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Abstract 

Gliomas the most frequent type among primary brain tumors are highly heterogeneous. Developing successful 

therapies to overcome glioma requires a comprehensive knowledge of its molecular mechanisms. Several altered 

signaling pathways and cross-linked relationships of ncRNAs and coding RNAs remain to be investigated. 

Evidence demonstrates that ceRNA networks play a critical role in cellular processes, and dysregulation of any 

component of these networks could result in pathogenesis. Thus, identifying unknown interconnections between 

these genes may provide valuable clues for developing strategies for cancer therapy. In the present study, we 

aimed to identify potential regulatory networks involved in tumorigenesis of glioma, based on the ceRNA 

hypothesis. We used integrated bioinformatics analysis to construct a regulatory network associated with glioma 

tumorigenesis we acquired five axes, "CRNDE/has-mir-223/STAB1", "CRNDE1/has-mir-150/TOP2", 

"NEAT1/has-mir-150/TOP2", "GRM3-AS1/has-mir-128/TOP2" and "GRM3-AS1/has-mir-128/STAB1 "as 

potential ceRNA regulatory networks in glioma patients. 
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Introduction 

Gliomas are the most frequent type of primary brain tumors [1, 2] Each year more than 250 000 cases are 

diagnosed as primary malignant brain tumors worldwide and 77% of these cases are gliomas [3]. Despite their 

low incidence, they have a high mortality rate because of their delicate location [4]. The World Health 

Organization (WHO) classifies gliomas into 4 grades, grades I and II as low-grade gliomas (LGGs) and grades 
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III and IV as high-grade gliomas (HGGs) [5]. Despite recent advances in surgical, radiotherapy, and 

chemotherapy treatments, the effectiveness of current therapies is not desirable and leads to a short survival period 

for most patients with HGGs. Gliomas are characterized by poor prognosis, heterogeneity, rapid cell proliferation, 

high diffusion and invasion capacity, recurrence rate, and resistance to treatment [6] [7].  

More than 75 percent of the genome is transcribed into RNA, but only approximately 2 percent encodes proteins, 

and the rest are classified as noncoding RNAs (ncRNAs) [8]. Regulatory ncRNAs with lengths smaller than 200nt 

are sorted as small non-coding RNA, and some well-known classes are small interfering RNAs (siRNAs), 

microRNAs (miRNAs), piwi-interacting RNAs (piRNAs) and small nucleolar RNAs (snoRNAs) [9]. Those with 

lengths larger than 200nt are sorted as long non-coding RNA, such as long intergenic non-coding RNAs 

(lincRNAs) and natural antisense transcript (NAT). Non-coding RNAs (ncRNAs) participate in multiplex 

networks of interactions with RNAs and proteins. They perform structural, catalytic, and regulatory roles, and 

participate in proliferation, differentiation, development, and apoptosis in a wide variety of biological processes. 

Studies proved that their altered expression levels can lead to carcinogenesis [10, 11].  

Increasing evidence suggests that Competitive endogenous RNA (ceRNA) networks are critical regulators of gene 

expression. The ceRNA hypothesis proposes a new approach in which the functions of coding and noncoding 

RNAs are linked, and a regulatory lncRNA-miRNA-mRNA network is constructed. Existing data show that 

lncRNAs can indirectly modulate mRNA expression levels by interacting with miRNAs: therefore, they can affect 

multiple target genes and biological functions. LncRNAs can act as ceRNAs because they contain miRNA 

response elements (MREs). LncRNAs compete to isolate miRNAs from their target genes. Subsequently by 

sponging miRNAs, they regulate gene expression through these complex networks [12, 13]. 

Emerging studies have revealed the significant impact of dysregulated ceRNA networks on the pathogenesis of 

diseases. Discovering possible ceRNA networks would provide insights into the molecular mechanisms that lead 

to pathogenesis [14, 15]. Therefore, in the present study, we aimed to identify a potential lncRNA-miRNA-mRNA 

regulatory network involved in glioma tumorigenesis. By using a combination of bioinformatics tools, we 

acquired five axes, "CRNDE/has-mir-223/STAB1", "CRNDE1/has-mir-150/TOP2", "NEAT1/has-mir-

150/TOP2", "GRM3-AS1/has-mir-128/TOP2" and "GRM3-AS1/has-mir-128/STAB1"  as potential ceRNA 

regulatory networks in glioma patients.  
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Materials and Methods 

Data acquisition and Differential expression analysis 

Four datasets (SRP434123, SRP233221, SRP328814, SRP114556) were downloaded from the SRA database 

(http://www.ncbi.nlm.nih.gov/sra). These datasets contain mRNA and lncRNA expression RNA-seq from 32 

glioma tissues and 32 normal ones. Also, 2 and 12 samples contain miRNA-seq of glioma and 12 normal tissues, 

respectively. The quality of the reads was checked by FASTqc and adapters were eliminated at the beginning of 

each read with Trim Galore software. The pre-processed reads were aligned by HISAT2 against the human 

reference genome (GRCh38/hg38). Counting of reads and their assembly were done with the htseq-count 

software. Eventually, the Deseq2 package was applied to calculate the differentially expressed genes (DEGs) 

between glioma and normal tissues. The DEGs with log2 fold change (FC) > 2 and< 0.5 and (p < 0.05) were 

selected to further analysis. 

Survival and co-expression analysis of key genes 

Clinical data of glioma patients were obtained from the TCGA database (HGG). We analyzed the overall survival 

rate of differentially expressed mRNAs, lncRNAs and miRNAs, using the survival package. Starbase database 

was used to analyze survival of genes in the ceRNA network and to further investigate, Correlation expression 

analysis of key genes was performed. 

GO and KEGG enrichment analysis  

We investigated the functions of DE-mRNAs and pathways in which they operate by applying GO analysis which 

consists of (Cellular Component (CC), Biological Function (BF), Molecular Process (MP)) and The Kyoto 

Encyclopedia Genes and Genomes (KEGG) analysis, using R package. 

Regulatory network of lncRNA-miRNA-mRNA  

To generate an interaction network based on the DEGs, the relationship of 10 up/down-regulated mRNA–miRNA, 

lncRNA–miRNA, and lncRNA–mRNA pairs were predicted using online tools Targetscan 

(www.targetscan.org/), mirDB (www.mirdb.org/ ), miRwalk (http://mirwalk.umm.uni-heidelberg.de/ ), and 

Starbase database (www.starbase.sysu.edu.cn/ ). The construction of the ceRNA networks between the commonly 

predicted lncRNA–mRNA, lncRNA–miRNA, and miRNA–mRNA was visualized using Cytoscape software 

version 4.1. 
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Results 

Data acquisition and Differential expression analysis 

RNA-seq data was analyzed to investigated the Up/down-regulated coding/non-coding RNAs in glioma. we 

acquired differentially expressed lncRNAs, miRNAs and mRNAs in Glioma samples compared to normal 

samples. Based on the expression analysis, 598 DE lncRNAs (250 upregulated and 348 downregulated), 210 DE 

miRNAs (110 upregulated and 100 downregulated) and 495 DE mRNAs (254 upregulated and 241 

downregulated) were identified. ten of the most important genes are listed in the table 1. The dysregulated genes 

were significantly associated with Glioma with criteria; log Fc > 2 or < 0.5 and (P<0.05). Results are shown in 

(Fig.1). 

Survival and co-expression analysis of key genes 

The survival rate of DE-lncRNAs, DE-mRNAs and DE-miRNAs was evaluated using the survival package in R 

(P<0.05). Starbase was applied for survival analysis of the key genes. Results indicated that DE-mRNAs (TOP2 

and STAB1), DE-lncRNAs (CRNDE and NEAT1) and were negatively correlated with overall survival of Glioma 

patients. DE-miRNAs including has-mir-128, hsa-miR-150, hsa-miR-223 were positively associated with overall 

survival in glioma. Results are shown in (Fig.2). The correlation between the expression level of key genes and 

their targets was explored by starbase database. According to starbase database, hsa-miR-150 negatively 

correlated with TOP2. hsa-miR-128 negatively correlated with TOP2. Results are shown in (Fig.3).  

Gene Ontology(GO) and KEGG enrichment analysis  

To explore the functional significance of DEGs in the ceRNA networks, we performed GO enrichment analysis 

and KEGG pathway analysis. Results of the GO functional annotation and KEGG pathway analysis demonstrated 

that, DEGs were significantly enriched in “systemic lupus erythematosus (SLA)”, “alcoholism”, and “neutrophil 

extracellular traps” which reported to be related to glioma. Top GO functional annotation and KEGG pathway 

analysis are shown in (Fig.4). 

Prediction of lncRNA-miRNA-mRNA relationship and construction of ceRNA network 

We constructed ceRNA networks to study the regulatory relationships between DE-miRNAs and their target 

genes to get a better understanding of the underlying molecular mechanism of Glioma. We identified target gene 

interactions by using mRNAs to predict related miRNAs and using miRNAs to predict related lncRNAs. lncRNA- 

miRNA–mRNA networks were constructed using the combination of lncRNA–miRNA and miRNA–mRNA 

pairs. Online tools such as Targetscan, mirDB, miRwalk, and Starbase were utilized. The results of interactions 

were visualized by Cytoscape. We predicted that hsa –mir- 223 could bind to the 3UTR of STAB1 and hsa –mir-

128 could bind to 3UTR of STAB1 and TOP2. And hsa-mir-223 could be sponged by CRNDE, hsa –mir- 128 

could be sponged by NEAT1 and hsa –mir- 150 could be sponged by NEAT1 and GRM3. In this study the 

following 5 axis, "CRNDE/has-mir-223/STAB1", "CRNDE1/has-mir-150/TOP2,” "NEAT1/has-mir-
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150/TOP2", "GRM3-AS1/has-mir-128/TOP2 ”and "GRM3-AS1/has-mir-128/STAB1 ”were introduced as 

potential ceRNA regulatory networks in Glioma. Results are shown in (Fig.5). 

Discussion 

Gliomas are highly heterogeneous tumors [16]. Developing successful therapies to overcome glioma requires a 

comprehensive knowledge of its molecular mechanisms. Several altered signaling pathways and cross-linked 

relationships of molecules remain to be investigated. Evidence demonstrates that ceRNA networks play a critical 

role in cellular processes, and dysregulation of any component of these networks could result in pathogenesis. In 

the present study, we aimed to identify potential regulatory networks, based on the ceRNA hypothesis. We used 

integrated bioinformatics analysis to construct a regulatory network associated with glioma tumorigenesis. First, 

we obtained 598 DE-lncRNAs, 210 DE-miRNAs, and 495 DE-mRNAs in Glioma samples compared to normal 

samples from TCGA database. Furthermore, Survival and correlation analyses were performed and significantly 

associated genes were selected. Bioinformatics analysis was then performed to predict target gene interactions. 

Ultimately, lncRNA- miRNA–mRNA networks were constructed. Based on the results, we identified five axes, 

"CRNDE/has-mir-223/STAB1", "CRNDE/has-mir-150/TOP2", "NEAT1/has-mir-150/TOP2", "GRM3-

AS1/has-mir-128/TOP2" and "GRM3-AS1/has-mir-128/STAB1" as potential ceRNA regulatory networks in 

glioma patients. There are no previous studies on the impact of miR-128, miR-150 and miR-223 on TOP2 and 

STAB1 in gliomas. 

Topoisomerase 2 (TOP2) are ATP-dependent enzyme that are found to be in nucleus and mitochondria [17]. They 

are involved in DNA functions such as chromatin organization, replication process and transcription [18][17]. 

TOP2  resolve DNA topological problems encountered in the above-mentioned functions by generating transient 

double-stranded breaks (DSBs) and unwinding the DNA, thus relieving the torsional stress [19]. Unrestrained 

TOP2-associated DSBs can cause mutations, such as deletions and translocations, and can trigger malignancies 

[20]. Vertebrates have two structurally similar isoforms of Topoisomerase 2; TOP2A [21] and TOP2B [22] are 

located on chromosomes 17 and 3 respectively. These isoforms differ in terms of expression and physiological 

functions [23]. TOP2A is considered a marker of cell proliferation, while TOP2B is mainly involved in other 

DNA metabolism processes [24]. TOP2A expression levels increase in proliferating cells and maximizes in G 2 

/M phase, which represents its significant activity in replication and chromosome segregation. Knockout of 

TOP2A impedes development at the four or eight cell stage in mice [25]. Wang et al reported TOP2A Activates 

PI3K/AKT Signaling pathway and Elevates metastasis in Cervical Cancer [26]. Meng, Jiali, et al. suggested that 

high expression of TOP2A in hepatocellular carcinoma could be associated with tumor progression and bad 

prognosis [27]. Findings showed that TOP2A could play an oncogenic role in gliomas and is correlated with 

patients survival [32]. Owing the contribution of TOP2 in tumorigenesis, chemotherapeutic drugs targeting them 

are among the most effective drugs [23]. The mechanisms involved in the TOP2 regulatory networks remain to 

be elucidated. STAB1 encodes a multidomain type 1 transmembrane receptor, known as Stabilin-1, FEEL-1, 

CLEVER-1, KIAA0246. Its expression has been identified in macrophages, immunosuppressive cells, 
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monocytes, sinusoidal endothelial cells and lymphatic endothelial cells [34]. Stabilin-1 functions in tissue 

homeostasis, intracellular trafficking, scavenging, and tolerance [35]. Stabilin-1 is associated with endocytosis of 

acetylated low-density lipoprotein (acLDL), secreted protein acidic and rich in cysteine (SPARC), and 

transcytosis of the growth hormone family member placental lactogen (PL). Stabilin-1 is a known receptor for 

SPARC, a matricellular protein involved in cell migration, which is upregulated in glioma tissues and promotes 

metastasis [36]. The role of STAB1 in cancer progression remains challenging, Due to its context-dependent 

nature and the multiple functions of ligands in the tumor microenvironment [37]. Stabilin-1 is expressed by tumor-

associated macrophages (TAM) in the tumor microenvironment in cancers such as melanoma, lymphoma, 

glioblastoma, and pancreatic insulinoma [38]. A study showed that STAB1 knockout mice develop smaller 

primary tumors and metastases, suggesting that it may play a role in tumor development [39]. Clément et al. 

showed that stabilin-1 is expressed in early gliomas and is downregulated during tumor progression [36].  Studies 

on STAB1 in Glioma are limited, and further investigations on their potential roles and regulators are urgently 

needed. miR-128 is reported to be a brain-enriched miRNA [41].  

miR-128-3p acts as a tumor suppressor in various cancers, including esophageal squamous cell carcinoma [42], 

breast [43], bladder [44] cancer and gliomas [45]. Accumulating evidence suggests that it as a potential target for 

cancer therapy [46].  Decreased expression of miR-128 associates with aggressive glioma grades [47]. Studies 

indicated that miR-223 could act either as an oncogene or as a tumor suppressor in carcinogenesis [48]. miR-223-

3p inhibited proliferation of glioma cells by regulating NFIA expression [49] and inflammation-associated 

cytokines [50]. A study reported that miR-150 inhibits the tumorigenesis of Leukemia Stem Cells by regulating 

the Nanog Signaling Pathway [51]. Another study reported that miR-150-3p Inhibits the proliferation of glioma 

cells through targeting SP1 and its decreased expression is associated with metastasis in patients with glioma.  

[52]. Taken together, our miRNA candidates were reported to be promising regulators in various cancers thus, 

investigating their novel targets including TOP2 and STAB1 could bring new insights into unexplored 

mechanisms in glioma.  

LncRNA Colorectal neoplasia differentially expressed (CRNDE) has been suggested to be a key player in 

carcinogenesis in a variety of cancer types, including glioma [53]. Accumulating studies verifies CRNDE exerts 

multiple carcinogenic functions, such as inhibiting cell apoptosis and inducing proliferation, invasion, migration, 

and chemoresistance in gliomas through multiple mechanisms.  [54] [55]. Wang et al. reported up-regulated 

CRNDE promotes malignancy in glioma via mTOR signaling pathway [56]. Li et al. claimed that CRNDE 

accelerates tumor progression through regulating the miR-136-5P/Bcl-2/Wnt2 signaling axis in GBM [57]. 

LncRNA Nuclear paraspeckle assembly transcript 1 (NEAT1) is another oncogenic factor that regulates multiple 

signaling pathways in various cancers [58]. For instance, Zhao, Lun, et al. indicated lncRNA NEAT1 regulates 

non-small cell lung cancer (NSCLC) tumorigenesis by sponging miR-153-3p [59]. A study has shown that 

NEAT1 promotes breast cancer progression via modulating miR-448 and ZEB1 [60].  Zhang, Jiale, et al. found 

that NEAT1 sponges miR-324-5p thus positively regulates KCTD20 expression and increases the proliferation 
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of glioma cells [61]. Increased expression of CRNDE levels, indicates a poor prognosis and overall survival in 

glioma patients [61] [62]. A study showed that NEAT1 promotes proliferation in glioma cells by modulating the 

miR-185-5p/DNMT1/mTOR signaling pathway [63]. Reduced expression of NEAT1 inhibits tumor progression 

in GSCs via restoring the microRNA let-7e [64]. 

The aberrant expression of our candidates in a variety of tumor cells indicates their significance in tumorigenesis. 

Thus, identifying unknown interconnections between these genes may provide valuable clues for developing 

strategies for cancer therapy. Since no previous studies have investigated the impacts of miR-128, miR-150 and 

miR-223 on TOP2 and STAB1 in Glioma, we aimed to uncover the potential underlying regulatory network. 

Results of Functional Enrichment Analysis demonstrated that change in expression level of mentioned genes, 

directly affects systemic lupus erythematosus (SLA), alcoholism and neutrophil extracellular traps. Central 

nervous system is among the organs that can get involved in SLE [65]. Studies revealed there is a link between 

SLE and increased cancer incidence, including brain tumors such as glioma [66]. Case studies have proposed an 

association between high-grade glioma and SLE [67, 68]. There is inconsistent evidence concerning alcoholism 

and glioma therefore, further research is required to understand the exact association and mechanisms [69]. 

Activated Tumor Associated Neutrophils release networks composed of DNA-histone complexes and proteins 

known as Neutrophil Extracellular Traps in tumor microenvironment, which promotes tumor progression and 

metastasis [70]. It has been reported that NETs could induce the glioma cell proliferation, migration, and invasion 

[71]. However, involvement of these mechanisms in glioma progression remains largely unknown, we suggest 

experimental investigations. 

In conclusion, our results provide a potential regulatory network underlying glioma genesis and displayed that 

CRNDE can competitively bind to miR-223, miR-150 also NEAT1 can competitively bind to miR-150 and miR-

128. And GRM3-AS1acts as a ceRNA and binds to miR-128. Therefore, modulate STAB1 and TOP2 expression 

levels in glioma and base on Functional Enrichment Analysis affect systemic lupus erythematosus (SLA), 

alcoholism and Neutrophil extracellular traps pathways in glioma. 
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Legends 

Fig1. Identification of DE-lncRNAs, DE-mRNAs, DE-miRNAs related to glioma 

(A). Volcano plot for DE-lncRNAs 

(B). Volcano plot for DE-mRNAs 

(C) Volcano plot for DE-miRNAs 

Fig2. Survival analysis results of differentially expressed genes in the ceRNA networks Based on starbase 

database.  

Fig3. Correlation expression analysis of TOP2A and STAB1 in starbase database.  

(A) TOP2A and hsa-miR-128 and hsa-miR-150. 

(B) STAB1 and has-mir-128 and has-miR-223. 

Fig4. Analysis results of DE-mRNAs in the ceRNA regulatory network in the GO and KEGG pathways.  

(A) Results of GO enrichment analysis of the DEGs 

(B) Results of KEGG pathway analysis of the DEGs  

Fig5. The result of lncRNA-miRNA mRNA ceRNA network construction by cytoscape. 
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