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Abstract :  Due to the significantly complex and nonlinear behavior of li-ion batteries, forecasting the state of charge (SOC) of the 

batteries is still a great challenge. Therefore, accurate SOC estimation is essential for the proper operation of batteries while the 

battery is monitored by the battery management system (BMS). To this end, this paper employs informative measurements of 

electrochemical impedance spectroscopy (EIS) in machine learning models (ML), i.e., linear regression model and Gaussian 

process regression (GPR), to accurately predict the SOC of li-ion batteries. First, a feature sensitivity analysis of the data is 

conducted to extract the most reliable features, i.e., the EIS impedances which are highly correlated with SOC, from EIS 

measurements. Then, the models are fed by the chosen features. The models are designed to train the input features and establish 

the mapping relationship between the selected features and the SOC. The results demonstrate that the error of the GPR model was 

found to be less than 3.8%. Considering onboard EIS measurements, this method can be practically embedded in the battery 

management system for accurate measurements of SOC of li-ion batteries and ensure the proper and efficient operation of battery-

powered electric vehicles 
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1.INTRODUCTION 

 

Lithium-ion batteries have been widely utilized in Plug-in Electric Vehicles (PEVs), by virtue of their high energy and long life 

duration [1]. However, the performance of PEVs may be impacted by low performance of the battery management system (BMS) 

due to the unpredictability of battery’s chemical reactions. Estimation of the battery state of charge (SOC) as one of the main 

functions of the BMS contributes greatly to proper operation, charging/discharging cycling, and lifespan of the EV batteries [2]. 

Also, Reliable and accurate SOC estimation can have other important applications such as baseload power generation of 

intermittent sources in the electric grid [3], and the safe operation of EV fastcharging stations integrated with battery storage system 

[4]. SOC is defined as the capacity of the battery at the current state compared to the battery’s capacity at fully charged state [2]. 

Moreover, SOC cannot be measured directly from inner quantities such as internal resistance and capacitance of the battery, and as 

a result, the external quantitative indices are utilized for SOC estimation [5].  

Myriads of literature propose various SOC estimation methods such as coulomb counting method, data-driven, and model-

based estimation methods [5]. Coulomb counting or ampere-hour counting is one of the widely used methods in the laboratory, but 

due to cumulative current measurement errors, this method is not considered a highly accurate method for SOC estimation [5]. In 

the model-based methods, equivalent circuit models (ECMs) and electrochemical impedance models (EIMs) are the major models 

derived from empirical data to predict the SOCs. ECMs and EIMs are combined with various adaptive algorithms such as Kalman 

filter [6,7], extended and unscented Kalman filter [8,9], and Particle filter [10] to calculate the SOC of the battery based on the 

charge and discharge voltage and current. Moreover, electrochemical impedance spectroscopy (EIS) measurements are utilized in 

ECMs to estimate SOC.In Refs. [2,11], and [12], the authors identify the parameters of ECMs based on the EIS measurements. In 

Ref. [2], the EIS data is derived only at one SOC, which prevents the model from being an inclusive model, but on the other hand, a 

wide range of temperature is considered for modeling the battery based on ECM. The EIS data at above-zero temperature and 

SOCs between 10% to 90% and 10%e100% has been derived in Refs. [11,12], respectively, which, however, decrease the accuracy 

and reliability of the estimation for SOCs at sub-zero temperatures and SOCs below 10%. Therefore, due to the internal complex 

chemical reaction process and uncertain external operating conditions of batteries, modeling the batteries based on the ECM 

methods is challenging for estimating the battery characteristics in real-life operation [13,14]. Physic-based models (PBMs) 

demonstrate insights through chemical and electrochemical dynamics, such as li-ion diffusion and Ohmic effects [13]. However, to 

estimate SOC using PBMs, partial derivatives equations should be solved by the BMS controller, which is a highly intensive 

computational burden [15]. Data-driven models are only dependent on historical data, and they do not need complicated equivalent 

or mathematical models. However, the challenge of data-driven models is the acquirement of informative inputs to construct a 

robust model for predicting the battery characteristics. Additionally, effective extraction of the features from historical data still 

remains a challenging task [16]. In Ref. [17], the SOC of the battery is predicted by a neural network (NN) which utilizes voltage, 

current, temperature, and power of the battery as the input features. Prediction of SOC also has been conducted in Ref. [18] 

employing NN and random forest/tree. Voltage, current, and cycling number contribute as the inputs of the machine learning (ML) 

black box in the mentioned paper. In another study [19], support vector machine along with Gaussian methods estimate the SOC of 
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the battery and extracts feature variables based on the charging curve. However, all of these data-driven models that use terminal 

voltage as input feature may lose the accuracy as the terminal voltage of battery suddenly drops at the end of discharge which 

accordingly does not provide reliable data for low SOCs [20]. Thus, identifying and extraction of reliable features become the main 

bottleneck of the adoption of the data driven approaches and thus, more research is required in this regard. On the other hand, EIS 

measurements over a wide range of frequency provide rich information about the dynamic characteristics of the battery and pave 

the way for precise estimation of the battery status. Nevertheless, none of the reviewed papers have adopted the EIS measurements 

directly as input data for machine learning models to predict SOC except for [21], in which the EIS data obtained for SOCs above 

30% and at room temperature have been utilized in a deep NN. The model does not employ the EIS data in a wide range of 

temperature and at different SOC points [21], while such a data exclusion decreases the accuracy and reliability of the model. Also, 

the reported error of the model of [21] is less than 5%. This study investigates the effectiveness of the EIS measurement data for 

estimating the SOC of the li-ion batteries using machine learning techniques. In opposition to Ref. [21], which uses the whole EIS 

impedances from the EIS spectrum to estimate SOC, only highly correlated EIS impedances with SOC are used in this paper. The 

proposed method’s advantages are higher accuracy of the models and lower computational burden by eliminating irrelevant input 

features, i.e., EIS impedances with low correlations. Therefore, highly correlated impedances are first identified and then extracted 

from EIS spectrum measurements obtained at SOCs from 0% to 100%. The chosen impedances are utilized as input features for the 

linear regression model and Gaussian process regression (GPR). The models are designed to train the input features and establish 

the mapping relationship between the selected frequencies and the SOC. Finally, the trained models are employed to achieve SOC 

prediction. Moreover, since the machine learning algorithm is neither dependent on the model of the battery nor the method that the 

battery is charged/discharged, and only the input and output of the dataset matter here, the model can predict the SOC by 

interpolating or extrapolating the dataset, regardless of charging or discharging mode of the battery. The SOC can be precisely 

estimated for aged batteries if the EIS measurements dataset is available for degraded batteries with the state of health (SOH) 

between 60% and 100%. The reason that the battery’s degradation was not considered in this paper is due to the unavailability of 

EIS measurements for different SOHs for the dataset utilized in the paper. In contrast to many other studies that only take into 

account the EIS data obtained at abovezero temperatures, this study considers the EIS data for both abovezero and sub-zero 

temperatures, i.e., as low as 20 oc.  

The results demonstrate an error of less than 3.8% for the GPR model. Considering the online and on-board EIS measurement 

[22e24], this method can be practically embedded in the BMS for accurate measurements of SOC. The paper is organized as 

follows: in section 2, the electrochemical impedance spectroscopy measurement is fully explained. In the next section, the 

methodology for extracting reliable features and building the prediction models based on linear regression and GPR algorithm is 

discussed. Section 4 introduces the result of the built-up models for predicting the SOC, and the last section is dedicated to the 

conclusions. 

 

2.Electrochemical impedance spectroscopy  

 

EIS is a non-destructive and information-rich test which is conducted by galvanostatic or potentiostatic excitation signal over a 

wide range of frequency to obtain the impedance of the battery during charging and discharging [25]. The excitation signals in 

galvanostatic and potentiostatic methods are commonly sinusoidal current and voltage and the corresponding response will be 

voltage and current, respectively. Based on these waveforms, the electrochemical impedance of the battery can be calculated. The 

impedance of the battery is obtained based on the following equations in galvanostatic mode [26]: 

 

 

                                    (1) 

              

                                                                                                 

 where deltaI is a sinusoidal current at frequency f, which is superimposed on the dc charging or discharging current and results in 

deltaV and phase angle ∅ . Accordingly, Eq. (3) shows that the battery’s impedance is frequency-dependent and characterized by 

its magnitude and phase angle. Fig. 1 indicates a typical EIS spectrum. The horizontal axis indicates the real part of the 

impedance, and the vertical axis shows the negative of the imaginary part of the impedance. The EIS spectrum is drawn over a 

wide range of frequency. The low-frequency tail indicates the diffusion processes inside the active material of the battery, the 

mid-frequency semicircle indicates the double-layer capacitance effect, and in the highfrequency region, the intercept of the EIS 

curve with the real axis is the indicator of Ohmic resistance of the battery. 
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Fig1: Typical EIS spectrum of li-ion battery 

 

 

Table 1 Panasonic 18650 PF cell parameters 

 

 
 

3.Methodology  

 

This section is dedicated to the feature sensitivity analysis to capture the highly correlated EIS features, i.e., highly correlated 

EIS impedances with SOC of the battery, and then the selected reliable features are utilized for training and testing of the machine 

learning models.  

3.1. Feature sensitivity analysis  

Extracting highly relevant features to the machine learning models’ output, i.e., SOC, is essential for accurately predicting the 

output. To this end, the correlation matrix, which indicates the dependency of two or more variables on each other, is calculated 

and then shown on a color-coded image plot. The calculation of the correlation is performed by the Pearson correlation coefficient 

as follows: 

                                                                       (2) 
where E is the expected value operator, and X and Y are two random variables. 

 

3.2. Linear regression algorithm :A linear regression algorithm is used for identifying the relationship between a dependent 

variable and one or more independent variables. In this case, the impedances at different frequencies are the independent variables, 

and the SOC is the dependent variable. The basic multiple regression model of a dependent variable Y on a set of k independent 

variables (xk) can be expressed as [30]: 

 

                                                                   (3) 

where yi is the i-th case of the dependent variable Y, xij is the value of the j-th independent variable (Xj) for the i-th case of the 

dependent variable, b0 is the Y-intercept of the regression surface, each bj is the slope of the regression surface with respect to 

variable Xj, and finally ei is the random error component for the i-th case. In each equation in Eq. (5) the error is distributed with 

zero mean and standard deviation, and it is independent of the errors in the other equations. Since the variables are fixed 

quantities, the randomness of Y results from the randomness of error terms in each equation; although, in terms of correlation, the 

input variable are taken into account random variables, and the input variables are independent of the error terms. In matrix 

notation, Eq. (5) can be written as [30] and Y is the target vector, e is the error vector which is a column vector of length n, and b 

is the vector of parameters, which is a column vector of length k þ 1. Matrix X is the input matrix, which is n by k þ 1 matrix. To 

do prediction, b and e should be calculated. The structure of the regression model has been shown in Fig. 2. 

 

 

  
Where  
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                                         (4) 

  

 

 
Fig. 2. Linear regression structure. 

 

3.3 Data partitioning: To avoid the malfunction of the ML models over a new dataset, the dataset should be split into two 

partitions, i) training set and ii) test set. The training set is used to construct the models and contains known output. The ML 

models are fitted to the training data and calculate the regression coefficients. Then, the test set is utilized to observe the 

performance of the ML models over unknown data. This implies that the test set serves as a criterion for the evaluation of the 

model predictions. In contrast to many other studies, the effect of different test-size (TS) is observed in this study for the dataset 

with the selected features and different correlation values. 

 

3.3. Accuracy evaluation 

 The indices used for the evaluation of the performance of the proposed models are: 

3.3.1. R-squared  

Goodness-of-fit R-squared (R2) is defined as [32]: 

 

                                (5) 

 

where yi is the actual value and byi is the predicted value for the i-th case. R2 ranges between 0 and 1. The closer to 1, the better 

the prediction. 

3.3.2. Mean absolute error (MAE)  

MAE is used to compare the precision of the prediction and is defined as follows [32]: 

                               (6) 

The smaller the MAE, the better the prediction 

 

3.3.3. Root mean squared error (RMSE)  

The root square of the above equation provides the standard deviation of the random error term. Root mean square error is 

an estimate of the standard deviation of the random component in the data and is defined as follows: 

                                (7) 

4. RESULTS AND DISCUSSION 

In this study, Python and MATLAB have been harnessed to perform the statistical analysis and prediction of the SOC. Fig. 3 

shows the flowchart of the proposed methodology for predicting the SOC of the battery using EIS measurements. In this section, 

the models’ performance at different temperatures is discussed considering the effect of reliable features extraction based on their 

correlation value and portioning of the dataset. The statistical evaluation indices discussed in the previous section have been 

tabulated in Table 2 in different conditions. As mentioned earlier, some datasets have been introduced to the ML models with 
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different portioning. The default portioning is that 80% of the dataset is dedicated to the training set, and 20% (test_size (TS) ¼ 

0.2) is dedicated to the test set. However, to see the effect of TS, other values for this variable have been also taken into account. 

For corr_value of 0.5, different evaluation indices have been obtained at different temperatures as presented in Table 2. The linear 

regression model can perfectly predict the battery’s SOC based on the values of R_squared, MAE, and RMSE at the mentioned 

temperatures except for 10oC and 0 oC. The MAE for 25 oC, 10 oC, and 20oC temperatures is less than 4.9%, but for 10 oC and 

0oC the MAEs are 8.9% and 17.5%, respectively. Moreover, it is clear that for TS of 0.4 the highest accuracy is achieved for 

temperatures 10oC and 0oC. As for the corr_value of 0.7, we can observe that for the temperatures of 25 oC, 10oC, and 20 oC, the 

evaluation indices values have not changed, significantly. However, in the cases of 10 oc and 0 oc temperatures, the improvement 

of evaluation criteria is noticeable such that the MAEs have reduced to 5.5% and 9.7%, respectively. Moreover, one may observe 

the influence of TS on the mentioned temperatures, as the TS increases, an increase in R_squared, and a reduction in MAE and 

RMSE are observed. Considering the corr_value of 0.9, The MAE for all the cases is achieved with a value of less than 7%. Since 

the extracted features are reliable, it is expected that the MAE and RMSE decrease, but on the contrary, they increase. This is 

because when highly correlated features are selected, most of the other features are lost, and the machine learning model may lose 

accuracy if the dataset is not big enough. Thus, the performance of the model over a dataset is of importance. Although the linear 

regression model functions properly for corr_values of 0.9, with a maximum error of 7%, a more accurate and reliable model, i.e., 

GPR, is used for this corr_value. The GPR model results for corr_value of 0.9, and the best TS have been presented in Table 2. 

The MAE for 25 oC, 10 oC, and 20 oC temperatures is less than 2.8%, but for 10 oC and 0 oC, the MAEs are 3.8% and 8.7%, 

respectively. As an example, the training and test data and their predicted values at different temperatures have been shown in Fig. 

4. 

 
Fig. 3. Flowchart of the proposed model for predicting the SOC of the battery using EIS measurements. 

 

Table 2 Evaluation indices under different conditions. 

 

 
 

Fig 4 showcases SOC’s predicted values versus f1 and f2, among the highly correlated features. The study results demonstrate 

that in addition to identifying and extracting reliable features, the learning ability of the model and partitioning of the data for 

training are highly crucial for precise prediction. Considering the above-mentioned elements’ effects, we also observed that the 

GPR model outperforms the linear regression model. The proposed method will be implemented in BMS for online measurement 

of EIS and SOC prediction utilizing the potential approaches from Refs. [22e24] such as fractional-order equivalent circuit model 

(FOECM) and pseudo-random sequences (PRS), which are fast and easily implementable for measuring EIS at low measurement 

time and low complexity. 

 

5.Conclusions  
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In this investigation, the prediction of li-ion battery SOC using EIS measurements was performed based on an ML approach. This 

study was conducted based on extracting reliable features according to their correlation value with the SOC of the battery. The 

features are the impedances of EIS measurements over the range of desired frequencies, i.e., from 1 mHz to 6 kHz. After selecting 

the reliable features of different datasets at various temperatures and different SOCs, the linear regression model and GPR were 

trained, and the prediction was performed by the trained models over the test set. Statistical indices such as R_squared, MAE, and 

RMSE were used to evaluate the accuracy and robustness of the models. The results indicated that the proposed models are able 

to precisely predict the SOC of the battery using the reliable features. The models trained by the features with corr_value of above 

0.9 indicated the best performance among the others, such that the error of the GPR model was found to be less than 3.8%. 

Furthermore, the impact of test-size on the model precision was evaluated. It was observed that for some cases, the larger test-size 

results in higher accuracy. Therefore, considering the online and onboard EIS measurement, this method can be practically 

embedded in the BMS for accurate measurements of SOC of li-ion batteries and ensure the proper operation of PEVs 

 

 

 
 

Fig. 4. SOC prediction of the proposed model at temperatures of (a) 25oc, (b) 10 oc, (c) 10 oc, (d) 25 oc 

. 
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