2024 JETIR February 2024, Volume 11, Issue 2

www.jetir.org (ISSN-2349-5162)

JETIR.ORG
JOLURNAL OF EMERGING TECHNOLOGIES AND

INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Exploring the Effectiveness of Jenkins CI/CD
Pipelines: A Comprehensive Survey

Prof. R. P. Arbat
Assistant Professor
College of Engineering and Technology, Akola

Abstract —Continuous Integration (CI) and
Continuous Delivery (CD) have become integral
practices in modern software development, enabling
teams to deliver code changes swiftly and reliably.
Jenkins, an open-source automation server, plays a
pivotal role in facilitating CI/CD pipelines, offering
a robust framework for automating build, test, and
deployment processes. This study delves into the
effectiveness of Jenkins CI/CD pipelines, which are
pivotal in modern software development for ensuring
rapid and reliable code deployment. Jenkins, an
open-source automation server, serves as the
backbone for orchestrating CI/CD processes,
enabling automation of various stages from code
integration to deployment. Through a comprehensive
review of literature and practical insights, this
research assesses the performance of Jenkins
pipelines, focusing on metrics such as efficiency,
reliability, scalability, and flexibility . By comparing
Jenkins with alternative CI/CD platforms, this study
elucidates the unique advantages and contributions
of Jenkins in enhancing software delivery
workflows. The findings underscore Jenkins' crucial
role in empowering development teams to streamline
their processes, improve productivity, and deliver
high-quality software with confidence.

Keywords:- Continuous Integration, Continuous
Delivery, pipeline, Jenkins.

Introduction

Cl and CD refer to continuous integration and
continuous delivery or continuous deployment.
Simply put, ClI is a contemporary software
development methodology wherein frequent and
dependable incremental code changes are made.
Through CI, automated build and test procedures are

initiated to ensure the reliability of code changes
being merged into the repository. Subsequently,
these changes are swiftly and seamlessly delivered as
part of the CD process. In software development, the
CI/CD pipeline denotes the automation facilitating
the swift and dependable delivery of incremental
code changes from developers' environments to
production.

Jenkins serves as an open-source automation
server, empowering organizations to streamline the
software development cycle through automation. It
oversees and orchestrates various aspects of software
delivery across the entire lifecycle, encompassing
build, documentation, testing, packaging, staging,
deployment, static code analysis, and more. Jenkins
can be configured to monitor code changes from
platforms like GitHub, Bitbucket, or GitLab, and
automatically initiate builds using tools like Maven
and Gradle. Leveraging container technologies such
as Docker and Kubernetes, Jenkins facilitates test
execution and enables actions such as rolling back or
rolling forward in production environments.

Commit Build Test Stage Deploy

ﬁ Continuous Integration & Continuous Delivery :D 1

Code - Commit Git
(o) ¥
5 i
Development Production

C)

Fig. Ci/Cd Pipeline.

The purpose of this paper is to highlight the key
performance of Jenkins for Continuous Integration
and continuous Development of a software.

JETIR2402090 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | a708

http://www.jetir.org/

2024 JETIR February 2024, Volume 11, Issue 2

www.jetir.org (ISSN-2349-5162)

Why Choose Pipeline?

Jenkins serves as an automation engine,
supporting various automation patterns. The Pipeline
feature enhances Jenkins by providing a robust set of
automation tools, accommodating use cases ranging
from basic continuous integration to extensive
continuous delivery pipelines. By defining a
sequence of interconnected tasks, users can leverage
Pipeline's numerous features:

Code-Centric Approach: Pipelines are defined in
code and typically stored in version control, enabling
teams to modify, review, and refine their delivery
processes collaboratively.
Resilience: Pipelines can persist through both
planned and unexpected restarts of the Jenkins
controller, ensuring continuity in the automation
process.
Human Interaction: Pipelines can be configured to
pause and await human input or approval before
proceeding with the next steps, facilitating manual
interventions when necessary.
Flexibility: Pipelines support complex CD
requirements, allowing for branching, merging,
looping, and concurrent execution of tasks to
accommodate diverse deployment scenarios.
Customization: The Pipeline plugin offers extensive
customization options through its Domain Specific
Language (DSL) and seamless integration with other
Jenkins plugins.

I. Literature Survey

Project development typically involves three
main phases: development, testing, and production.
In the software industry, the traditional Waterfall
methodology was initially prevalent. For instance, in
a project with a 12-month timeline, these phases
could be divided accordingly: development spanning
six months, testing spanning three months, and
production spanning three months. During the
development phase, which spans six months,
developers write the code for the project.
Subsequently, the developed code undergoes testing
to identify any errors or bugs. If errors are detected
during testing, the testing team notifies the
development team, prompting them to debug the
code. Once the code is modified, it is resent to the
testing team for further evaluation.

Mysari and Bejgam recently conducted
research on CI/CD Pipeline Automation using
Jenkins and Ansible for continuous integration and
continuous development, respectively. In their work,
they utilized YAML language in Ansible to create a
default website in an IS server. The study identified
several key advantages, including a reduction in code
review time and the efficient use of CI/CD through
Jenkins for building web applications.

Additionally, Sampedro et al. presented an
approach integrating Singularity containers with
Jenkins and Puppet to facilitate the adoption of
CI/CD practices in High-Performance Computing
(HPC) workflows. This integration aimed to enhance
the delivery of high-quality and reliable software. In
this setup, Jenkins agents run in Docker containers
managed by Docker Compose configurations, with
delivery jobs facilitated through the Jenkins SSH
plugin composed configuration. For delivery jobs
Jenkins SSH plugin is used.

Mandale and Dhoble presented Jenkins CI/CD
pipeline with Github integration. In this framework
The CI/CD pipeline encompasses shared repositories
hosted on GitHub, where distinct branches cater to
various environments. These branches include a
feature branch for adding new functionalities, a
develop branch for pre-production environment
testing, and a master branch for the live production
environment utilized by consumers. Amazon EC2
instances are utilized to automate the execution of
pipelines upon repository changes, ensuring servers
are automatically updated. The GitHub repository
architecture is modeled after the Git Flow
architecture, albeit with some modifications. CI/CD
Jenkins pipelines are triggered by designated GitHub
repositories in response to different actions such as
branch creation, pull requests, merges, and releases.
Through these pipelines, developers can seamlessly
incorporate changes or introduce new features to an
application, confident that the tested features will be
automatically deployed to pre-production and
production servers. The key advantages found in this
work are- Increase in productivity, team can make
smaller code changes, team can isolate faulty code
changes, CI/CD pipeline helps the team to reduce the
faster mean time to resolution also reliability of web
application improves due to smaller size.

In their study, Kavya N and Smitha P showcase
the capabilities of various tools in building a single-
container website, illustrating the functionality of
each technology. They have developed a website
utilizing AWS services and tools such as Jenkins,
Git, Maven, Terraform, Docker, and Kubernetes for
automation purposes. Amazon EC2 serves as the
computing service for the project. Jenkins is
employed for automation and CI/CD deployment
processes. Specifically, a Jenkins job is configured to
monitor GitHub for any new code changes and to
integrate them into the system.

Il. Architecture of Jenkins CI/CD Pipeline:

This diagram and the steps that follow describe the
CI/CD pipeline architecture:

JETIR2402090 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | a709

http://www.jetir.org/

2024 JETIR February 2024, Volume 11, Issue 2

www.jetir.org (ISSN-2349-5162)

successful

Check-out
SCM

l

Get
Despendencies

Terminated

Build -a-nd push
image

Fig. Architectural flowchart

e Check your repository.

e Compile the binary.

e Conduct a multi-architecture container image
build, including AMD64 and s390x
architectures, create a manifest, and add it.

e Execute pre-integration testing.

e Upload the multi-architecture image to the
DockerHub container registry.

e Deploy an OpenShift application from the
image on both AMD64 and s390x
architectures, and expose it to the internet.

Jenkins employs a master-worker architecture to
handle distributed builds, with each component
serving a distinct purpose:

Jenkins master oversees the scheduling of build jobs
and delegates the actual execution to the workers. It
also monitors the status of the workers and
aggregates the build results on the web dashboard.
Jenkins worker, also referred to as a build agent, is a
Java executable deployed on a remote machine. It
listens for commands from the Jenkins master and
executes the assigned build jobs. The number of
workers can be scaled as needed, with the ability to
add or remove them dynamically. This

allows for automatic workload distribution,
alleviating the load on the master Jenkins server."

I11. Brief view on Advantages using Jenkins
CI/CD Pipeline

Free and Open Source: Developers and DevOps
teams often prefer solutions that are open source and
free of charge.

Plugins and integrations: A key benefit of Jenkins
is its extensive collection of plugins accessible for
the platform. These plugins are open for
development by any user, catering to a wide range of
needs and preferences.

Strong Community Backing: Jenkins was initially
established in 2011 and underwent several iterations
prior to that, accumulating a rich operational history
as a CI/CD solution. Its open-source nature

empowers creators, community contributors, and
users to actively engage in enhancing the tool's
functionality, upkeep, and future direction. The
Jenkins community boasts a user base exceeding one
million individuals

Integration with other CI/CD platforms: While
Jenkins provides unique advantages in software
development, it's important to recognize that it's not
the sole option for implementing a CI/CD pipeline,
nor the exclusive CI solution within an organization.
For instance, Jenkins can be seamlessly integrated
with another platform utilized by a software team for
continuous delivery. Alternatively, teams may opt to
employ a different tool for the CI and build stages of
their pipeline, leveraging Jenkins solely for the
building and storage of application artifacts.
Numerous plugins available for Jenkins facilitate
integration with various CI/CD platforms. Examples
include plugins for Azure DevOps and Azure
DevOps Server (formerly known as Team
Foundation Server), as well as the GitLab plugin.
Flexibility: Developers prioritize writing tests to
promptly identify errors within their code, thereby
avoiding prolonged debugging sessions during large-
scale integrations. By swiftly detecting and
addressing issues, the software remains in a
deployable state, ensuring it can be released safely at
any given moment. Automation plays a significant
role in streamlining integration tasks, resulting in
fewer integration-related challenges. This not only
saves time but also reduces project costs over time.

V. Conclusion

In summary, Continuous Integration (CI) and
Continuous Delivery (CD) have revolutionized
software development, enabling rapid and reliable
code deployment. Jenkins plays a central role in this
process, offering a versatile platform for automation.
Its Pipeline feature facilitates seamless integration
and delivery through a code-centric approach,
resilience, flexibility, and extensive customization
options. Existing literature highlights Jenkins'
efficiency in various domains, from web applications
to High-Performance Computing (HPC) workflows.
The architectural overview emphasizes Jenkins'
distributed setup, ensuring scalability and efficient
workload distribution. With its open-source nature,
extensive plugin ecosystem, and strong community
support, Jenkins remains a top choice for developers
and DevOps teams, streamlining software delivery
and ensuring readiness for deployment.

JETIR2402090 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | a710

http://www.jetir.org/

2024 JETIR February 2024, Volume 11, Issue 2

www.jetir.org (ISSN-2349-5162)

V. References

[1] Sriniketan Mysari and Vaibhav Bejgam
“Continuous Integration ~ And Continuous
Deployment PipelineAutomationUsing Jenkins
Ansible” 2020 International Conference on
Emerging Trends in Information Technology and
Engineering (ic-ETITE).

[2] Rismanda Tyas Kusumadewi, Ronald Adrian
“Performance Analysis of Devops Practice
Implementation Of CI/CD Using Jenkins”, Journal
of Computer Science and Information Technology),
2023.

[3] Zebula Sampedro, Aaron Holt, Thomas Hauser”
Continuous Integration and Delivery for HPC Using
Singularity and Jenkins” PEARC 18, July 22-26,
2018, Pittsburgh, PA, USA.

[4] Hritik Mandale, Prashant Dhobale, Parag
Ganorkar, Deveshri Daware “JENKINS CICD
PIPELINE WITH GITHUB INTEGRATION”,
International Research Journal of Modernization in
Engineering Technology and Science,
Volume:05/Issue:07/July-2023.

[5] Arpita S.K, Amrathesh, Dr. Govinda Raju “A
review on Continuous Integration, Delivery and
Deployment using Jenkins”, Journal of University of

Shanghai for Science and Technology, Volume 23,
Issue 6, June — 2021.

[6] Miss. Kshitija Patil, Miss. Sayali Kapadnis, Mr.
Ravindra Waghmare, Mr. Harshal Thakare, Prof. Mr.
Rahul Raut “Implementation of a Continuous
Integration and Deployment Pipeline for
Containerized Applications in Amazon Web
Services Using Jenkins”, International Journal of
Scientific Research in Engineering and Management
(IJSREM) Volume: 06 Issue: 11, November — 2022.

[7] Kavya N, Smitha P “Deploying and Setting up
Ci/Cd Pipeline for Web Development Project on
Aws Using Jenkins”, International Journal of
Advances in Engineering and Management (IJAEM)
Volume 4, Issue 6 June 2022.

[8] Niranjan DR, Mohana “Jenkins Pipelines: A
Novel Approach to Machine Learning Operations”,
Proceedings of the International Conference on Edge
Computing and Applications (ICECAA 2022).

[9] www.google.com

JETIR2402090 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ ar7ll

http://www.jetir.org/
http://www.google.com/

