© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR.ORG ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND
INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

JETIR

ass Ra,

o

Automated Detection of Hate Speech and Sentiment
Analysis on Twitter using Machine Learning
Techniques

Renu Kumari and Vijay Kumar
College of Commerce Arts and Science
Patliputra University, Patna, 800020 Bihar, India

Abstract. Sentiment analysis, or opinion mining, is a critical Natural Language Processing (NLP) technique that
discerns the emotional tone in textual content, categorizing it as positive, negative, or neutral. It finds extensive
application in understanding public sentiments on social media platforms like Twitter, Facebook, and Instagram.
However, the proliferation of hate speech on these platforms poses a pressing issue, promoting violence,
discrimination, and prejudice. This paper addresses the challenge of hate speech on Twitter, a widely utilized micro-
blogging platform. Many methods have already been created to automate hate speech detection online. This process
has two elements: identifying the qualities these terms utilize to target a specific group and classifying textual
material as hate or non-hate speech. Detecting hate speech is more challenging, as our research of the language
used in typical datasets reveals that hate speech lacks distinctive, discriminatory characteristics. In this paper, we
present a novel approach that involves classifying tweets into three categories: "sexism," "racism," or "none." By
doing so, we aim to detect and categorize instances of harmful content on Twitter. Our work contributes to sentiment
analysis and offers a practical solution to identify and combat hate speech on a platform with significant societal
influence. Machine learning methods are beneficial for capturing the meaning of hate speech and are thus proposed
as feature extractors. Data from social media sites such as Twitter are used to test the effectiveness of these
procedures, and they reveal a significant improvement in macro-average F1 and 9% improvement for content
labeled as hateful, respectively.

Keywords: Hate speech - Machine learning - Online social networks - NLP - Text classification - Social media.

1 Introduction

Opinion mining, also known as sentiment analysis, is a fundamental aspect of Natural Language Processing (NLP).
It enables the automated assessment of emotional tones conveyed in textual data, categorizing sentiments as
positive, negative, or neutral, with the potential to capture nuanced emotions like happiness, sadness, or anger.

Opinion mining finds widespread application in analyzing public sentiments on social media platforms, such as

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b47

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

Twitter, Facebook, and Instagram, providing valuable insights into public perceptions. However, the proliferation
of hate speech on online platforms is a growing concern. Hate speech encompasses any form of communication
promoting violence, discrimination,
hostility, or prejudice based on attributes like race, ethnicity, gender, religion, or sexual orientation.
In recent times, the proliferation of hate speech has become increasingly prevalent, both in face-to-face interactions
and online communication. The influence of social media and various online platforms has significantly contributed
to the dissemination of hateful content, with grave consequences often culminating in hate crimes. Notable
instances, such as the impact of online hate speech surrounding the US Presidential election in 2016 [1], the terrorist
attacks in Manchester and London in the UK [2], and the horrific events in New Zealand [3], have underscored the
severe ramifications of this issue. To combat these detrimental effects, legislative measures have been implemented,
with the European Union Commission compelling social media networks to adhere to an EU hate speech code,
mandating the removal of such content within 24 hours [4]. However, the manual process involved in identifying
and eradicating hate speech content is arduous and time-consuming. Given the concerning prevalence of hate speech
on the internet, there is a compelling need for automated hate speech detection.
The automatic detection of hate speech presents a formidable challenge, primarily due to the absence of a
universally accepted definition of hate speech. Consequently, what is perceived as hateful can vary among
individuals, contingent on their particular interpretations. As proposed by Fortuna et al. [5], hate speech can be
defined as content that advocates violence against individuals or groups based on attributes such as race or ethnic
origin, religion, disability, gender,age, veteran status, and sexual orientation or gender identity. Despite the diversity
in these definitions, recent research endeavors have yielded promising outcomes in the realm of automatic hate
speech detection within textual content [6,7,8,9]. These pioneering solutions have employed an array of feature
engineering techniques and machine learning (ML) algorithms to categorize content as hate speech. However,
despite the substantial body of work in this domain, there remains a paucity of comparative analyses evaluating the
performance of distinct feature engineering techniques and ML algorithms in classifying hate speech content. This
paper centers on the application of sentiment analysis to Twitter tweets for the purposes of hate speech detection
and monitoring. Leveraging the power of machine learning, with its capacity to process extensive data and unveil
discernible patterns, is pivotal in this endeavor. The paper surveys various machine learning methodologies,
encompassing both supervised and unsupervised learning, feature engineering, deep learning, and NLP.
Additionally,it delves into the formidable challenges and constraints intrinsic to hate speech detection, including
issues related to data scarcity and algorithmic biases. In today’s digital landscape, the prevalence of hate speech
underscores the need for effective detection methods. This paper contributes to addressing this issue by examining
machine learning-based hate speech detection and its challenges, aiming to provide a comprehensive overview of
this vital and evolving field of research. The paper’s structure entails the following: Section 2 provides an overview
of related research, Section 3 discusses the methodology, Section 4 discusses the results and its analysis, and finally,

Section 5 addresses limitations, suggests future research directions, and concludes the paper.

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b48

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

2. Literature survey

Hate speech has become alarmingly prevalent in contemporary social media landscapes, prompting researchers to
employ supervised machine learning (ML)- based text classification approaches for hate speech content
identification. These endeavors have encompassed a wide array of feature representation techniques, including
dictionary-based [10,11,12], Bag-of-Words (BOW) based [6,7,8], Ngrams- based [13,9,14], TF-IDF-based [15,16],
and Deep Learning-based [16] methods. In [17], the authors utilized a dictionary-based approach coupled with
Ngram feature engineering to detect cyber hate on Twitter, achieving a maximum F-score of 67% using support
vector machines (SVM). Similarly, The authors in [11] applied a dictionary-based approach for racism detection in
Dutch social media, yielding an F-score of 0.46 through SVM. Njagi Dennis et al. in their paper [10] classified web
forum and blog hate speech using sentiment expressions and subjectivity features, obtaining 73% precision with a
rule-based classifier. Despite these promising outcomes, the dependency on large dictionaries remains a limitation.
BOW-based methods, despite ignoring word order, have demonstrated superior accuracy. The existing study [12]
attained 87% accuracy by employing bi-gram feature extraction with SVM. Another existing study [6] achieved a
maximum 76% accuracy by utilizing uni-grams with BOW. Sanjana Sharma et al. [7] reported a maximum accuracy
of 73% using BOW features. To address the word order limitation, N-grams-based techniques [18] have been
proposed. The existing article [9] employed character N-grams and logistic regression (LR) to achieve an F-score
of 73%. Chikashi Nobata et al. [13] reached a 77% F-score with character N-grams and SVM. Shervin Malmasi et
al. [8] used 4-grams with character grams and SVM, resulting in 78% accuracy. Recent endeavors have focused on
multilingual hate speech detection, such as Danish [19], achieving an F1 score of 0.74 using deep learning. Schmidt
et al. [20] conducted a comprehensive survey of hate speech detection using NLP techniques, although they lacked
experimental results. Despite global efforts to combat hate speech in languages like German, Dutch, and English, a
comparative study assessing various features and ML algorithms on standard datasets, essential as a baseline for
future research, is conspicuously absent. Consequently, this study conducts a comprehensive evaluation of three
feature engineering techniques and eight ML classifiers on hate speech datasets, as detailed in Section 3.

3 Proposed methodology

The prevalence of hate speech on platforms like Twitter poses a significant challenge. Detecting and categorizing
such harmful content, particularly regarding sexism and racism, is a complex task. Hate speech often lacks easily
identifiable characteristics, making its automated detection vital for a safer online environment. three distinct
feature extraction approaches: Bigram with CountVectorizer, TF-IDF and Word2Vec. In this study SVM, Logistic
Regression, Naive Bayes and KNN classifiers are used.

3.1 Data collection
We used publicly available tweetsl for this study. There are a total of 11325 tweets in this dataset. The given data

contains three unique classes namely ‘sexism’, ‘racism’ and ‘normal’. 2988 tweets show ‘sexism’, 20 tweets show

‘sexism’ and 8317 tweets are categorized as ‘none’.

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b49

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

3.2 Data Preprocessing
Preprocessing of data is a critical step in the data analysis and machine learning workflow. It involves cleaning and

transforming raw data into a format that is suitable for further analysis and modeling. The preprocessing step aims
to remove inconsistencies, noise, and irrelevant information from the data, making it more meaningful and easier
to work with. All special symbols like $, #, !, @ etc. and emoticons are removed from the dataset. All tweets are
converted into lower case and stopwords like is, and, a, the, etc. are removed. The classes assigned to each data

namely ‘none’, ‘racism’, ‘sexism’ are labeled as 0, 1, 2 respectively.

3.3 Data Splitting
Data splitting is done to assess the performance of the model. Dataset is split into two subsets, a training set and a

testing set. The purpose of this splitting is to train our machine learning model on one subset and evaluate its
performance on another to know how well it performs on new (unseen) data. Dataset is split into training and testing
data such that 20% of data is included in test set and 80% in train set. Test set contains 2265 tweets and train set

contains 9060 tweets.

1 https://raw.githubusercontent.com/srishb28/Hate-Speech-Detection-on-T
witter-Data/master/final_dataset.csv

3.4 Feature Engineering

The choice of feature engineering techniques significantly impacts text classification outcomes [21]. Previous
research has demonstrated the superiority of the TF-IDF representation technique over binary and term frequency
representations [22]. Conversely, the lower performance of Word2Vec can be attributed to its limitations in
handling out-of-vocabulary words, particularly in the domain of Twitter data. Furthermore, Word2Vec requires an
extensive training set to effectively capture intricate word relationships [23]. In contrast, our dataset comprises

approximately 15, 000 tweets, which may not be sufficient for Word2Vec to learn the nuanced word relationships
effectively. Similarly, Doc2Vec demonstrated sub-optimal performance, likely due to its reduced efficacy with very
short-length documents, such as the tweets in our dataset, often limited to 280 characters [24]. A word embedding
is a learned representation for text where words that have the same meaning have a similar representation. It a type
of NLP technique where individual words are represented as real-valued vectors in a predefined vector space. These
methods expect to catch the semantic and relevant relationships between words on the basis of their distributional
properties in a huge corpus of text. By addressing words as continuous vectors, word embeddings empower model

to effectively process and understand language.

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b50

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

3.5 Word Embedding Techniques

CountVectorizer It is a text preprocessing tool used in NLP and machine learning. It converts a collection of text
documents into a numerical format suitable for machine learning algorithms. It tokenizes the text, creating a
vocabulary of unique terms, then counts how many times each term in the vocabulary appears in each document. It
generates a matrix where rows correspond to documents, and columns correspond to terms in the vocabulary. The
values in this matrix represent the frequency of each term in each document. The resulting matrix is used as input
data for machine learning algorithms. Each row of the matrix represents a document, and each column represents a
term. This numeric representation allows machine learning models to operate on text data, making it possible to
train and evaluate models for various NLP tasks. The resulting feature matrix is interpretable since each column
corresponds to a specific term, allowing us to understand which terms are important for our model. It’s compatible
with various machine learning algorithms, including Naive Bayes, logistic regression, which require numerical
input data.

TF-1DF TF-IDF stands for Term Frequency (TF)-Inverse Document Frequency (IDF). It is a numerical statistic
used in information retrieval and text mining to measure the significance of a term within a document or a collection
of documents. TF-IDF combines two factors: TF and IDF. TF measures how frequently a term appears in a
document. It is calculated by dividing frequency of a term by total number of terms within a document. The motive
behind TF is that the more times a term appears in a document, the more likely it is to be important or significant

to that document. It is calculated by the Eqg. 1.

Number of term tappears in document d (f d] __ Number of term tappears in document d
; =

pd)=

Total number of terms in document d Total number of terms in document d (1)

IDF measures the rarity or uniqueness of a term across a collection of documents. It is calculated by dividing the
total number of documents in the collection by the number of documents that contain the term and then taking the
logarithm of that ratio. The IDF value is higher for terms that are unique indicating that those terms are more

important or carry more information. It is calculated by the Eq. 2.

(t,D) log = (

Total numbe of documents in corpus D)

Number of ducuments containing termt

IDF

(t,D) log = (

Total numbe of documents in corpus D }

Number of duruments containing termt (2)
TF-IDF is obtained by multiplying the term frequency (TF) of a term in a document by the inverse document
frequency (IDF) of that term across the entire collection of documents. The higher the TF-IDF value, the more

significant the term is to the document. It is calculated by the Eq. 3.

TF — IDF (t,d,D) = TF(t,d) X IDF(t,D)

TF — IDF(t,d,D) = TF(t,d) X IDF(t,D) ?3)

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b51

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

TF-IDF represents the TF-IDF score. t represents the term (word) for which you are calculating TF-IDF. d
represents the specific document in which you are calculating TF. D represents the entire document collection or
corpus. It gives higher weights to terms that are unique in the document collection. TF-IDF helps to lessen the

impact of common terms that appear frequently across documents.

Word2Vec It is a technique used in NLP to represent words as numerical vectors. It creates vectors of the words that are
distributed numerical representations of word features. Words with similar meanings or usage have similar vector
representations. This numerical representation allows machine to understand and work with words in a more effective way.
There are two main architectures for training Word2Vec models i.e., Continuous Bag-of-Words (CBOW) and Skipgram.
CBOW predicts a target word based on the context words surrounding it. Skip-gram predicts the context words given a target
word. Word2Vec offers several advantages in NLP and text analysis: It captures the semantic meaning of words by
representing them as dense vectors. Words with similar meanings or usage tend to have similar vector representations. This
allows for measuring semantic similarity and capturing relationships between words. It maps high-dimensional word space
into lower-dimensional vector space, making it computationally efficient and suitable for various NLP works. It considers the

context in which words appear. This helps in understanding the meaning of words in different contexts.

3.6 Machine Learning Classifier
In machine learning, a classifier is a type of model that is used to assign categories or labels to input data based on

patterns and features present within the data. The primary goal of a classifier is to learn from a labeled dataset
(where data points are already assigned to specific categories) and then make predictions or decisions about the
category or class of new, unseen data. The selection of the most suitable machine learning algorithm often depends
on the dataset at hand, as various algorithms exhibit varying performance across different data types. In this study
SVM, Logistic Regression, Naive Bayes and KNN classifiers are used.

Logistic Regression It is a statistical method used for binary classification tasks. It is a type of supervised learning
algorithm that predicts the probability of a binary outcome (usually represented as 0 or 1) based on one or more
input features [25]. It uses the sigmoid function to transform a linear combination of the input features into a value
between 0 and 1. The sigmoid function has an S-shaped curve and maps any real-valued number to the range [0,
1]. Where z is the linear combination of input features and their corresponding weights, plus a bias term. It is
expressed by the Eq. 4.

z=w, tw, " x;+ w,y, " xF.tw,tx,
z=w,tw, " x;+tw, T x,t...tw, " x, (4)

Gd gl 5

Where wO is the bias term (intercept), “/1%'1 ... wr are the coefficients (weights) for each input feature * 1% 1 % 2% 2

. ..., X% r and ris the number of input features.

Naive Bayes Classifier It is a popular ML algorithm for classification tasks [25]. The classifier is called "naive"
because it assumes that the features are conditionally independent given the class label. It describes the probability

of an event based on prior knowledge of conditions related to that event. In the context of classification, it calculates

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b52

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

the probability of a particular class given some input data. It makes a prediction based on the class with the highest
probability .Bayes ‘Theorem is given by the Eq.5.
P(ylx) = (P—':“}" i ':3"’] P(ylx) = (P—f*’}" P '3}"}

Blx) Flx)

()
K-Nearest Neighbors (K-NN) It is a popular ML algorithm used for both classification and regression tasks. It is
a type of instance-based, lazy learning algorithm, which means it doesn’t explicitly learn a model during training.
Instead, it stores the entire training dataset in memory and uses it to make predictions when new data points are
provided [26]. The ”K” in K-NN represents the number of nearest neighbors to consider when making predictions.
This is a hyperparameter that needs to specified before training the model. K-NN uses a distance metric to measure
the similarity between data points. It calculates the distance between the new data point and all points in the training
dataset and makes predictions by taking a majority vote among the K nearest neighbors. The class that occurs most frequently
among the neighbors is assigned as the predicted class for the new data point.

Support Vector Machine (SVM) It is a supervised machine learning algorithm used for classification and
regression tasks [18,27]. The goal of SVM is to separate data into classes based on their features. The data points
that are closest to the hyperplane and influence its position are called support vectors. It aims to find the hyperplane
with the maximum margin. Maximizing the margin often leads to better generalization to unseen data. SVMs can
handle non-linear data by mapping the input data into a higher-dimensional space using a kernel function. This

allows SVMs to find non-linear decision boundaries.

4. Result analysis and discussion

In the experimental work, we have evaluated four classifiers over three different feature engineering techniques,
giving 12 different analyses over hate speech dataset containing three classes. Our experimental results showed that
the SVM algorithm with the combination of bigram with TF-IDF Feature extraction techniques showed the best
results. The theoretical analysis is discussed in subsequent sections.

Class wise Performance As discussed in Section 3. We have three classes name “hate speech”, “offensive but not
hate speech” and “neither hate speech nor offensive speech”. The results show that all features and classifiers
performed well for two classes (i.e. offensive but not hate speech, and neither hate speech nor offensive speech).
Our experimental results showed that the 12 combinations performed lowest for class hate speech. According to
the values in the Tables, the class “Hate Speech” has the lowest training instances as compared to other classes, but
the major reason for misclassification of class “Hate Speech” might be overlapping of different bigram words with
higher frequency in other classes than hate speech class. For example, bigrams like “lame nigga, white trash, bitch
made” are more frequently appearing in class “Offensive but not Hate Speech” as compared to class “Hate Speech”.

Hence, it might be possible that the classifier learned weak learning rules.

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b53

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

4.1 Comparative study

In this study, we conducted a comparative analysis of three distinct feature extraction approaches: Bigram with
CountVectorizer, TF-IDF and Word2Vec. The experimental results distinctly favored the Bigram with TF-IDF
method, which outperformed its counterparts. This preference for Bigram with TF-IDF can be attributed to its

ability to preserve word sequence information, a feature that

Table 1: Classification Report for CountVectorizer using SVM, NB, and KNN

SVS | NB | KNN

Precision recal fl-score precision recall f1-score precision recal fl-score support
0 0.89 | 0.92 0.91 0.88 0.95 0.91 0.79 0.99 0.88 1662
1 0 0 0 0 0 0. 0 0 0 3
2 0.77 | 0.69 0.73 0.81 0.65 0.72 0.88 0.28 0.43 600
accuracy 8.6 8.7 0.8 2265
macro avg 0.55 | 0.54 0.55 0.56 0.53 0.55 0.56 0.42 0.44 2265
weighted 0.86 | 0.86 0.86 0.86 0.87 0.86 0.81 0.8 0.8 2265
avg

Table 2: Classification Report for TF-1DF using SVM and LR

SVS | NB | KNN
Precision recal fl-score precision recall f1-score support

0 0.91 0.87 0.89 0.92 0.85 0.88 1662

1 0 0 0 0 0 0 0
2 0.69 0.78 0.73 0.65 0.79 0.71 600
accuracy 0.83 2265
macro avg 0.53 0.55 0.54 0.52 0.54 0.53 2265
weighted avg | 0.85 0.85 0.85 0.84 0.83 0.83 2265

Table 3: Classification Report for TF-1DF using Naive Bayes

SVS | NB | KNN
Precision recal fl-score precision recall f1-score support

0 0.85 0.97 0.91 0.84 0.96 0.9 1662

1 0 0 0 0 0 0 0
2 0.88 0.52 0.65 0.82 0.5 0.62 600
accuracy 0.82 0.84 2265
macro avg 0.58 0.5 0.52 0.55 0.49 0.51 2265
weighted avg | 0.86 0.85 0.84 0.83 0.84 0.82 2265

JETIR2402105

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

| b54

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

Table 4: Classification Report for Word2Vec using SVM

SVS | NB | KNN
Precision recal fl-score precision recall f1-score support

0 0.75 1 0.86 0.85 0.68 0.76 1696

1 0 0 0 0 0 0 4
2 0 0 0 0.4 0.65 0.5 565
accuracy 0.75 0.67 2265
macro avg 0.25 0.33 0.29 0.42 0.44 0.42 2265
weighted avg | 0.56 0.75 0.64 0.74 0.67 069 2265

Table 5: Classification Report for Word2Vec using Naive Bayes

SVS | NB | KNN
Precision recal fl-score precision recall f1-score support

0 0.75 1 0.86 0.8 0.91 0.85 1696

1 0 0 0 0 0 0 4
2 0 0 0 0.53 0.31 0.39 565
accuracy 0.75 0.76 2265
macro avg 0.25 0.33 0.29 0.44 0.41 0.41 2265
weighted avg | 0.56 0.75 0.64 0.73 0.76 0.73 2265

Word2Vec lack. In our study, we evaluated four machine learning algorithms, as elaborated in 3. Notably, Support
Vector Machine (SVM) emerged as top performers. SVM’s strength lies in its use of threshold functions for data
separation, a feature-independent approach that can effectively handle both linear and nonlinear data due to its
kernel functions. LR, while versatile, is inherently linear in nature, making it less suitable for complex, non-linear
data. Subsequently, we noted lower performance from Naive Bayes (NB), K-Nearest Neighbors (KNN). NB’s
performance suffered due to its assumption of conditional independence among features, limiting its adaptability
to intricate feature relationships. Lastly, KNN exhibited the poorest performance, primarily due to its lazy learning

approach and susceptibility to noisy data, rendering it unsuitable for hate speech tweet detection.

Comparative Results

0.9

0.B
0.7
0.6
0.5
0.4
0.3
0.2
0.1

[+

S5VM MNB LR KMMN

= Word2vec

m CountVector m TF- IDF

Fig.1 : Comparision of results.

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b55

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

5 Conclusions

The proposed work effectively harnessed automated text classification techniques to detect hate speech messages
and conducted a comprehensive evaluation of three feature engineering methods and eight machine learning
algorithms for hate speech classification. The results unequivocally SVM with CountVectorizer emerged as the
leader in accuracy, while SVM and Logistic Regression with TFIDF excelled in precision. When it came to recall,
SVM, KNN with Word2Vec, Naive Bayes demonstrated top-tier performance. These findings serve as a valuable
benchmark for future research in the domain of automatic hate speech detection, offering practical significance.
From a scientific perspective, this study contributes by presenting results using various scientific measures for text
classification. Nevertheless, it is essential to acknowledge two notable limitations in the proposed ML model.
Firstly, it faces challenges in terms of real-time prediction efficiency, which remains an area for improvement.
Secondly, the model currently lacks the capability to assess the severity of hate speech messages. Looking ahead,
future work will strive to enhance the model’s real-time predictive abilities and its capacity to evaluate the severity
of hate speech messages. This improvement journey will involve exploring lexicon-based techniques and expanding
the dataset to facilitate more efficient rule learning. In doing so, we aim to bolster the model’s performance and its

applicability in addressing the complex challenges posed by hate speech in online communication.

References

1. Jonathan Rosa and Yarimar Bonilla. Deprovincializing trump, decolonizing diversity, and unsettling
anthropology. American Ethnologist, 44(2):201-208, 2017.

2. Alan Travis. Anti-muslim hate crime surges after manchester and london bridge attacks. The Guardian, 20, 2017.
3. Sean MacAvaney, Hao-Ren Yao, Eugene Yang, Katina Russell, Nazli Goharian, and Ophir Frieder. Hate speech
detection: Challenges and solutions. PloS one,

14(8):e0221152, 2019.

4. Alex Hern. Facebook, youtube, twitter and microsoft sign eu hate speech code. The Guardian, 31, 2016.

5. Paula Fortuna and Sérgio Nunes. A survey on automatic detection of hate speech in text. ACM Computing
Surveys (CSUR), 51(4):1-30, 2018.

6. Irene Kwok and Yuzhou Wang. Locate the hate: Detecting tweets against blacks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 27, pages 1621-1622, 2013.

7. Sanjana Sharma, Saksham Agrawal, and Manish Shrivastava. Degree based classification of harmful speech
using twitter data. arXiv preprint arXiv:1806.04197, 2018.

8. Shervin Malmasi and Marcos Zampieri. Detecting hate speech in social media. arXiv preprint arXiv:1712.06427,
2017.

9. Zeerak Waseem and Dirk Hovy. Hateful symbols or hateful people? predictive features for hate speech detection

on twitter. In Proceedings of the NAACL student research workshop, pages 88-93, 2016.

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b56

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

10. Njagi Dennis Gitari, Zhang Zuping, Hanyurwimfura Damien, and Jun Long. A lexicon-based approach for hate
speech detection. International Journal of Multimedia and Ubiquitous Engineering, 10(4):215-230, 2015.

11. Stéphan Tulkens, Lisa Hilte, Elise Lodewyckx, Ben Verhoeven, and Walter Daelemans. A dictionary-based
approach to racism detection in dutch social media. arXiv preprint arXiv:1608.08738, 2016.

12. Edel Greevy and Alan F Smeaton. Classifying racist texts using a support vector machine. In Proceedings of
the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pages
468-469, 2004.

13. Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. Abusive language detection
in online user content. In Proceedings of the 25" international conference on world wide web, pages 145-153, 2016.
14. Karthik Dinakar, Roi Reichart, and Henry Lieberman. Modeling the detection of textual cyberbullying. In
Proceedings of the International AAAI Conference on Web and Social Media, volume 5, pages 11-17, 2011.

15. Shuhua Liu and Thomas Forss. Combining n-gram based similarity analysis with sentiment analysis in web
content classification. In Special Session on Text Mining, volume 2, pages 530-537. SCITEPRESS, 2014.

16. Sebastian Koffer, Dennis M Riehle, Steffen Hohenberger, and Jorg Becker. Discussing the value of automatic
hate speech detection in online debates. Multikonferenz Wirtschaftsinformatik (MKWI 2018): Data Driven X-
Turning Data in Value, Leuphana, Germany, 2018.

17. Pete Burnap and Matthew L Williams. Us and them: identifying cyber hate on twitter across multiple protected
characteristics. EPJ Data science, 5:1-15, 2016.

18. William B Cavnar, John M Trenkle, et al. N-gram-based text categorization. In Proceedings of SDAIR-94, 3rd
annual symposium on document analysis and information retrieval, volume 161175, page 14. Las Vegas, NV, 1994.
19. Gudbijartur Ingi Sigurbergsson and Leon Derczynski. Offensive language and hate speech detection for danish.
arXiv preprint arXiv:1908.04531, 2019.

20. Anna Schmidt and Michael Wiegand. A survey on hate speech detection using natural language processing. In
Proceedings of the fifth international workshop on natural language processing for social media, pages 1-10, 2017.
21. Upendra V Chaudhari and Michael Picheny. Matching criteria for vocabularyindependent search. IEEE
transactions on audio, speech, and language processing, 20(5):1633-1643, 2012.

22. Ghulam Mujtaba, Liyana Shuib, Ram Gopal Raj, Retnagowri Rajandram, and Khairunisa Shaikh. Prediction of
cause of death from forensic autopsy reports using text classification techniques: A comparative study. Journal of
forensic and

legal medicine, 57:41-50, 2018.

23. Yang Li and Tao Yang. Word embedding for understanding natural language: a survey. Guide to big data
applications, pages 83-104, 2018.

24. Ye Wang, Zhi Zhou, Shan Jin, Debin Liu, and Mi Lu. Comparisons and selections of features and classifiers
for short text classification. In lop conference series: Materials science and engineering, volume 261, page 012018.
IOP Publishing, 2017.

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b57

http://www.jetir.org/

© 2024 JETIR February 2024, Volume 11, Issue 2 www.jetir.org (ISSN-2349-5162)

25. David D Lewis. Naive (bayes) at forty: The independence assumption in information retrieval. In European
conference on machine learning, pages 4-15. Springer, 1998.

26. Nitin Bhatia et al. Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085, 2010.

27. Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest neighbor based algorithm for

multi-label classification. In 2005 IEEE international conference on granular computing, volume 2, pages 718—
721. IEEE, 2005.

JETIR2402105 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | b58

http://www.jetir.org/

