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Abstract: The defense sector plays a critical role in safeguarding a nation’s sovereignty and protecting its citizens. By maintaining 

a strong defense, a country can deter potential aggressors, prevent conflicts, and respond effectively to emergencies. Microwave 

and magnetic sensors play crucial roles in the defense sector for detecting various objects and threats. Microwave sensors utilize 

electromagnetic waves [17] in the microwave frequency range to detect objects by measuring changes in the reflected waves. These 

sensors are adept at detecting movement, such as approaching vehicles or aircraft [12], and can also identify concealed objects [1]. 

On the other hand, magnetic sensors detect changes in magnetic fields, allowing them to locate metallic objects like weapons [6], 

[7], vehicles [9], [10], or submarines. By combining the capabilities of microwave and magnetic sensors, defense systems can 

effectively monitor and secure areas, providing early warnings and enhancing situational awareness against potential threats. 

Microwave and magnetic sensors offer distinct advantages in the defense field compared to other sensors due to their unique 

capabilities and properties like Versatility, All Weather Performance, Stealth Detection, Long-range Detection, etc. This study 

reviews Microwave and Magnetic sensors approach to detect things in defense field and gives an outline of the progress made in 

this field. This study also   goes through a number of research papers and compare numerous microwave and magnetic sensing 

techniques. In conclusion, this study highlights the best sensor’s [3], [4], [7], [8] applications, challenges, and potential areas of detecting 

weapons in defense field. 
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I. INTRODUCTION 

 
 
In safeguarding sensitive areas and identifying potential threats, the defense field heavily relies on a diverse arsenal of sensors. 

Microwave and magnetic technologies play a critical role in this multifaceted approach. They offer a range of capabilities beyond 

the limitations of human perception. Microwave sensors like Pulse radars [1], [2], [5] and Microwave Doppler’s [32] utilize 

electromagnetic waves [17] to track moving objects, allowing for long-range detection regardless of visibility conditions. Infrared 

sensor cameras [5] passively detect heat signatures, providing valuable information in low-light environments or through 

concealment. Swept-frequency continuous wave sensors [3], [4], [6] employ varying frequencies to identify disturbances caused by 

movement or changes in the environment. Magnetic sensors, encompassing various types like Magnetometers [6], [7], [10], [23] 

, Magnetoresistive sensors [24], Giant Magnetoresistance sensors [15], [22], Hall effect sensors [39], and Fluxgate magnetometers [26], 

[24], are highly sensitive to magnetic fields. This allows them to detect the presence of metal objects, individuals carrying concealed 

weapons [6], [7], or even specific types of explosives, even when hidden from sight. Microwave sensors in weapon detection [3] aren't 

like metal detectors. They act more like advanced motion detectors [34]. The sensor blasts out microwave waves and analyzes the 

echoes bouncing back. Any movement disrupts this pattern, and the sensor flags the change. This might indicate someone carrying 

something, but it can't tell the difference between a weapon and a laptop! The fabrication process of CMOS- MEMS Magnetic 

Microsensors [39], shedding light on their comprehensive design, fabrication, and characterization through the integration of CMOS 

processes and MEMS technology [38], [39]. These microsensors, leveraging Lorentz force actuation, respond to a magnetic field, 

inducing a change in capacitance, a phenomenon meticulously explored in the study. A pivotal phase of the sensor's development 

involves a post- CMOS process [39] , wherein anisotropic and isotropic dry etching techniques are skillfully applied to release the 

suspended sensor structure. The culmination of these techniques allows for the sensor's efficient operation. A vital aspect of the 

research lies in the sensing circuit, adeptly converting the capacitance variation induced by the Lorentz force [39] into a measurable 

output voltage. The experimental findings demonstrate a discernible voltage range, spanning from 0.05 to 1.94 V, in response to 

a magnetic field within the range of 5–200 mT, thereby highlighting the practical applications and performance capabilities of 

these innovative CMOS-MEMS magnetic microsensors [38], [39]. 
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II. METHODOLOGY 
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Table 1: Comparing different algorithms from different papers on weapon detection 
 

Sensor Description Advantage 

Pulse Radar 
[1], [2], [5] A pulse radar sensor uses short pulses of 

electromagnetic energy to detect and 

measure the distance to objects by 

analyzing the time it takes for the 
pulses to reflect back. 

Pulse radar sensors has ability to provide high 

range resolution, allowing them to distinguish 

between closely spaced objects. 

Microwave Doppler Radar [32] It detects motion by measuring changes in 

the frequency of reflected microwaves 

caused by the Doppler effect. 

Their ability is to detect motion accurately and 

at a distance, making them ideal for applications      

like      speed      detection and motion sensing. 

Infrared Sensor Camera [5] It is using infrared radiation, which is 

emitted by objects based on their 

temperature, allowing it to create images 

even in low-light or no-light 
conditions. 

To see in the dark, as they can detect infrared 

radiation emitted by objects, making them useful 

for surveillance and night vision applications. 

SFCW 
[3], [4], [6] An Swept Frequency Continuous Wave 

(SFCW) sensor uses a continuous wave 

signal with a frequency that changes over 

time to measure distances and 

properties of objects based on the signal's 

reflections. 

Their ability is to provide high-resolution 

measurements in radar and imaging applications 

due to their precise frequency control and 

processing techniques. 

CW 
[2], [3] A Continuous Wave (CW) radar sensor 

emits a continuous signal to detect the 

presence, distance, and speed of objects 

by measuring the phase shift of the 

reflected signal. 

Their ability is to provide continuous 

measurements, allowing for real-time tracking of 

moving objects. 

Table 2: Methodologies of different microwave sensors from different papers 
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Parameter Pulse Radar 

Sensor [1], [2], [5] 

CW Sensor [2], [3] Microwave Doppler 

Sensor [32] 

Infrared Sensor 
[5] 

SFCW Sensor
[3],[4], [6] 

Sensitivity -100 dBm to - 80 

dBm 

-50 dBm to -30 dBm -7 dBm to -50 dBm 10µW/cm3 

Thermal) 

-80 dBm to -60 dBm 

Range 10 meters to 
10 kilometers 

Upto 10 meters 0.1 meters to 10 

meters 

Upto a few meters 0.5 meters to 50 meters 

Accuracy ±1 meter to 
±10 meters 

±0.1 to ±1% ±1cm/s to 
±10cm/s 

±0.5°C to 
±2°C 

±2cm to ±10cm 

Resolution 1 centimeter to 
1 meter 

Millimeter Millimeter to 

centimeter 

0.1°C to 1°C Centimeter 

Response Time Microseconds to 

ms 

Continuous Microseconds to ms Microseconds to ms Microseconds to ms 

Signal-to- Noise 

Ratio 

10 dB to 30 dB 15 dB to 25 dB 10 dB to 20 dB Depends on 

temperature and 

background 
radiation 

20 to 40 dB 

Table 3: Values of different parameters of different sensors used in microwave detecting technique 

 

 
 

Sensor Description Advantage 

 

Magnetometer [6], [7], [10], [23] 

A magnetometer sensor measures the 

direction,     strength,     or    change     of a 

magnetic field 

Magnetometer sensors invisibly sense 

magnetic fields, making them useful in 

metal detection, navigation, and more. 

 

Magnetoresistive [24] 

A magnetoresistive sensor detects changes in 

a magnetic field by measuring the resulting 

shift in electrical resistance of a special 

material. 

Magnetoresistive sensors offer high 

sensitivity for magnetic field detection, 

making them ideal for applications like 

precision positioning and 
current monitoring. 

 

Giant 

magnetoresistance [24], [15], [22] 

Giant magnetoresistance (GMR) is a 

quantum mechanical effect observed in 

multilayers composed of alternating 

ferromagnetic and non-magnetic conductive 

layers, resulting in a significant change in 

electrical resistance based on the alignment of 

adjacent 
ferromagnetic layers’ magnetization 

Giant Magnetoresistance (GMR) sensors 

include their small dimensions, low power 

requirements, and high sensitivity. 

 

Hall effect[38] 

A Hall Effect sensor is a type of magnetic 

sensor that detects the strength and direction 

of a magnetic field produced by either a 

permanent magnet or an electromagnet. 

Hall Effect sensors offer several 

advantages, including robust solid- state 

components, miniaturization for surface 

mount applications, low cost, fast response, 

and durability with 
almost unlimited lifetime 

 

Fluxgate Magnetometer [26], [24] 

A Fluxgate Magnetometer is an advanced 

type of magnetometer designed to 

measure the intensity and direction of 

magnetic fields 

Fluxgate magnetometers are very 

sensitive, and accurate magnetic 

sensors able to detect weak fields both AC 

and DC 

Table 4: Methodologies of different magnetic sensors from different papers 
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Parameter Hall Effect 

Sensors [38] 

Giant 

Magnetoresistan ce 

(GMR) 
Sensors [24], [15], [22] 

Fluxgate Magnetometers 
[26], [24] 

Magnetometer 

Sensor [6], [7], [10], [23] 

Magnetoresisti ve 

Sensor [24] 

Range Several cm Several mm to cm Several Gauss 10m Several cm 

Accuracy ±0.5% to ±5% ±0.01% to ±1% ±0.01% to ±1% ±1% ±1% 

Sensitivity 1 to 100 mV/G 1 to 100 mV/VT 0.01 nT 500mV/G 0.1 nT 

Resolution <10 µT <10 µT 0.01 nT to 0.1 nT 0.01nT 0.01 nT 

Response Time Microseconds to 

ms 

Microseconds to ms ms to seconds Microseconds to ms Microseconds to ms 

Signal-to- 

Noise Ratio 

50 dB to 80 dB 50 dB to 80 dB 70 dB to 90 dB 30 to 60 dB 20 to 50 dB 

Table 5: Values of different parameters of different sensors used in magnetic detecting technique 

 

 
 

Method Algorithm Design Simulation Results Experimental Results 

MEMS 

Fabrication [38], [39] 

- Utilizes microfabrication techniques  to 

create miniature sensors. 

- Simulated behavior of 

MEMS sensors in various 

conditions. 

- Validated sensor 

performance in controlled 

laboratory settings. 

Inductive Sensors [38] - Based on electromagnetic induction. 

Detects metal objects by measuring 

changes in inductance. 

- Simulated response to 

different metal targets and 

distances. 

- Experimentally verified 

detection accuracy using 

metallic objects. 

Magnetic Sensors [38] - Utilizes Hall effect or magnetoresistive 

principles. Measures magnetic fields. 

- Simulated sensitivity to 

magnetic field variations. 

- Conducted experiments 

with known magnetic fields to 

validate sensor output. 

Electrochemical [38] - Measures chemical reactions at 

electrode interfaces. Common in gas 

sensors, pH sensors, and biosensors. 

- Simulated sensor response 

to varying analyte 

concentrations. 

- Tested sensor performance 

with known chemical 

solutions or biological 

samples. 

Table 6: Results of sensors used in paper Magnetic sensors and their applications [38] 

III. CONCLUSION 

 
By comparing all the papers both microwave and magnetic sensors offer distinct advantages and disadvantages for weapon 

detection. Magnetic sensors excel at detecting ferrous metals but are blind to non-metallic threats. Conversely, microwave sensors 

hold potential for broader object detection [11], [12] but face challenges with interference and accuracy. Microwave sensors are good 

for detecting weapons [1] ,[2], [3] made of various materials due to their penetrability and ability to operate over a range of frequencies 

but their limitations include issues with material composition of the weapon [4], [5], operating range, and attenuation factors. 

Magnetic sensors are highly effective for detecting metallic weapons [7], [8]; the Giant Magneto-Resistive (GMR) sensor [6], [22] array 

developed at Newcastle University shows potential for automatic weapon detection and classification but can be affected by the 

human body’s presence, which may give a stronger signal than the material of a low- conductivity or small weapon, potentially 

leading to undetected items. Ultimately, the "best" sensor depends on the specific application's priorities. For cost-effectiveness 

and reliable ferrous metal detection [23], [28], magnetic sensors shine. However, for broader detection needs, even with potential 

drawbacks, microwave sensors might be a better choice. In crucial scenarios, combining both sensors or integrating them with 

other security measures provides the optimal approach for comprehensive weapon detection [5], [10]. 
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