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Abstract:  

Composite materials are extensively used in aerospace industries for manufacturing aerospace parts. These parts 

have very high strengths and low weight. Aerospace components are subjected to impact load, fatigue load and 

transient load. The stiffness and strength of composite ply varies with respect to ply orientation and resin 

percentage used. The resistance to withstand the dynamic behavior of each lamina in the presence of resin which 

acts as a single core material plays a very significant role in withstanding the loads under various load conditions. 

The use of stress contours to calculate interlaminar von Mises stress for each ply which is placed at different 

orientation in structure. Mode I fracture with increasing load are analyzed for stress contours. 
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Introduction: Standard isotropic materials are 

being replaced by fiber reinforced composite 

materials in many applications. Currently, these 

composite materials are used to build aerospace 

vehicles, aircraft, marine equipment, and everyday 

objects like sports equipment, civil structures, and 

prosthetic devices. The main benefit of composite 

materials is that they can already be specifically 

tailored to a given design situation. To create the 

ideal material composition, different combinations, 

dosages, and architectural arrangements can be used 

with components like fibers and matrix material. The 

manufacturing method used to create laminated 

composite materials is a significant disadvantage. 

When fabric or fibers are arranged in strata to create 

the desired architecture, resin-rich layers can form in 

the spaces between the fabric layers. These areas lack 

reinforcement and are vulnerable to discontinuities. 

Modes of fracture :Mode, I type fracture has 

typically been accepted as the most common and 

important mode of crack propagation. A normal 

stress field induces an opening or “wishbone” effect. 
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This type of behavior is common in structure and 

substructures such as skin stiffeners, I beam, or 

bonded connections of separate structures [17]. 

Brittle metals such as cast iron typically fail from 

mode, I type fracture in service. This is one reason 

that some homogeneous materials possess a 

compressive strength that is significantly greater than 

their tensile strength. Mode, I fracture toughness can 

be evaluated a variety of ways. For engineering 

polymers and metals, an ASTM standard compact 

tension sample (similar to Figure 1) [16].  

 

Figure 1 Mode of fractures [5] 

Mode II fracture : The end-notched flexure (ENF) 

specimen has a noteworthy to be specific for crack 

propagation with respect to linear increasing load 

application. The mode II end loaded split (ENF) 

specimen was used by different researchers [18]. 

Despite the fact that it is appropriate for crack 

propagation examination, the issue of crack 

instability still remained. In addition, enormous 

displacements regularly happen during 

testing/analysis are another disadvantage of this 

arrangement. 

Static load analysis for Mode I : These analysis 

models have prescribed dimensions that simulate 

plain strain type loading. Static load analysis is 

carried out to evaluate the stresses at each ply which 

have been placed at different orientation in the 

structure. Research review clearly emphasizes 

stating epoxy plays an important role in material 

stiffness and strain energy. Here we have analyzed 

double cantilever beam (DCB) Mode I fracture by 

using symmetric model of carbon epoxy fiber with 

ply orientation of 0/90/45/-45/90/0 to evaluate effect 

of load on stresses. 

Materials  

 

          Table 1 Material properties [21] 

 

Results : von Mises  Mode I - Epoxy Carbon 230 

 

Table 2 Mode I Mode I von Mises Stress at Each Layer for 

Carbon Fiber 230 
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Graph 1  Mode I Load v/s von Mises stress at each layer 

for Carbon fiber 230. 

von Mises stresses at middle layer are higher in 

comparison to subsequent layers. This shows 45° 

orientation layer is subject to maximum stress level. 

Stress Behavior Contour on Composite Fiber 

Layer Wise for Mode I Type of Fracture.   

 

Figure 1 Mode I von Mises stress contour layer wise –

Carbon Fiber 230 

von Mises Stress for Mode I At Each Layer for 

Epoxy Carbon Fiber 230 

Table 3 Mode I von Mises stress at each layer for Epoxy 

carbon fiber 230 

 

 

Graph 2 Mode I Load v/s von Mises stress at each layer for 

Epoxy carbon fiber 230. 

von Mises stresses at middle layer are higher in 

comparison to subsequent layers. This shows 45° 

orientation layer is subject to maximum stress level. 

Stress Behavior Contour on Composite Fiber 

Layer Wise for Mode I Type of Fracture.   

 

Figure 2 Mode I von Mises stress contour layer wise –

Epoxy Carbon Fiber 230 

von Mises Stress for Mode I at Each Layer of 

Epoxy Carbon Fiber 395 

Table 4 Mode I von Mises stress at each layer for Epoxy 

carbon fiber-395 
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Stress Behavior Contour on Composite Fiber 

Layer Wise for Mode I Type of Fracture.   

 

Figure 3 Mode I von Mises stress contour layer wise for 

Epoxy carbon fiber- 395 

von Mises stresses at middle layer are higher in 

comparison to subsequent layers. This shows 45° 

orientation layer is subject to maximum stress level. 

Conclusion 

Mode I von Mises stresses are higher at middle layer 

in comparison to subsequent layers. This shows mid 

ply which is at 45° orientation layer is subject to 

maximum stress level. Though there is change in 

resin type the stress level are higher at mid plane ply. 

Resin shows least effect on stress pattern for stress 

contours with effect to load and resin matrix. 

Predicting fracture effect for mode I is difficult as the 

stress level are higher are mid ply. 

Graph 3 Mode I Load v/s von Mises stress at 

each layer for Epoxy carbon fiber-395. 
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