JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

A REVIEW ON INSIGHTS OF HERBAL NEPHROPROTECTIVE AGENTS

Muhammad Zishan¹, Aslam², Zubair Alam³, Dr. Anjana Sharma⁴

Assistant professor, Jeevan Gopi Institute of Pharmacy& Technology, Ahera Baghpat Delhi NCR
 Research Scholar, Department of Pharmaceutical Technology, MIET, Meerut
 Professor, Department of Pharmaceutical Technology, MIET, Meerut

Abstract: Nephrotoxicity is one of the most commonly reported kidney problems and occurs, when the body consumes a chemical or medication. Medication may be an NSAID, a chemotherapeutic agent, or an antibiotic. The adverse effect of a drug or another chemical on renal function is referred to as "nephrotoxicity." This explorative article was undertaken to provide a holistic review of known nephroprotective (NP) phytoconstituents along with their research-based evidences and mechanism. The present review aimed to provide in-depth and better evidences of the global burden of nephrotoxicity, pathophysiology of nephrotoxicity, nephroprotective plants and their phytoconstituents. By classifying and discussing the literature, we obtained many phytoconstituents, which were derived from herbal medicinal plants, from different origin. The mechanism of nephrotoxicity by several methods was proposed through discussing the literature. The occurrence and progression of Nephrotoxicity or AKI could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce renal cell injuries caused by excessive ROS formation. The plants which have – flavonoids, flavone, alkaloids, triterpenoids, glycosides, saponin, Gallic acid, β-Sitosterol, vitamin C, vitamin E etc. shows anti-oxidant and nephroprotective properties.

Keywords: Nephrotoxicity, Nephroprotective plants, Cisplatin, In silico.

I. INTRODUCTION

The kidneys, which comprise the most critical organs in human body, play a crucial role in supporting fluid equilibrium, erythrocyte production, regulate blood pressure, maintaining bone consistency, controlling hormonal balance, and filtering and eliminating nitrogenous and other waste products from the body [1,2]. Additionally, they perform a role in the body's excretion of toxic waste and metabolic waste, as well as the metabolism of carbs, protein, lipids, and other nutrients. Human bodies are frequently exposed to toxic substances and agents in the environment, as well as a variety of physiological conditions, such as metabolic activity, an increase in the concentration of chemicals filtered in the tubular fluid, and heavy blood flow to the organs, all of which make people more vulnerable to toxins. The terminology "renal toxicity" is used to describe the quick loss of kidney function caused by the toxicity of medicines and other substances [3,4]. The Kidney and urinary tract disorders are rated 12th on the list of the main factor of mortality in the world; a significant issue in worldwide public health is kidney disease. Chronic kidney disease affects 10% of the world's population, and millions of people die every year due to economic reasons. 35 million of the 58 million illnesses that occurred in the world in 2005 were due to chronic kidney disease. According to a global perspective, over the past 15 years, the incidence of renal failure (or chronic kidney disease) has doubled [5,6] acute kidney damage is detected in 8%–18% or 22% of hospitalised patients, when the intensive care unit received new patients, the majority of them developed acute kidney injury within two days [7]. A sudden decline in kidney function, an increase in blood urea nitrogen and serum creatinine, and a decreased glomerular filtration rate are all symptoms of Acute Kidney Injury (AKI), a condition that can be reversed Glomerular Filtration Rate (GFR). Additionally, it can be claimed that AKI is specifically related to an oxygen and nutritional imbalance, which is brought on by reduced microcirculation to the nephrons and higher energy needs as a result of oxidative stress in the cells, but it's always intriguing to think of employing antioxidants to avoid AKI [8,9]. This review focuses on plants that have been demonstrated to have nephroprotective action in vitro, in vivo, and in silico investigations.

II. NEPHROTOXICITY OR RENAL TOXICITY

The nephron which is known as the smallest unit of kidney as well as a functional and structural segment of the kidney. The average kidney structure contains millions of nephrons, and its primary job is to filter waste from the body while also maintaining the pH of the blood, the body's fluid balance, and the hormones that encourage the synthesis of red blood cells. Additionally, it controls blood pressure and bone health. The kidneys have three primary functions: renin and erythropoietin synthesis and secretion, clearance and accumulation of waste items from external metabolism, and plasma filtration and maintenance of whole-body electrolyte homeostasis [10,11]. Nephrotoxicity refers to a detrimental impact on renal function by a drug or other substances. Numerous processes, such as renal tubular toxicity, glomerular injury, crystal nephropathy, and inflammation, contribute to nephrotoxicity. Hemodynamic alterations, direct cellular and tissue damage, tissue inflammation, and/or renal excretion blockage can all lead to nephrotoxicity or renal toxicity [12]. Various substances, including molds and fungus, cancercausing medications like cisplatin, antibiotics like aminoglycosides, and metals like lead, arsenic, and mercury, can result in nephrotoxicity. Nephrotoxicants primarily affect the renal cells [13,14]. Depending on anatomical location and appearance of clinical it could be either acute or chronic renal damage due to the medication [15]. Nephrotoxicity damages the kidney, and the clinical manifestation of this is diminished renal function [16]. The medications that have a negative impact on the kidneys are taken off the market mostly due to nephrotoxicity. According to reports, acute kidney injury (AKI) episodes in hospitals are reportedly caused by a number of reasons, including drug-induced nephrotoxicity (8–60%). Nephrotoxicity is caused by a sudden reduction in the kidney's excretory systems, which increases the build-up of waste products from protein metabolism like urea, nitrogen, and creatinine [17]. Acute tubular necrosis—which results in acute kidney injury (AKI)—is frequently brought on by nephrotoxic damage to renal tissue [18]. Additionally, poor urinal drainage may be the cause [Rahman M, Shad F.et.al.2012]. In addition to lowering the glomerular filtration rate (GFR), decreased drainage raises intra-tubular pressure

III. PATHOPHYSIOLOGY OF CISPLATIN INDUCED NEPHROTOXICITY

Cisplatin is a platinum inorganic derivative. It is used to treat several kinds of cancer, including bladder, ovarian, lung, and testicular cancers (20). High-grade malignancies like osteosarcoma and soft tissue tumours like squamous cell carcinoma are also treated with cisplatin when used in combination therapy (21,22). Depending on the amount of cisplatin used, there may be varying degrees of nephrotoxicity. A single cisplatin dose may cause reversible kidney damage in certain patients, whereas high doses or repeated rounds of therapy may result in irreversible renal failure (23). According to pharmacokinetic studies, Nephrotoxicity is primarily caused by the long-time agglomerate of cisplatin in the kidney and the high volume of cisplatin dispersion. [24] The majority of pathogenic mechanisms that result in cisplatin-induced nephrotoxicity include ischemia or necrosis of the proximal renal tubular epithelial cells, as well as decrease in renal blood flow and glomerular filtration rate [25,26]. The dose of cisplatin is favourably linked with the histopathological alterations in cisplatin-induced nephrotoxicity. By first slowly entering kidney tubular cells through the organic cation transporter 2 and forming hydrates with water molecules, cisplatin continuously builds up in the kidneys [27]. The creation of cisplatin hydrate is reversible, and by splitting into cisplatin and water molecules, the substance can be expelled from cells. Damage of DNA, oxidative stress, autophagy and apoptosis occur as a result of cisplatin gets retains and accumulates in renal cells [28]. (Fig. 1)

Cellular uptake and transport: The kidneys are the primary route of cisplatin excretion. During excretion, it gets concentrated, and the absorption in renal tubular epithelial cells is significantly higher than that in the blood. Renal cells take up cisplatin in the kidney through passive diffusion. During glomerular filtration, cisplatin and its components are released and reabsorbed in the renal tubules, causing a high concentration of the drug in the kidneys [29]. In addition, solute carrier family 47 member and multidrug and toxin extrusion 1 secrete cisplatin into the lumen [30]. Cisplatin-induced nephrotoxicity can be considerably decreased by oct2 gene knockdown [31].

DNA damage is caused by binding of cisplatin to DNA and creating DNA-damaging adducts, producing its cytotoxic effects [32]. The water molecules in a watery environment change the Cl⁻ ligand of cisplatin to create a positively charged hydrated complex ion, which is drawn to the nucleus by DNA electrostatic attraction. When this complex binds to DNA, it creates an adduct that prevents DNA replication and synthesis in rapidly growing cells by causing DNA cross-linking [33]. Less than 1% of platinum, including cisplatin, directly binds to nuclear DNA [34]. The hydrolysis of cisplatin results in the formation of positively charged metabolites that preferentially collect in negatively charged mitochondria. As a result, mitochondrial density and mitochondrial membrane potential in cells both affect how

sensitive cells are to the drug cisplatin [35]. The renal proximal tubule is the kidney area most vulnerable to cisplatin because it has areas with relatively high mitochondrial density [36].

Inflammation: The severity of cisplatin-induced acute renal failure and injury can be greatly reduced by TNF-inhibition or knockout suggests that elevated TNF-expression plays a crucial role in cisplatin-induced nephrotoxicity. TNF expression in the kidneys of a cisplatin-induced nephrotoxic mouse is increased, and this increased expression is associated with increased renal TNF-levels [37]. TNF- causes oxidative stress by triggering proinflammatory cytokines and chemokines, which promotes kidney damage. By phosphorylating p38 mitogen-activated protein kinase (p38 MAPK) and controlling the generation of TNF, cisplatin hydroxyl free radicals ultimately cause the activation of nuclear factor kappa B. Dimethyl thiourea, an agent that neutralizes hydroxyl radicals, thereby prevents the activation of p38 MAPK and the production of TNF-mRNA in mice kidneys. Inhibiting p38 MAPK effectively protects the kidney damage caused by cisplatin by lowering TNF production (38). When the mitochondria fail, O₂ is produced; however, the inflammatory response of cisplatin causes the up regulating the direct NO-producers TNF, nicotinamide adenine dinucleotide phosphate oxidase, and inducible nitric oxide synthase (iNOS). NO- and O²⁻ combine to form ONOO-, which can oxidize, nitrate, and induce apoptosis and necrosis [39]

Oxidative stress: Recent research has demonstrated that the kidney damage caused by cisplatin is characterized by elevated levels of malondialdehyde, 4-hydroxy-8-hydroxydeoxyguanosine, and 3-nitrotyrosine and a reduction in the quality of the antioxidant enzymes catalase and superoxide dismutase is largely caused by oxidative and nitrosative stress. As a result, antioxidants and ROS scavengers have potent protective effects against nephrotoxicity [40]. Adenosine triphosphate (ATP) depletion occurs when ROS disrupt the I-IV of the mitochondrial complex enzymes and stop the regular transmission of the oxidative respiratory chain [41]. Then, elevated ROS cause lipid peroxidation, which modifies membrane permeability and structure, further impairs cellular function [42]. Finally, ROS destroy proteins, carbohydrates, and amino acids, which encourage DNA damage and apoptosis. Furthermore, increased ROS levels can result in an increase in the synthesis of Fas- ligand (a cell membrane cytokine) and tumor necrosis factor alpha which accelerates apoptosis [43].

Endoplasmic reticulum stress pathways: The apoptotic mechanism that is regulated by ERS can also be activated by cisplatin. When cisplatin enters cells, it interacts with the endoplasmic reticulum membrane's cytochrome P450 (CYP450) enzymatic system to cause oxidative stress and activate caspase-12, which causes apoptosis [44]. The endoplasmic reticulum phospholipase A2 enzyme, which inhibits downstream p53 and stimulates upstream caspase-3, is likewise activated by the ERS route. In the absence of mitochondrial malfunction, p53 and caspase-3 may be connected by the endoplasmic reticulum [45].

Apoptosis/Necrosis: According to the studies, cisplatin produces renal tubular epithelial apoptosis at low concentrations (8 μ M) and necrosis at high concentrations (800 μ M) [46]. Cisplatin-induced apoptosis in renal tubular cells is predominately linked to ERS pathways, death receptor-mediated external pathways, and mitochondria-mediated endogenous pathways.

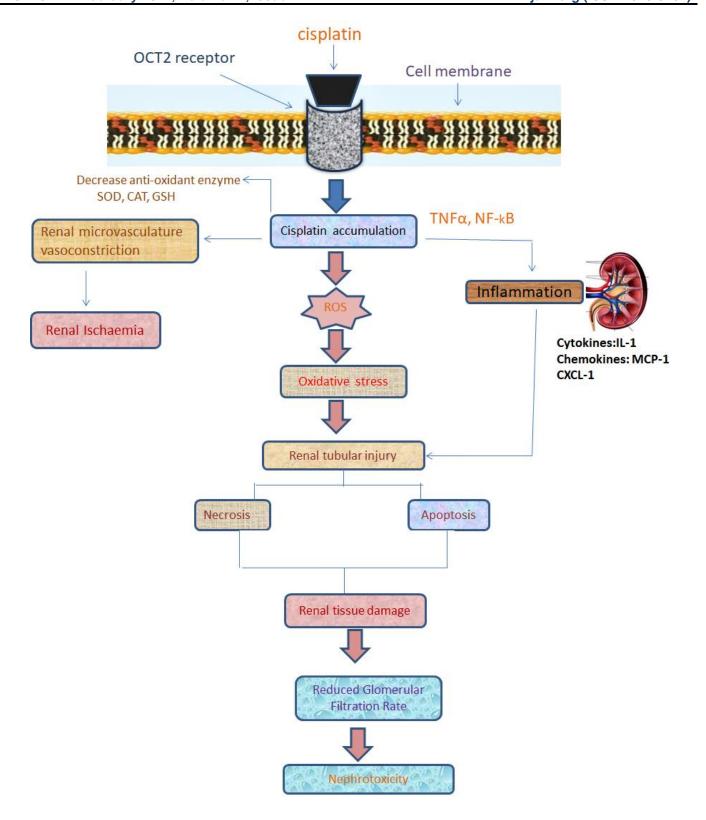


Fig.1 Illustrates the method by which cisplatin causes nephrotoxicity.

OCT2 receptor- organic cation transporter SOD- superoxide dismutase, CAT- catalase, GSH-glutathione $TNF\alpha$ - tumor necrosis factor alpha, NF-kB- nuclear factor kappa B

Figure 1 The primary molecular pathways responsible in the development of cisplatin causing acute kidney disease (AKD) are depicted in a pathophysiological diagram. Cisplatin accumulation increases the tumour necrosis factor alpha (TNF-alpha) production (47,48) and reactive oxygen species, both of which promotes inflammation [49], oxidative stress [50], and vascular injury [51], and apoptotic pathways which causes renal tissue damage and reduced glomerular filtration rate as a result nephrotoxicity occurs [52].

Nephroprotective Plants - It has been demonstrated that when medications and nephroprotective plants are taken simultaneously, the toxicity of the drugs is reduced (53). Numerous researches have been conducted to formally establish that plants can be utilized to treat renal illness. Plants exhibit

nephroprotective effect as a result of a variety of complex chemical compounds (54). Plant's secondary metabolite chemicals known as flavonoids, notably nephroprotective flavonoids, have a critical impact on kidney physiology (55). According to recent research on the effects of flavonoids on renal function and the mechanisms of action involved, flavonoids have a crucial role in renal physiology, possess diuretic and natriuretic properties, and protect against Reno degeneration in Acute kidney Inflammation (AKI) and Chronic kidney disease (CKD) caused by a variety of etiologies, including hypertension, diabetes, nephrotoxicity, and stress oxidative agents (56). Numerous studies have been done to give a scientific basis for the use of herbs in treating a variety of diseases, including chronic kidney disease, because of the wide range of benefits they provide for treating different human disorders.

It has been demonstrated by Gaikwad et al.2012, that when medications and nephroprotective substances are taken at the same time, the toxicity of the drugs is reduced. Nephroprotectors are substances that can reduce nephrotoxic effects. Due to a variety of complex chemical compounds, plants provide nephroprotective properties. Many researches have been performed to demonstrate scientifically that plants can be applied to cure renal illness. Flavonoids are plant secondary metabolite chemicals that have important effects on kidney function, including nephroprotective properties. [57]

Zhang et al. have found in the recent study that Rhubarb has shown remarkable effects in preventing kidneys from the oxidation, inflammation, autophagy, and fibrosis. Rhubarb's primary active components of anthraquinones. They dramatically decreased blood urea nitrogen (BUN), UA, SCr, superoxide dismutase (SOD), and malondialdehyde (MDA) levels as well as normal renal weight. In rats with diabetic nephropathy, they also reduced interleukin-6 (IL-6) and tumor necrosis factor (TNF) production and turned on the PI3K/Akt/glycogen synthase kinase-3 (GSK-3) signaling pathway. However, inappropriate excessive quantity and usage of rhubarb can seriously impair renal function causing nephrotoxic effects. These effects have gained more attention of many researchers [58]

Abelmoschus moschatus is a popular herbal remedy used in Ayurvedic medicine to treat kidney-related illnesses. It is available as tea, medicated oil, medicated wine etc. Amarasiri et al have recently found that it has promising effect against adriamycin-mediated acute kidney injury by antioxidant, anti-inflammatory, and anti-apoptosis pathways [59]

The nephroprotective activity of *Combretum Micranthum* has been demonstrated by Kpemissi et al.2019. and was tested in mice for 14 days study, followed by a single intraperitoneally CP injection at dose of 200-400 mg/ kg on the fifth day. At both doses, CM normalizes renal function by correcting markers of serum and urine renal damage, transaminases, and oxidative stress markers.[60]

Nephroprotective effectiveness of *Homonoia riparia* has been demonstrated by Xavier et al.2017. The MTT test demonstrated that H. riparia fractions of butanol and water (200 g/ml) exhibited significant nephroprotective activity against cisplatin-induced cell damage in HEK-293 cells.[61]

A gentamicin-induction approach in rats was used to assess nephroprotective efficacy by Wu et al.2012. *Macrothelypteris oligophlebia* extracts at 200 and 400 mg/kg inhibited the elevated BUN and Cr levels, according to the findings. The influence on renal tissue enzymes also suggested activity, with a considerable drop in MDA and NO and a rise in SOD, CAT, and GSH-Px. The Histopathological examination results revealed that a dosage of 500 mg/kg provided the highest histological protection against gentamicin-induced renal tubule damage.[62]

An *in vivo* investigation utilizing gentamicin-induced mice revealed nephroprotective efficacy by Hussain et.al.2012, that *Solanum xanthocarpum* extracts at 200 and 400 mg/kg provided protection against increased renal weight ratio. It gives optimal protection against the index of kidney organs and enhanced urine production at 400 mg/kg and also, plasma and urine test results showed a significant decrease in urea and creatinine concentrations. *S. xanthocarpum* was also tested on kidney antioxidants, and it showed that it can prevent the decreased activity of SOD, CAT, and GSH. Surprisingly, 400 mg/kg provided the best protection, practically identical to a conventional control. Histopathological examinations at 200 mg/kg revealed minimal degenerative and necrotic tubular modification compared to 400 mg/kg, showing tubular epithelial cell regeneration.[63]

In vivo and in vitro nephroprotective efficacy of *Ceiba pentandra* has been demonstrated by Abouelela *et* al. 2020. The increased blood creatinine, BUN, cysteine, micro albuminuria, urine KIM-1, TNF-, and CRP were considerably reduced by 400 mg/kg of C. pentandra ethyl acetate in in-vivo testing on MTX-induced nephrotoxic rats. In addition to a decline in renal MDA and NO levels, there was an increase in SOD, CAT, and GSH activity.[64]

The nephroprotective efficacy of *Eurycoma longifolia* has been demonstrated *by* Chinnappan et al.2019. The extract was examined in animal models of Paracetamol intoxication at doses of 100, 200, and 400 mg/kg. The results showed that albumin levels that were near normal and a reduction in total protein

levels were both stopped by extracts at 200 and 400 mg/kg. The urea and creatinine levels decrease significantly with the same dose, and the dose-dependent creatinine clearance is also increased. According to the histological analysis, a dosage of 400 mg/kg provided the highest protection while maintaining a kidney look that was nearly normal.[65]

Achillea millefolium (Asteraceae)- The nephroprotective activity of Achillea millefolium in humans have been done, in randomized controlled experiment, 31 individuals with chronic renal disease were enrolled; 16 of them received 1.5 g powdered of A. millefolium flower three times per week for two months, while 15 received a placebo during that time. In order to determine the impact of a millefolium on plasma nitric oxide metabolites (nitrite and nitrate), plasma samples were taken before and after the research period. After two months, plasma nitrite and nitrate concentrations reduced. (66)

Acacia Gum (Fabaceae) - The nephroprotective activity of Acacia Gum in humans have been done, eight adult patients with asymptomatic non-terminal renal failure who consumed Lipidol and took 50 g of Acacia Gum daily had lower serum urea, larger faeces, and excreted more nitrogen from their stools than the eight control patients who took pectin supplementation in place of acacia.[67]

Avena sativa L. (Poaceae)-The nephroprotective activity of Avena sativa L in humans have been done, With 97 individuals, a prospective, interventional, randomized, single-blind, placebo-controlled experiment was conducted. The subjects received a 250 mg stevia pill twice day, combined with either an ARB or CCB (angiotensin-II receptor blocker or calcium channel blocker). First follow-up appointments were made three months after the break. The biochemical testing required the collection of blood and urine samples. The baseline examination was conducted using a standardized questionnaire. Each subject gave their informed consent. [68]

Salacia chinensisa (Celastraceae)-The nephroprotective activity of Salacia chinensisa in humans have been done, Randomization was used to divide 30 stable diabetic CKD patients into two groups, A and B, each with 15 patients. Group B received a placebo while Group A received the experimental medicine Salacia chinensisa 1000 mg twice day. Renal function evaluations: Serum creatinine and creatinine clearance, lipid profile, interleukin-6, serum homocysteine, and indicators of endothelial dysfunction were all assessed at baseline and over the course of a six-month follow-up period. (69)

Panax ginseng (Araliaceae) - The nephroprotective activity of **Panax ginseng** in humans have been done, 197 individuals with early CKD (stage 2 or 3) were enlisted, and they were then randomly assigned to either PG (500 mg orally every day) or a placebo for a period of six months. Analysis of renal function (creatinine and urea clearance), oxidative stress, inflammation assessment, and lipid profile were performed at baseline, the end of the treatments, and six months after the treatments, From the 177 patients who finished the research. (70)

Curcuma longa (Zingiberaceae)-The nephroprotective activity of Curcuma longa in humans have been done, a 100 patient, double-blind, placebo-controlled research on pruritus. Curcuma longa or a placebo group was randomly assigned to the patients (mean age, 53.3 years). The two groups pruritus scores and biochemical markers, such as high-sensitivity C-reactive protein (hs-CRP), were compared before and after the study. (71)

TABLE 1: THE POTENTIAL OF MEDICINAL PLANTS AS NEPHROPROTECTIVE IN DIFFERENT ANIMAL MODEL

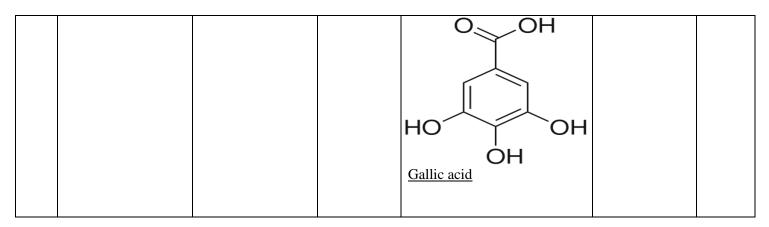
S. N	Plant	Comman Name	Family	Part Used	Chemical Constituent	Renal Effect	Subjects involved	Ref.
1	Allium sativum	Garlic	Amaryllidace ae	Bulb	Allicin ,Allin, Fatty acids, and Essential amino acids	Renal protection	Wistar rats	72
2	Ocimum sanctum	Tulsi	Lamiaceae	leaves	Ursolic acid	Nephroprotective	Wistar albino rats	73
3	Punica granatum	Pomegran ate	<u>Lythraceae</u>	Rind	Urolithins ,El lagic acid	Renal protection	Wistar rats	74

	T	1	1		1	T	1	_
4	Trigonella foenum graecum	Fenugreek	<u>Fabaceae</u>	leaves	VitaminC, minerals, alkaloids, flavonoids, fiber, saponins, steroidal saponins, proteins, carbs, and lipids	Nephroprotective	Wistar rats	75
5	Suaeda vermiculata	Seablite	Amaranthace ae		Vanillin, gallic acid, cinnamic acid, coumaric acid, and catechin. Acids Amino	AKI protection	Male Sprague Dawley rats	76
6	Aerva lantana	Gorakhdi, ni Bur	Rutaceae	whole plant	Botulin, ervos ide, Aervolanine, βSitosterol, Stigmasterol, Kaempferol, Campesterol, Propionic acid	Nephroprotective, Protect against tubular cell toxicity	Wistar rats	77
7	Coleus aromaticus	Mexican Mint	Lamiaceae		carvacrol, thymol, 8eugenol, chavicol, ethyl salicylate	Nephroprotective	Wistar rats	78
8	Sphaeranth us indicus	Gorakh mundi	Asteraceae	Fruits	chavicol, α- ionon,e, dcadinene, p- methoxycinn amadehyde a- terpinene,, Lactone, Sterol Glycoside, Flavanoids and Essential oil citral, geraniol, geranyl acetate, βionone, alkaloids	Nephroprotective' Protect acute tubular necrosis	rats	79
9	Pedalium murex	Bara Gokhuru	Pedaliaceae	Dried Fruit	flavonoids, Flavones, Alkaloids Tri-terpenoid, Carbohydrate	Renal protection, antioxidant activity	Wistar rats	80

	T	1	T	1	T	T	ı	1
					s, Glycosides			
					and Saponin			
10	Combretum micranthum	kinkeliba	Combretacea e	Leaf	Isovitexin, gallic acid,	Nephroprotective	in vivo, in vitro	81
		KITIKCIIDA			cianidanol,		rats	
					and			
					epicatechin			
11	Homonoia		Euphorbiace	All	Gallic acid	Nephroprotective	In-vitro	82
	riparia lour	Kalire	ae.	Parts			rats	
		(Batek)		Of				
				The				
10	G 1	37 11	G 1	Plant	D	D 1	3.41	02
12	Solanum	Yellow- fruit	<u>Solanaceae</u>	Fruits	Protoapigeno	Renal protective	Mice rodents	83
	xanthocarp	nightshade			ne, 5,7- dihydroxy-		rodents	
	um	ingitishade			6,8-dimethyl			
					flavanone,			
					naringenin,			
					naringenin-			
					4'-			
					Oglucoside,			
					and			
					matteucinol			
13	Ceiba	Kapok,	<u>Malvaceae</u>	Aerial	Glochidiobos		In vitro,	84
	pentandra	java			ide, cis- and	Nephroprotective	Rat	
		cotton,			trans-			
		java kapok	1		clovamide,			
					cinchonains			
					1a and 1b, and quercitrin			
14	Sonchus	Common	Asteraceae	Aerial	villosol,		Wistar	85
17	oleraceus	SOW	Tisteraceae	Acriai		Nephroprotective	rats	0.5
	oteraceus	thistle,			chicoric acid,	тершоргоссиче	Tats	
		Sow			ursolic acid,			
		thistle,			caftaric acid,			
		Soft thistle			- 1			
					sitosterol,Tar			
					axasterol,			
					luteolin,			
					apigenin,			
15	Dan duarr	Vomen	Analiass	Loof	rutin,	Danal mesta ati an	In wites	86
15	Dendropan ax	Korean dendropan	Araliaceae	Leaf And	rutin, syringin,	Renal protection	In vitro in vivo	00
	morbifera	ax		Stems	chlorogenic		diabetic	
	morbijera	ax.		Stems	acid, and		rat	
					neochlorogen		Tut	
					ic acid			
16	Carica	Papaya,	Caricaceae	Leaf	Cysteine,p-		In silico	87
	рарауа	Papaw,		And	cumarellamic	Nephroprotective,	in vivo	
		pawpaw		Sead	dimethoxy	Increase	mice	
					phenol, and l-	glomerular		
					glutamic	congestion,		
					acidtocopher	tubular necrosis,		
					ol, ascorbic	and peritubular		
					acid,	necrosis		
					carpaine, and			
					deoxycempfe		<u> </u>	

				1	rol			
					homocysteine			
17	Boesenbergi a rotunda	Finger root Chinese ginger	Zingiberacea e	Rhizo me	Panduratin A	AKI protection	In vitro, in vivo mice	88
18	Abelmoschu s esculentus L	Bhendi	<u>Malvaceae</u>	Fruit, Seed, Root	Thiamine riboflavin, carotene, folic acid, and tocopherol, palmitic acid	nephroprotective	In vivo mice	89
19	Acorus calamus	sweet flag	<u>Acoraceae</u>	Roots	flavonoids, Monoterpene, Sesquiterpen e, Phenyl Propanoid and Quinone	Renal antioxidant activity	male albino rats	90
20	Aerva javanica	kapok bush, desert cotton	Amaranthace	Whol e Plant	Aervoside, Aerolanine, Kaempferol, Propionic Acid, Carboline-I, Stigmasterol, Kaempferol, Hentriaconta ne, and Aervoside	protect acute tubular necrosis of proximal renal tubules	Wistar	91
21	Andrograph is paniculata	Creat, green chiretta	Acanthaceae	Leave	Flavonoid and Polyphenolic compounds	Significant reduction of necrosis in proximal tubules of kidneys	male albino rats	92
22	Aristolochia indica	Isharmul	Aristolochiac eae	Leave	Flavonoids, Alkaloid, Saponin	Enhance free radical scavenger activity in kidney	Wistar rats	93
23	Asparagus racemosus	Satawar	Liliaceae	Roots	Saponins, polyphenols, flavonoids, phytosterols, and ascorbic acid	Protect renal necrosis and oxidation activity	Wistar rats	94
24	Avuri kudineer	Black heena	Fabaceae	Leave s	glycoside indican, indigotine, indirubin, flavanoids, rich source of potash	Decoction inhibit the binding by alkylating DNA and triggers transcription inhibition and renal apoptosis	albino rats	95
25	Azima tetracantha	Bee Sting Bush	Salvadoracea e	Roots	Flavonoids, Terpinoids, Alkaloids, Tannins,	Glomerular damage and tubular necrosis	Wistar albino rats	96

26 Bauhinia variegatea Tree Orchidaceae Stems Lupeol, Kaempferol3 Glucoside, Stigmasterol, Flavone Glycosides, and - Setosterol Setosterol Setosterol Protect glomerular and tubular arrangements with normal glycosides, and - Setosterol Setosterol Protect against lipid peroxidation, Saponins & Glucosinolate Stems Lupeol, Kaempferol3 Glucoside, Stigmasterol, Flavone Glycosides, and - Setosterol Setosterol Setosterol Protect against lipid peroxidation, Setosterol Setost	rats	97
26 Bauhinia variegatea tree Stems Lupeol, Kaempferol3 Gourd, Stigmasterol, Flavone Glycosides, and - Setosterol 27 Benincasa Hispida Gourd, e Stems Lupeol, Kaempferol3 Gourd, Stigmasterol, Flavone Glycosides, and - Setosterol Stems Lupeol, Kaempferol3 glomerular and tubular arrangements with normal Bowmen's capsule		
26Bauhinia variegateaOrchid treeOrchidaceaeStemsLupeol, Kaempferol3 -Glucoside, Stigmasterol, Flavone Glycosides, and - SetosterolProtect glomerular and tubular arrangements with normal Bowmen's capsule27Benincasa HispidaFuzzy Gourd,cucurbitacea eLeave sAsparagines,Protect against lipid		
variegatea tree Kaempferol3 glomerular and -Glucoside, Stigmasterol, Flavone Glycosides, and - capsule 27 Benincasa Hispida Gourd, e Stigmasterol Eave Stigmasterol Flavone Stigmasterol Eave Setosterol Flavone Stigmasterol Eave Setosterol Frotect against lipid		
variegatea tree Kaempferol3 glomerular and -Glucoside, Stigmasterol, Flavone Glycosides, and - capsule 27 Benincasa Hispida Gourd, e Stigmasterol Eave Stigmasterol Flavone Stigmasterol Eave Setosterol Flavone Stigmasterol Eave Setosterol Frotect against lipid		
-Glucoside, Stigmasterol, arrangements Flavone Glycosides, and - capsule 27 Benincasa Fuzzy cucurbitacea Hispida Gourd, e Setosterol -Glucoside, stubular arrangements with normal Bowmen's capsule Setosterol Protect against lipid	rats	
Stigmasterol, Flavone Glycosides, and - capsule 27 Benincasa Fuzzy cucurbitacea Hispida Gourd, e s Asparagines, lipid Stigmasterol, arrangements with normal Bowmen's capsule Setosterol Protect against lipid	rats	
Flavone Glycosides, Bowmen's and - capsule 27 Benincasa Fuzzy cucurbitacea Leave Hispida Gourd, e s Asparagines, lipid	rats	
Glycosides, and - capsule 27 Benincasa Fuzzy cucurbitacea Hispida Gourd, e s Asparagines, lipid Glycosides, and - capsule setosterol Protect against s Asparagines, lipid	rats	
27 Benincasa Fuzzy cucurbitacea Leave Setosterol Protect against Hispida Gourd, e s Asparagines, lipid	rats	
27 Benincasa Fuzzy cucurbitacea Leave Setosterol Protect against Hispida Gourd, e s Asparagines, lipid	rats	
27Benincasa HispidaFuzzy Gourd,cucurbitacea eLeave sAsparagines, lipidProtect against lipid	rats	
27Benincasa HispidaFuzzy Gourd,cucurbitacea eLeave sAsparagines,Protect against lipid	rats	
Hispida Gourd, e s Asparagines, lipid	Tais	98
	· ·	90
Ash Gourd mannifol. peroxidation		
proline, oxidative stress,		
arginine, and renal DNA		
aspartic acid, damage.		
glucose, and		
vitamin B		
and beta-		
sitosterol.		
		00
28 Benincasa Winter cucurbitacea Fruits Volatile Elevated tissue	rats	99
hispida Melon, e substances, GSH levels		
Wax fats, proteins, significantly and		
Gourd carotenoids, decreased lipid		
glycosides, peroxidation		
saccharides, levels		
vitamins,		
minerals, -		
sitosterone,		
and uronic		
acid		100
29 Boerhaavia Punarnava Nyctaginacea Fruits Alkaloids, Inhibit the	rats	100
diffusa e steroids, and xenobiotic		
flavonoids induced		
Triterpenoids nephrotoxicity		
, Lipids, due to their poten	į	
Glycoprotein antioxidant		
s, effects		
Carbohydrate		
s, and		
Lignins 20 Calatronia Apple of Appropriate Clyppoides proyents the	a 11a t	101
30 Calotropis Apple of Apocynaceae Flowe Glycosides, prevents the	albino	101
procera sodom, rs Flavonoids, kidney's release	rabbits	
calotrope Tannins and of reactive		
Triterpenes oxygen species		
31 Caralluma Caralluma Asclepiadace Stems Phenols, Increase	albino	102
<i>umbellata ae</i> Flavanoids, glomerular	rats	
Alkaloids, filtration rate,		
Steroids, decrease the		
Terpenoids generation of free	.	
and radicals		
Glycosides production by		
renal cortical		
mitochondria		


		T	T	T	T =4 41			
32	Cassia	golden	Fabaceae	Fruits	Phenolic	Improve tubule	albino	103
	fistula	shower			Derivatives	interstitial lesions	rats	
		tree			anthraquinon	& the s3 segment		
					es, Xantho-	in the outer		
					Nes, Phenolic	medulla, which is		
					acids,	a part of the		
					Phenolic	proximal tubules,		
					Diterpenes,	is damaged		
					Flavonoids,			
					Volatile Oil,			
					Waxy and			
					Resinous			
					Derivatives			
33	Cissampelo	velvetleaf	Menispermac	Whol	Glycoside,	Enhancing the	rats	104
	s pareira		eae	e	Alkaloids,	levels of		
	•			Plant	Tannins	glutathione and		
					(Phenolic	decreasing the		
					Compounds),	lipid peroxidation		
					Flavonoids	1 1		
34	Curuma	Turmeric	Zingiberacea	Roots	Polyphenol	Improve renal	rats	105
	longa		e		(Curcumin),	tubular damage		
					Termeric oil,			
					Terpenoids,			
				Κ,	Curcumen,			
		`			Starch,			
					Albumnoids			
35	Zingiber	zinger	Zingiberacea	Rhizo	flavonoid	Keep the	rats	106
	officinale		$e \wedge e$	mes		proximal		
	33					convoluted		
						capsule and		
						bowman's capsule		
						intact to protect		
						the glomeruli.		
36	Vitex	Chinese	Verbenaceae	Bark	Phenylpropn	Protect tubular	rats	107
	negundo	chaste tree			oids or	brush borders		
	8				Polyphenolic			
					and			
					Flavonoids			
37	Vernonia	Little	Compositae	Aerial	fatty acids,	impact that serves	rats	108
-	cinerea	ironweed	7	Parts	Steroids	to protect the S3		
					Flavonoids,	section of the		
					39Tri-	proximal tubule		
					terpenoids: α-	г		
					Amyrin and			
					βAmyrin			
38	Tribulus	Gokharu	Zygophyllace	Fruits	Harmine,	Protect renal	albino	109
	terrestris	- Jimuu	$\frac{2ygopnymace}{a}$	11010	Harman,	tubular cell	rats	107
					Saponins,	necrosis	1440	
					Steroidal	110010010		
					Sapogenins,			
					Lavonoids,			
					Kaemferol,			
					Tribuloside,			
					Alkaloids and			
					Resins			
]			Resilis			

20	m1	G:	T	XX 71 1	2.4	D	11 '	110
39	Trianthema	Giant	Aizoaceae	Whol	3,4-	Protect proximal	albino	110
	portulacastr	Pigweed,		e	Dimethoxy	tubular necrosis	rats	
	um	Black		Plant	Cinnamic			
		Pigweed			acid,			
					Cyanin, Dime			
					thylflavone,			
					Ecdysterone			
					Trianthenol,			
					and 3,2'-			
					Acetylaleurit			
40	TII .	.•	3.4.1	T	olic Acid	D .:	XX7° .	111
40	Thespesia	portia	Malvaceae	Leave	Tannins,	Preventing	Wistar	111
	populnea	tree,		S	Terpenes,	necrosis of	albino	
		Milo			Saponins,	proteins in the	rats	
					Flavonoids,	renal tubules		
					and Quinine			
44	G 1 :	TZ 1 1	T .	3371 1	Alkaloids	A 1	11 '	110
41	Salviae	Kamrkash,	Lamiaceae	Whol	Salvinolic	Antioxidant	albino	112
	officinalis	Sage		e	acids A–G,	action	rats	
		Weed		Plant	Rosmarinic,			
					Isoferul,			
					Tanshine–I,			
				ΙΙ,, Ι	Cryptotanshi			
					ne-V-VI,			
					and			
			14	4	Lithospermic acids			
42	Panax	Ashwagan	Araliacea	Root	Panaxosides,	Protect the renal	Wistar	113
	ginseng	dha			Chikustsu	dysfunction,	albino	
					saponin,	inflammatory	rats	
					Ginsenosides	cytokine		
					(Dammarol),	expression and		
					and saponin	apoptosis of		
					(Oleanolic	kidney		
					acid)			
43	Momordica	Kakrol,	Cucurbitacea	Tuber	saponins,	Alter the	albino	114
	tuberosa	Karchikai	e	S	Cardiac	generation of	rats	
					Glycosides,	nitric oxide		
					Triterpenoids			
					saponins,			
					Triterpenoid			
					and Bitters			
44	Lantana	ghaneri	Verbenaceae	Roots	Pentacyclic	Inhibit renal nitric	sprague-	115
	camara				triterpenoids,	oxide generation	dawley	
					Linaroside,	and mitochondrial	rats	
					Oleanolic	hydrogen		
					acid,	peroxide		
					Octadecanoic	generation		
					acid, Ursonic			
			1	I	acid			

TAB.2 DOCKING SCORE OF BIO-ACTIVE COMPOUNDS OF NEPHROPROTECTIVE MEDICINAL PLANTS AGAINST NF-KB

S.n	Plant	TS AGAINST NF-1 Bio-active	KD	Chemical structure	Activity	ref.
1	Combrethum	compound Gallic acid	-21.167	O _N OH	has been	116
	Micranthum G (Combretaceae)	β-Sitosterol Linolenic acid	-6.859 -10.761	но он	performed in male Wistar rats	
2	Curcuma longa	Curcumin	-8.94	OH Gallic acid	has been	117
	(Zingiberaceae)	Cyclocurcumin Stigmasterol	- 6.77 - 2.28	НО	performed in gentamicin nephrotoxic rats	
				Cyclocurcumin		
3	Carica Papaya (<u>Caricaceae</u>)	Ascorbic acid	-6.0	HO HO OH Ascorbic acid	has been performed in In- vivo mice	118
4	Abelmoschus Esculentus L (<u>Malvaceae</u>)	Riboflavin Thiamine Folic Acid	-7.7 -6.0 -7.9	NH ₂ N H ₃ C S H ₃ C	has been performed in In-vivo mice	119
				OH <u>Thiamine</u>		
5	Abutilon Indicum (<u>Malvaceae</u>)	Coumaric acid Riboflavin Vanillic acid	-6.8 -7.7 -36.471		has been performed in diabetic nephrotoxic rats	120

				ООН		
				HO Vanillic acid		
6	Aerva Lantana (Rutaceae)	β-Sitosterol Stigmasterol Botulin	-6.859 -2.28 -8.4	HO β-Sitosterol	has been performed in Wistar rats	121
7	Sonchus Oleraceus (Asteraceae)	Rutin Ursolic Acid Chicoric Acid	-314.35 -4.10 -8.63	HO H Ursolic Acid	has been performed in Wistar rats	122
8	Ceiba Pentandra (<u>Malvaceae</u>)	Quercitrin Cinchonains	-247.11 -37	HO OH O	has been performed in Wistar rats	123
9	Ocimum Sanctum (Lamiaceae)	Ursolic Acid	-11.8	HO HHO OH	has been performed in Wistar rats	124
10	Suaeda Vermiculata (<u>Amaranthaceae)</u>	Gallic acid Cinnamic Acid Coumaric Acid	-21.167 -6.66 -6.8	_	has been performed in Male Sprague Dawley rats	124

CONCLUSION

Many drugs when administered for a long period have been known for inducing AKI; however, the use of medicinal plants to prevent the nephrotoxicity is always interesting to be discussed. Various types of plants that are often used traditionally as nephroprotective agents have been mentioned in this study. This review supports and confirms the usefulness of ethno-medicine, most of which have potential nephroprotective flavonoids. Most of the plants have nephroprotective-related antioxidant activity. The plants which have – flavonoids, flavone, alkaloids, triterpenoids, glycosides, saponin, Gallic acid, β -Sitosterol, vitamin C, vitamin E etc. shows anti-oxidant and nephroprotective properties.

REFERENCES

- 1. Little, M.H, Combes, A.N, Genes Dev. 2019. Kidney Organoids Accurate models or fortunate accidents. 33:(1319)–1345. [CrossRef], [PubMed]
- 2. Sujana D, Saptarini N.M, Sumiwi S.A, Levita J. 2021. Nephroprotective activity of medicinal plants. A review on In-silico, In-vitro-, and In vivo-based studies. J. Appl. Pharm. Sci. 11:(113)–127. [CrossRef]
- 3. Negi K, Mirza A. 2020. Nephroprotective and therapeutic potential of traditional medicinal plants in renal diseases. Journal of Drug Research in Ayurvedic Sciences. 5(3):177-85.
- 4. Gibson TP. 1 Jul 1986. Renal disease and drug metabolism. An overview American Journal of Kidney Diseases. 8(1):7-17.
- 5. De Boer IH, Utzschneider KM. 2017 Apr 1. The kidney's role in systemic metabolism still much to learn. Nephrology Dialysis Transplantation. 32(4):588-90.
- 6. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU. 2007. Chronic kidney disease as a global public health problem approaches and initiatives-a position statement from kidney disease improving global outcomes Kidney. 72(3):247-259.
- 7. Hansrivijit P, Gadhiya KP, Gangireddy M, Goldman JD. 2021. Risk factors, clinical characteristics, and prognosis of acute kidney injury in hospitalized COVID-19 patients: a retrospective cohort study Medicines. 8(1):4.
- 8. Konda VR, Arunachalam R, Eerike M, Rao KR, Radhakrishnan AK, Raghuraman LP, Meti V, Devi S. 2016. Nephroprotective effect of ethanolic extract of Azima tetracantha root in glycerol induced acute renal failure in Wistar albino rats. J Tradit Complement Med. 6(4):347–54.
- 9. Makris K, Spanou L. 2016. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev. 37(2):85–98.
- 10. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. 2010. Mechanisms of cisplatin nephrotoxicity, Toxins. 2(11):2490-518.
- 11. D. Choudhury, Z. Ahmed. 2006. Drug-associated renal dysfunction and injury, Nat. Clin. Pract. Nephrol. 2 (2006) 80–91.
- 12. Perazella MA. 2009. Renal vulnerability to drug toxicity. Clinical Journal of the American Society of Nephrology. 4 (7):1275-83.
- 13. Barnett LM, Cummings BS. 2018. Nephrotoxicity and renal pathophysiology: a contemporary perspective. Toxicological Sciences. 164 (2):379-90.
- 14. Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, and Dong Z. 2014. Regulated cell death in AKI. J. Am. Soc. Nephrol. 25 (2689)–2701.
- 15. E.A. Hoste, J.A. Kellum. 2006. Acute kidney injury: epidemiology and diagnostic criteria, Curr. Opin. Crit. Care. 12 (2006) 531–537.

c858

c859

- 16. Khan S, Loi V, Rosner MH. 2017. Drug-induced kidney injury in the elderly, Drug Aging. 34(10):729-741.
- 17. Lameire N, Van Biesen W, Vanholder R. 2008. Acute kidney injury. 372(1863)–1865. [CrossRef]
- 18. Hanif M.O, Bali A, Ramphul K. 2020. Acute renal tubular necrosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA
- 19. Dalal R, Bruss Z.S, Sehdev J.S. 2019. Physiology, renal blood flow and filtration. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA
- 20. Gomez-Ruiz S, Maksimovi'c-Ivani'c D, Mijatovi'c S, Kaluderovi'c G.N. 2012. On the discovery, biological effects, and use of cisplatin ⁻ and metallocenes in anticancer chemotherapy. Bioinorg. Chem. Appl. 2012, 140284. [CrossRef] [PubMed]
- 21. Wagner M.J, Livingston J.A, Patel S.R, Benjamin R.S. 2016. Chemotherapy for Bone Sarcoma in Adults. J. Oncol. Pract. 12(208)–216. [CrossRef]
- 22. Le X, Hanna E.Y. 2018. Optimal regimen of cisplatin in squamous cell carcinoma of head and neck yet to be determined. Ann. Transl. Med. 6, 229. [CrossRef]
- 23. Cornelison TL, Reed E. 1993. Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol. 50:(147)–58.
- 24. Ibrahim ME, Chang C, Hu Y, Hogan SL, Mercke N, Gomez M. 2019. Pharmacokinetic determinants of cisplatin-induced subclinical kidney injury in oncology patients. Eur J Clin Pharmacol. 75:(51)–7
- 25. Li Q, Bowmer CJ, Yates MS. 1994. The protective effect of glycine in cisplatin nephrotoxicity: inhibition with NG -nitro-L-arginine methyl ester. J Pharm Pharmacol. 46:(346)–51.
- 26. Safirstein R, Winston J, Moel D, Dikman S, Guttenplan J. 1987. Cisplatin nephrotoxicity: insights into mechanism. Int J Androl. 10.
- 27. Eljack ND, Ma HY, Drucker J, Shen C, Hambley TW, New EJ. 2014. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics. 6:(2126)–33.
- 28. Ozkok A, Edelstein CL. 2014. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. (9678)-26.
- 29. Yonezawa A, Masuda S, Nishihara K, Yano I, Katsura T, Inui K. 2005. Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem Pharmacol. 70:(1823)–31.
- 30. Iwata K, Aizawa K, Kamitsu S, Jingami S, Fukunaga E, Yoshida M. 2012. Effects of genetic variants in SLC22A2 organic cation transporter 2 and SLC47A1 multidrug and toxin extrusion 1 transporter on cisplatin-induced adverse events. Clin Exp Nephrol. 16:(843)–51.
- 31. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. 2009. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 86:(396)–402.
- 32. Wang D, Lippard SJ. 2005. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 4:(307)–20.
- 33. Fujikawa Y, Kawanishi M, Kuraoka I, Yagi T. 2014. Frequencies of mutagenic translesion DNA synthesis over cisplatin-guanine intra-strand crosslinks in lacZ plasmids propagated in human cells. Mutat Res Genet Toxicol Environ Mutagen. 770:(23)–8.
- 34. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. 2010 Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2:(2490)–518.
- 35. Hirama M, Isonishi S, Yasuda M, Ishikawa H. 2006. Characterization of mitochondria in cisplatin-resistant human ovarian carcinoma cells. Oncol Rep. 16:(997)–1002.
- 36. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. 2010. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2:(2490)–518.
- 37. Ramesh G, Reeves WB. 2004. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney Int. 65:(490)–9.
- 38. Ramesh G, Reeves WB. 2005. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Ren Physiol. 289:(F166)–74.
- 39. Cummings BS, McHowat J, Schnellmann RG. 2004. Role of an endoplasmic reticulum Ca2+independent phospholipase A2 in cisplatin-induced renal cell apoptosis. J Pharmacol Exp Ther. 308:(921)–8.
- 40. Jiang M, Wang CY, Huang S, Yang T, Dong Z. 2009. Cisplatin-induced apoptosis in p53- deficient renal cells via the intrinsic mitochondrial pathway. Am J Physiol Ren Physiol. 296:(F983)–93.
- 41. Tsuruya K, Ninomiya T, Tokumoto M, Hirakawa M, Masutani K, Taniguchi M. 2003. Direct involvement of the receptor-mediated apoptotic pathways in cisplatininduced renal tubular cell death. Kidney Int. 63:(72)–8.

- 42. Yadav DK, Kumar S, Choi EH, Chaudhary S, Kim MH. 2019. Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci Rep. 9:(44)-96.
- 43. Peyrou M, Hanna PE, Cribb AE. 2007. Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci. 99:(346)–53.
- 44. Boyce M, Yuan J. 2006. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 13:(363)–73.
- 45. Cilenti L, Kyriazis GA, Soundarapandian MM, Stratico V, Yerkes A, Park KM. 2005. Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells. Am J Physiol Ren Physiol.288:(F371)–9.
- 46. Chirino YI, Pedraza-Chaverri J. 2009. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol. 61:(223)–42.
- 47. Ramesh G, Reeves W.B. 2002. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Investig. 110:(835)–842. [CrossRef] [PubMed]
- 48. Zhang B, Ramesh G, orbury C, Reeves W. 2007. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney Int. 72:(37)–44. [CrossRef]
- 49. Liu P, Li X, Lv W, Xu Z. 2020. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomed. Pharmacother. 122:(1096)-93. [CrossRef]
- 50. Soni H, Kaminski D, Gangaraju R, Adebiyi A. 2018. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding. Ren. Fail. 40:(314)–322. [CrossRef]
- 51. Ni J, Hou X, Wang X, Shi Y, Xu L, Zheng X, Liu N, Qiu A, Zhuang S. 2019. 3-deazaneplanocin A protects against cisplatininduced renal tubular cell apoptosis and acute kidney injury by restoration of E-cadherin expression. Cell Death Dis. 10:(35)-5. [CrossRef] [PubMed]
- 52. Ozkok A, Edelstein C.L. 2014. Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int. 96:(78)-26. [CrossRef]
- 53. Gaikwad K, Dagle P, Choughule P, Joshi YM, Kadam V. 2012. A review on some nephroprotective medicinal plants. Int J Pharm Sci Res, 12(6):2451–4.
- 54. Chinnappan SM, George A, Thaggikuppe Krishnamurthy P, Choudhary Y, Choudhary VK, Ramani Y, Dewangan R. 2019. Nephroprotective effect of herbal extract Eurycoma longifolia on paracetamolinduced nephrotoxicity in rats. Evid Based Complement Alternat Med, 49:(165)-19.
- 55. Vargas F, Romecín P, García-Guillén AI, Wangesteen R, Vargas Tendero P, Paredes MD, Atucha NM, García-Estañ J. 2018. Flavonoids in kidney health and disease. Front Physiol, 9(4):1–12.
- 56. Vargas F, Romecín P, García-Guillén AI, Wangesteen R, Vargas Tendero P, Paredes MD, Atucha NM, García-Estañ J. 2018. Flavonoids in kidney health and disease. Front Physiol, 9(4):1–12.
- 57. Gaikwad K, Dagle P, Choughule P, Joshi YM, Kadam V. 2012. A review on some nephroprotective medicinal plants. Int J Pharm Sci Res, 12(6):2451–4.
- 58. Zhang, F., Ramesh, G., Norbury, C.C. and Reeves, W.B., 2007. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. *Kidney international*, 72(1), pp.37-44
- 59. Sachinthi S. Amarasiria, Anoja P. Attanayakeb*, Lakmini K. B. Mudduwac, and Kamani A. P. W. Jayatilakab; Journal of Ethnopharmacology, Volume 292, 28 June 2022, 115221].
- 60. Kpemissi, M., Eklu-Gadegbeku, K., Veerapur, V.P., Negru, M., Taulescu, M., Chandramohan, V., Hiriyan, J., Banakar, S.M., Nv, T., Suhas, D.S. and Puneeth, T.A., Nephroprotective activity of Combretum micranthum G. Don in cisplatin induced nephrotoxicity in rats. *vitro*, *in-vivo*, pp.108961-108975
- 61. Xavier S, Haneefa S, Anand D, Polo P, Maheshwari R, Shreedhara C, Setty M. 2017. Antioxidant and nephroprotective activities of the extract and fractions of Homonoia riparia Lour. Pharmacogn Mag. 1349:(25)–30.
- 62. Wu, G., Cai, Y., Wei, H., Wei, A., Xiong, C., Fu, W. and Ruan, J., 2012. Nephroprotective activity of Macrothelypteris oligophlebia rhizomes ethanol extract. *Pharmaceutical Biology*, 50(6), pp.773-777
- 63. Hussain, T., Gupta, R.K., Sweety, K., Eswaran, B., Vijayakumar, M. and Rao, C.V., 2012. Nephroprotective activity of Solanum xanthocarpum fruit extract against gentamicin—induced nephrotoxicity and renal dysfunction in experimental rodents. *Asian Pacific journal of tropical medicine*, 5(9), pp.686-691
- 64. Abouelela, M.E., Orabi, M.A., Abdelhamid, R.A., Abdelkader, M.S., Madkor, H.R., Darwish, F.M., Hatano, T. and Elsadek, B.E., 2020. Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. reduces methotrexate-induced renal damage in rats via antioxidant, anti-inflammatory, and antiapoptotic actions. *Journal of traditional and complementary medicine*, 10(5), pp.478-486

c861

- 65. Chinnappan, S.M., George, A., Thaggikuppe, P., Choudhary, Y., Choudhary, V.K., Ramani, Y. and Dewangan, R., 2019. Nephroprotective effect of herbal extract Eurycoma longifolia on paracetamolinduced nephrotoxicity in rats. *Evidence-Based Complementary and Alternative Medicine*, 2019
- 66. Vahid, S., Dashti-Khavidaki, S., Ahmadi, F., Amini, M. and Salehi Surmaghi, M.H., 2012. Effect of herbal medicine achillea millefolium on plasma nitrite and nitrate levels in patients with chronic kidney disease. *Iran J Kidney Dis*, 5(6), pp.350-4.
- 67. Al Mosawi, A.J., 2007. The use of acacia gum in end stage renal failure. *Journal of tropical pediatrics*, 53(5), pp.362-365
- 68. Rizwan, F., Rashid, H.U., Yesmine, S., Monjur, F. and Chatterjee, T.K., 2018. Preliminary analysis of the effect of Stevia (Stevia rebaudiana) in patients with chronic kidney disease (stage I to stage III). *Contemporary clinical trials communications*, 12, pp.17-25
- 69. Singh, R., Rathore, S., Kumar, R., Agarwal, A. and Dubey, G., 2010. Nephroprotective role of Salacia chinensis in diabetic CKD patients: a pilot study. *Indian journal of medical sciences*, 64(8), p.378
- 70. Xu, X., Lu, Q., Wu, J., Li, Y. and Sun, J., 2017. Impact of extended ginsenoside Rb1 on early chronic kidney disease: a randomized, placebo-controlled study. *Inflammopharmacology*, 25, pp.33-40
- 71. Cerio, R., Dohil, M., Jeanine, D., Magina, S., Mahe, E. and Stratigos, A.J., 2010. Mechanism of action and clinical benefits of colloidal oatmeal for dermatologic practice. *Journal of drugs in dermatology: JDD*, 9(9), pp.1116-1120
- 72. Anusuya N, Durgadevi P, Dhinek A, Mythily S. 2013. Nephroprotective effect of ethanolic extract of garlic (Allium sativum L.) on cisplatin induced nephrotoxicity in male wistar rats. Asian J Pharm Clin Res. 64:(97)-100.
- 73. Kannappan N, Madhukar, Mariymmal, Uma sindhura P, Mannavalan R. 2010. "Evaluation of nephroprotective activity of Orthosiphon stamineus Benth extract using rat model", International Journal of PharmTech Research. 23:(209)-215.
- 74. Mestry S.N, Gawali N.B, Pai S.A, Gursahani M.S, Dhodi J.B, Munshi R, Juvekar A.R. 2020. Punica granatum improves renal function in gentamicin-induced nephropathy in rats via attenuation of oxidative stress. J. Ayurveda Integr. Med. 11:(16)–23. [CrossRef]
- 75. Mokhtari M, Shariatie M, Gharamanie R. 2008. Effect of Trigonella foenum-graecum L. seed extract on concentration of testosterone and spermatogenesis in rats. JMP. 1:(12)–20.
- 76. Mingyu D, Mingzhang L, Quihong Y, Weiming F, Jianxing X, Weiming X. 1995. A study on Benincasa hispida contents effective for protection of kidney. Jiangsu J Agric Sci. 11:(46)-52.
- 77. Lekha GS. 2015. Evaluation of nephroprotective activity of sirupeelai kudineer (Aerva lanata decoction) in rats. J Chem Pharm Res. 710:(522)-530.
- 78. Mansour A.M, Ghobara M.Y. 2015. Abrogation of cisplatin-induced nephrotoxicity in rats by Berne date extract through ameliorating oxidative stress, inflammation and apoptosis. *Int. J. Pharm. Sci. Res.* 69:(1226)–1233. [Google Scholar]
- 79. Mestry S.N, Gawali N.B, Pai S.A, Gursahani M.S, Dhodi J.B, Munshi R, Juvekar A.R. 2020. Punica granatum improves renal function in gentamicin-induced nephropathy in rats via attenuation of oxidative stress. J. Ayurveda Integr. Med. 11:(16)–23. [CrossRef]
- 80. Shelke TT, Kothai R, Adkar PP, Bhaskar VH, Juvale KC, Kamble BB. 2009. Nephroprotective activity of ethanolic extract of dried fruits of Pedalium murex Linn. J Cell Tissue Res. 91:(1687)-1690.
- 81. Kpemissi M, Eklu-gadegbeku K, Veerapur V, Negru M, Taulescu M, Chandramohan V, Hiriyan J, Banakar SM, Nv T, Suhas DS, Puneeth TA, Vijayakumar S, Metowogo K, Aklikokou K. 2019. Nephroprotective activity of Combretum micranthum G. Don in cisplatin induced nephrotoxicity in rats: In-vitro, in-vivo and in-silico experiments. Biomed Pharmacother, 116:(1089)-61.
- 82. Xavier S, Haneefa S, Anand D, Polo P, Maheshwari R, Shreedhara C, Setty M. 2017. Antioxidant and nephroprotective activities of the extract and fractions of Homonoia riparia Lour. Pharmacogn Mag. 1349:(25)–30.
- 83. Wu G, Cai Y, Wei H, Wei A, Xiong C, Fu W, Ruan J. 2012. Nephroprotective activity of Macrothelypteris oligophlebia rhizomes ethanol extract. Pharm Biol, 506:(773)–7.
- 84. Hussain T, Gupta RK, Sweety K, Eswaran B, Vijayakumar M, Rao CV. 2012. Nephroprotective activity of Solanum xanthocarpum fruit extract against gentamicin-induced nephrotoxicity and renal dysfunction in experimental rodents. Asian Pac J Trop Med. 59:(686)–91.
- 85. Abouelela ME, Orabi MAA, Abdelhamid RA, Abdelkader MS, Madkor HR, Darwish, FMM, Hatano T, Elsadek BEM. 2020. Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. reduces methotrexate-induced renal damage in rats via antioxidant, anti-inflammatory, and antiapoptotic actions. J Tradit Complement Med. 10(5):478–86.

- 86. Torres-González L, Cienfuegos-Pecina E, Perales-Quintana MM, Alarcon-Galvan G, Muñoz-Espinosa LE, Pérez-Rodríguez E, Cordero-Pérez P. 2018. Nephroprotective effect of Sonchus oleraceus extract against kidney injury induced by ischemia-reperfusion in Wistar rats. Oxid Med Cell Longev. 2018:(9572)-803.
- 87. Kim ES, Lee JS, Akram M, Kim KA, Shin YJ, Yu JH, Bae ON. 2015. Protective activity of Dendropanax morbifera against cisplatin-induced acute kidney injury. Kidney Blood Press Res. 401:(1)–12.
- 88. Naggayi M, Mukiibi N, Iliya E. 2015. The protective effects of aqueous extract of Carica papaya seeds in p aracetamol induced nephrotoxicity in male wistar rats. Afr Health Sci. 152:(598)-605.
- 89. Thongnuanjan P, Soodvilai S, Fongsupa S, Chabang N, Vivithanaporn P, Tuchinda P, Soodvilai S. 2021. Protective effect of panduratin a on cisplatin-induced apoptosis of human renal proximal tubular cells and acute kidney injury in mice. Biol Pharm Bull, 446:(830)–783.
- 90. Gandhi S, Srinivasan BP, Akarte AS. 2013. Potential nephrotoxic effects produced by steroidal saponins from hydro alcoholic extract of Tribulus terrestris in STZ-induced diabetic rats. Toxicol. Mech. Methods. 237:(548)-557.
- 91. Palani S, Raja S, Kumar PR, Parameswaran P, Kumar SB. 2010. Therapeutic efficacy of Acorus calamus on acetaminophen induced nephrotoxicity and oxidative stress in male albino rats. Acta Pharma Sci. 521:(89)-100.
- 92. Movaliya V, Zaveri M. Comparison of alcoholic and aqueous extract of root of Aerva javanica for its nephro-protective effect in cisplatin induced renal toxicity
- 93. Gulnaz H, Tahir M, Munir B, Sami W. 2010. Protective effects of garlic oil on acetaminophen induced nephrotoxicity in male albino rats. Biomed. 267:(9)-15.
- 94. Suji AJJ, Vimalastalin R. 2014. Nephroprotective activity of Aristolochia indica leaf extract against gentamycin induced renal dysfunction. Int J Res Biochem Biophys. 42:(13)-18.
- 95. Roy S, Das K, Mandal S, Pradhan S, Patra A, Nandi DK. 2013. Crude root extract of Asparagus racemosus ameliorates acetaminophen induced uremic rats. Int J Pharma Sciences Res. 4(8):3004-3012.
- 96. Priyadarsini G, Kumar A, Anbu J, Anjsana A, Ayyasamy S. 2012. Nephroprotective activity of decoction of Indigofera tinctoria (Avuri kudineer) against cisplatin-induced nephropathy in rats. Int J Life Sci Pharma Res. 2(4):56-62.
- 97. Konda VR, Arunachalam R, Eerike M, Rao RK, Radhakrishnan AK, Raghuraman LP. 2015. Nephroprotective effect of ethanolic extract of Azima tetracantha root in glycerol induced acute renal failure in wistar albino rats. J Trad Complement Med. 6(4):347-354.
- 98. Pani SR, Mishra S, Sahoo S, Panda PK. 2011. Nephroprotective effect of Bauhinia variegata (linn.) whole stem extract against cisplatin-induced nephropathy in rats. Ind J Pharmacol. 43(2):200-202.
- 99. Mingyu D, Mingzhang L, Quihong Y, Weiming F, Jianxing X, Weinming X. 1995. A study on Benincasa hispida contents effective for protection of kidney. Jiangsu J Agric Sci. 11:(46)-52.
- 100. Varghese HS, Kotagiri S, Swamy BMV, Swamy AP, Raj GG. 2013. Nephroprotective activity of Benincasa hispida, (Thunb.) Cogn. fruit extract against cisplatin induced nephrotoxicity in rats. Res J Pharma Biol Chem Sci. 4(1):311-321.
- 101. Pareta SK, Patra KC, Harwans R, Kumar M, Meena KP. 2011. Protective effects of Boerhaavia diffusa against acetaminophen-induced nephrotoxicity in rats. Pharmacolonline. 2:698-706.
- 102. Javed S, Khan JA, Khaliq T, Javed I, Abbas RZ. 2015. Experimental evaluation of nephroprotective potential of Calotropis procera (Ait) flowers against gentamycin-induced toxicity in albino rabbits. 35(2):222-226.
- 103. Kumar GVS, Sandhya CH. 2014. Nephroprotective activity of stem extract of Caralluma umbellata haw against cisplatin and gentamycin induced nephrotoxicity. World J Pharm Res. 3(4):1301-1313.
- 104. Rajagopal PL, Premaletha K, Sreejith KR. 2016. Nephroprotective potential of the fruit pulp of Cassia fistula in cisplatin-induced renal injury in albino rats. Int J Pharmacy Pharma Res. 6(3):241-250.
- 105. Reddy RCD, Kumar SG, Kumar PK, Swamy RMV, Kishore V. 2015. Nephroprotective activity of Cissampelos pareira Linn. extract against cisplatin induced nephrotoxic rats. Am J Pharmtech Res. 5(3):480-488.
- 106. He L, Peng X, Zhu J, Liu G, Chen X, Tang C. 2015. Protective effects of curcumin on acute gentamycin-induced nephrotoxicity in rats. Can J Physiol Pharmacol. 93(4):275-282.
- 107. Laxmi BVS, Sudhakar M. 2010. Protective effect of Zingiber officinale on gentamycin induced nephrotoxicity in rats. Int. J Pharmacol. 6(1):58-62.

- 108. Kumar SG, Lalitha V, Sengottuvelu S, Sharif SH, Kumar ST. 2011. Nephroprotective activity of Vitex negundo linn bark against chemical induced toxicity in experimenal rats. Int J Adv Pharma Sci. 2(5-6):462-470.
- 109. Sreedevi A, Bharathi K, Prasad KV. 2011. Effect of Veronica cinerea aerial parts against cisplatin-induced nephrotoxicity in rats. Pharmacolonline. 2:548-555.
- 110.Singh Y, Muruganandam AV, Das SN, Rao AT, Agrawal SK. 1992. Renoprotective action of a herbal formulation (ELKP-1) in cisplatininduced nephrotoxicity. Phytomed. 20(1/2):37-41.
- 111. Vallabi ED, Elango V. 2015. Nephroprotective and cardioprotective effect of Trianthema portulacastrum linn in drug induced experimental animals. Int J Eng Res Gene Sci. 3(6):683-690.
- 112. Mika D, Guruvayoorappan C. 2013. The effect of Thespesia populnea on cisplatin induced nephrotoxicity. J Cancer Res Therap. 9(1):50-53.
- 113. Dizaye K, Abubaker S, Sultan HA. 2010. Alleviation of cisplatin-induced nephrotoxicity in albino rats by aqueous extract of Salvia officinalis. Proceedings of the CB medical treatment symposium, Spiez Laboratory, Switzerland, (CBMTS VIII).
- 114. Kim YJ, Lee MY, Son HY, Park BK, Ryu SY, Jung JY. 2014. Red ginseng ameliorates acute, cisplatin-induced nephropathy. Planta Med. 80(8-9):645-654.
- 115. Kumar P, Devala RG, Lakshmayya Ramachandra SS. 2011. Nephroprotective and nitric oxide scavenging activity of tubers of Momordica tuberosa in rats. Avicenna J Med Biotech. 3(2):87-93.
- 116. Vyas N, Argal A. 2012. Nephroprotective effect of ethanolic extract of roots and oleanolic acid isolated from roots of Lantana camara. Int J Pharmacol Clin Sci. 1(2):54-60.
- 117. Muzaffer U, Paul V.I, and Rajendra Prasad N. 2017. Molecular docking of selected phytoconstituents with signaling molecules of Ultraviolet-B induced oxidative damage. *In Silico Pharmacology*, *5*, pp.1-9.
- 118. Kumar A, Bora U. 2012. In silico inhibition studies of NF-κB p50 subunit by Curcumin and its natural derivatives. Med Chem Res. 21(10):3281–7.
- 119. Naggayi M, Mukiibi N, Iliya E. 2015. The protective effects of aqueous extract of Carica papaya seeds in p aracetamol induced nephrotoxicity in male wistar rats. Afr Health Sci. 15(2):598-605.
- 120. Gandhi S, Srinivasan BP, Akarte AS. 2013. Potential nephrotoxic effects produced by steroidal saponins from hydro alcoholic extract of Tribulus terrestris in STZ-induced diabetic rats. Toxicol. Mech. Methods. 23(7):548-557.
- 121. Lekha GS. 2015. Evaluation of nephroprotective activity of sirupeelai kudineer (Aerva lanata decoction) in rats. J Chem Pharm Res. 7(10):522-530.
- 122. Torres-González L, Cienfuegos-Peci<mark>na E, Perale</mark>s-Quintana MM, Alarcon-Galvan G, Muñoz-Espinosa LE, Pérez-Rodríguez E, Cordero-Pérez P. 2018. Nephroprotective effect of Sonchus oleraceus extract against kidney injury induced by ischemia-reperfusion in Wistar rats. Oxid Med Cell Longev. 2018:(9572)-803.
- 123. Abouelela ME, Orabi MAA, Abdelhamid RA, Abdelkader MS, Madkor HR, Darwish, FMM, Hatano T, Elsadek BEM. 2020. Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. reduces methotrexate-induced renal damage in rats via antioxidant, anti-inflammatory, and antiapoptotic actions. J Tradit Complement Med. 10(5):478–86.
- 124. Kannappan N, Madhukar, Mariymmal, Uma sindhura P, Mannavalan R.2010. "Evaluation of nephroprotective activity of Orthosiphon stamineus Benth extract using rat model", International Journal of PharmTech Research, 2 (3):209-215.
- 125. Mingyu D, Mingzhang L, Quihong Y, Weiming F, Jianxing X, Weiming X. 1995. A study on Benincasa hispida contents effective for protection of kidney. Jiangsu J Agric Sci. 11:(46)-52.