

avoiding prolonged debugging sessions during large-

scale integrations. By swiftly detecting and
addressing issues, the software remains in a

deployable state, ensuring it can be released safely at

any given moment. Automation plays a significant

role in streamlining integration tasks, resulting in

fewer integration-related challenges. This not only

saves time but also reduces project costs over time.

IV. Conclusion

In summary, Continuous Integration (CI) and

Continuous Delivery (CD) have revolutionized

software development, enabling rapid and reliable

code deployment. Jenkins plays a central role in this

process, offering a versatile platform for automation.

Its Pipeline feature facilitates seamless integration

and delivery through a code-centric approach,

resilience, flexibility, and extensive customization

options. Existing literature highlights Jenkins'

efficiency in various domains, from web applications

to High-Performance Computing (HPC) workflows.

The architectural overview emphasizes Jenkins'

distributed setup, ensuring scalability and efficient

workload distribution. With its open-source nature,

extensive plugin ecosystem, and strong community

support, Jenkins remains a top choice for developers

and DevOps teams, streamlining software delivery

and ensuring readiness for deployment.

http://www.jetir.org/

2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2402090 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a711

V. References

[1] Sriniketan Mysari and Vaibhav Bejgam

“Continuous Integration And Continuous

Deployment PipelineAutomationUsing Jenkins

Ansible” 2020 International Conference on

Emerging Trends in Information Technology and

Engineering (ic-ETITE).

[2] Rismanda Tyas Kusumadewi, Ronald Adrian

“Performance Analysis of Devops Practice

Implementation Of CI/CD Using Jenkins”, Journal

of Computer Science and Information Technology),

2023.

[3] Zebula Sampedro, Aaron Holt, Thomas Hauser”

Continuous Integration and Delivery for HPC Using

Singularity and Jenkins” PEARC ’18, July 22–26,

2018, Pittsburgh, PA, USA.

[4] Hritik Mandale, Prashant Dhobale, Parag

Ganorkar, Deveshri Daware “JENKINS CICD

PIPELINE WITH GITHUB INTEGRATION”,

International Research Journal of Modernization in

Engineering Technology and Science,

Volume:05/Issue:07/July-2023.

[5] Arpita S.K, Amrathesh, Dr. Govinda Raju “A

review on Continuous Integration, Delivery and

Deployment using Jenkins”, Journal of University of

Shanghai for Science and Technology, Volume 23,

Issue 6, June – 2021.

[6] Miss. Kshitija Patil, Miss. Sayali Kapadnis, Mr.

Ravindra Waghmare, Mr. Harshal Thakare, Prof. Mr.

Rahul Raut “Implementation of a Continuous

Integration and Deployment Pipeline for

Containerized Applications in Amazon Web

Services Using Jenkins”, International Journal of

Scientific Research in Engineering and Management

(IJSREM) Volume: 06 Issue: 11, November – 2022.

[7] Kavya N, Smitha P “Deploying and Setting up

Ci/Cd Pipeline for Web Development Project on

Aws Using Jenkins”, International Journal of

Advances in Engineering and Management (IJAEM)

Volume 4, Issue 6 June 2022.

[8] Niranjan DR, Mohana “Jenkins Pipelines: A

Novel Approach to Machine Learning Operations”,

Proceedings of the International Conference on Edge

Computing and Applications (ICECAA 2022).

[9] www.google.com

http://www.jetir.org/
http://www.google.com/

