JETIR.ORG # ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR) An International Scholarly Open Access, Peer-reviewed, Refereed Journal # Synthesis of pure BiFeO₃ and doped BiFeO₃ powder samples using glycine fuel through solution combustion method (SCM) # Yogesh A. Chaudhari* Assistant Professor and Head, Department of Physics, Shri Pancham Khemraj Mahavidyalaya (Autonomous), Sawantwadi - 416510 (M.S.) India *Abstract:* The present article describes the preparation of pure BiFeO₃ and doped BiFeO₃ samples such as Bi_{0.95}Ca_{0.05}FeO₃, Bi_{0.9}Ca_{0.1}FeO₃, Bi_{0.9}Ba_{0.1}FeO₃, Bi_{0.8}Ba_{0.2}FeO₃, BiFe_{0.95}Co_{0.05}O₃ and BiFe_{0.9}Co_{0.1}O₃ powder samples through solution combustion method. The produced powder samples were grinded in an acetone media and calcined at different temperatures. **Keywords:** BiFeO₃, Ca, Ba, Co substituted BiFeO₃ powders, SCM, Applications #### I. INTRODUCTION As the ferroelectric and ferromagnetic phases combined in a multiferroic materials, so these materials have gained popularity in recent years [1]. The BiFeO₃ multiferroic materials have Curie temperature $T_C = 1103$ K and a Neel temperature $T_N = 643$ K [2]. The multiferroic materials have number of applications such as spintronics, sensors [3], FeRAM, photovoltaics [4], phototransducer devices [5], electrooptic [6], high frequency filter [7], actuators [8], nano-electronics [9], spintronics [10] and microwave devices [11]. The present article describes the formulation of undoped BiFeO₃ and doped samples such as Bi_{0.95}Ca_{0.05}FeO₃, Bi_{0.9}Ca_{0.1}FeO₃, Bi_{0.9}Ba_{0.1}FeO₃, Bi_{0.8}Ba_{0.2}FeO₃, BiFe_{0.95}Co_{0.05}O₃ and BiFe_{0.9}Co_{0.1}O₃ powder samples using solution combustion method. #### II. EXPERIMENTAL PROCEDURE: # 1. SYNTHESIS OF PURE BiFeO3: The preparation of BiFeO₃ ceramics was carried out using the precursors such as Bi(NO₃)₃.5H₂O, Fe(NO₃)₃.9H₂O acts as an oxidizers while glycine (NH₂CH₂COOH) was used as a fuel. In order to prepare the mixture of samples, the oxidizer (O) to fuel (F) ratio was properly calculated using the oxidizing and reducing valences of the metal nitrates and fuel [12]. The bismuth nitrate, ferric nitrate and glycine taken in a stoichiometric quantity were dissolved in a distilled water in a separate beaker after that, these solution were mixed together and placed in a pyrex dish for heating on a gas burner. After continuous heating the water gets evaporated and finally a combustion takes place with formation of BiFeO₃ powder. The experimental procedure was reported by Chaudhari et.al. [13]. The powder was grinded in an acetone medium and finally calcined at 350°C for 3 hours in a furnace. The following flowchart indicates the entire experimental procedure. Fig.1. Flowchart of synthesis of BiFeO₃ powder samples by SCM Fig. 2. Synthesized BiFeO₃ powder samples. # 2. SYNTHESIS OF $Bi_{1-x}Ca_xFeO_3$ (x = 0.05, 0.1): The formulation of $Bi_{0.95}Ca_{0.05}FeO_3$ and $Bi_{0.9}Ca_{0.1}FeO_3$ ceramic samples were carried out using the starting materials such as $Bi(NO_3)_3.5H_2O$, $Fe(NO_3)_3.9H_2O$, $Ca(NO_3)_2.6H_2O$ acts as an oxidizers while glycine (NH₂CH₂COOH) was used as a fuel. In order to prepare the mixture of samples, the oxidizer (O) to fuel (F) ratio was properly calculated using the oxidizing and reducing valences of the metal nitrates and fuel [12]. The bismuth nitrate, ferric nitrate, calcium nitrate and glycine taken in a stoichiometric quantity and were dissolved in a distilled water in a separate beaker after that, all these solutions were mixed together and placed in a pyrex dish for heating on a gas burner. After continuous heating the water gets evaporated and finally a combustion takes place with formation of Bi_{0.95}Ca_{0.05}FeO₃ and Bi_{0.9}Ca_{0.1}FeO₃ powder samples. These powders were grinded in an acetone medium and finally calcined at 375°C and 400°C for 3 hours in a furnace. The experimental procedure is reported by Chaudhari et.al. [13]. The following flowchart shows the complete experimental procedure. Fig.3. Flowchart of synthesis of Ca doped BiFeO₃ powder samples by SCM Fig.4. Synthesized Bi_{0.95}Ca_{0.05}FeO₃ and Bi_{0.9}Ca_{0.1}FeO₃ powder samples by SCM # 3. SYNTHESIS OF $Bi_{1-x}Ba_xFeO_3$ (x = 0.1, 0.2): The preparation of Bi_{0.9}Ba_{0.1}FeO₃ and Bi_{0.8}Ba_{0.2}FeO₃ ceramics were carried out using the precursors such as Bi(NO₃)_{3.5}H₂O, Fe(NO₃)_{3.9}H₂O, Ba(NO₃)₂ acts as an oxidizers as well as glycine (NH₂CH₂COOH) was used as a fuel. In order to prepare the mixture of samples, the oxidizer (O) to fuel (F) ratio was properly calculated using the oxidizing and reducing valences of the metal nitrates and fuel [12]. The bismuth nitrate, ferric nitrate, barium nitrate and glycine taken in a stoichiometric extent and were dissolved in a distilled water in a separate beaker after that, these solutions were mixed together and placed in a pyrex dish for heating on a gas burner. After continuous heating the water gets evaporated and finally a combustion takes place with formation of Bi_{0.9}Ba_{0.1}FeO₃ and Bi_{0.8}Ba_{0.2}FeO₃ powders. The experimental procedure is reported by Chaudhari et.al. [13]. These powder were grinded in an acetone medium and calcined at 425°C and 450°C for 5 hours in a furnace. The following flowchart represents the full experimental procedure. Fig.5. Flowchart of synthesis of Ba doped BiFeO₃ powder samples by SCM Fig. 6. Synthesized Bi_{0.9}Ba_{0.1}FeO₃ and Bi_{0.8}Ba_{0.2}FeO₃ powder samples ## 4. SYNTHESIS OF $BiFe_{1-x}Co_xO_3$ (x = 0.05, 0.1): The preparation of $BiFe_{0.95}Co_{0.05}O_3$ and $BiFe_{0.9}Co_{0.1}O_3$ ceramics was carried out using the precursors such as $Bi(NO_3)_3.5H_2O$, $Fe(NO_3)_3.9H_2O$, $Co(NO_3)_2.6H_2O$ acts as an oxidizers and glycine (NH_2CH_2COOH) was used as a fuel. In order to prepare the mixture of samples, the oxidizer (O) to fuel (F) ratio was properly calculated using the oxidizing and reducing valences of the metal nitrates and fuel [12]. The bismuth nitrate, ferric nitrate, cobalt nitrate and glycine taken in a stoichiometric amount and were dissolved in a distilled water in a separate beaker after that, all these solutions were mixed together and placed in a pyrex dish for heating on a gas burner. After continuous heating the water gets evaporated and finally a combustion takes place with formation of BiFe_{0.95}Co_{0.05}O₃ and BiFe_{0.9}Co_{0.1}O₃ powders. The experimental procedure is reported by Chaudhari et.al. [13]. These powders were grinded in an acetone medium and finally calcined at 380°C and 330°C for 2 hours in a furnace. The following flowchart shows the entire experimental process carried out for the formulation of powder samples. Fig.7. Flowchart of synthesis of Co doped BiFeO₃ powder samples by SCM Fig.8. Synthesized BiFe_{0.95}Co_{0.05}O₃ and BiFe_{0.9}Co_{0.1}O₃ powder samples by SCM #### III. RESULTS AND DISCUSSION: Fig.1. shows the preparative flowchart of BiFeO₃ powder sample and Fig.2. shows the synthesized BiFeO₃ sample in the powder form. Fig. 3. shows the preparative flowchart of Ca substituted BiFeO₃ powder samples and Fig.4. shows the synthesized Bi_{0.95}Ca_{0.05}FeO₃ and Bi_{0.9}Ca_{0.1}FeO₃ powder samples. Fig. 5. shows the flowchart of synthesized Ba substituted BiFeO₃ powder samples and Fig.6. shows the synthesized Bi_{0.9}Ba_{0.1}FeO₃ and Bi_{0.8}Ba_{0.2}FeO₃ powder samples. Fig.7. shows the flowchart of synthesis of Cobalt substituted BiFeO₃ powder samples and Fig.8. shows the synthesized BiFe_{0.95}Co_{0.05}O₃ and BiFe_{0.9}Co_{0.1}O₃ powder samples. These formulated powder samples were grinded in an acetone medium and calcined in a furnace. #### IV. CONCLUSION: In the present paper were have successfully synthesized the pure $BiFeO_3$, doped samples such as $Bi_{0.95}Ca_{0.05}FeO_3$, $Bi_{0.9}Ca_{0.1}FeO_3$, $Bi_{0.9}Ba_{0.1}FeO_3$, $Bi_{0.8}Ba_{0.2}FeO_3$, $BiFe_{0.95}Co_{0.05}O_3$ and $BiFe_{0.9}Co_{0.1}O_3$ through solution combustion method. These prepared powder samples were calcined at different temperatures. #### V. ACKNOWLEDGMENT: The author is very much thankful to Principal Dr. D. L. Bharmal for providing a technical help during manuscript preparation. ### REFERENCES - [1] Komal, A. K. Srivastava, Effect of rare earth element doping in bismuth ferrite, Journal of Emerging Technologies and Innovative Research (JETIR), 6 (2), 207-212 (2019). - [2] M Sharmila, R Jothi Mani, S M Abdul Kader, B Sundarakannan, Preparation of single phase BiFeO₃ film using spin coater and their characterization, Journal of Emerging Technologies and Innovative Research (JETIR), 5 (7), 202-206 (2018). - [3] Ashwini Kumar, Poorva Sharma, Dinesh Varshney, Structural and Ferroic Properties of La, Nd, and Dy Doped BiFeO₃ Ceramics, Volume 2015, Article ID 869071, 8 pages. - [4] Amit Srivastava, Ashwani Kumar Singh, O. N. Srivastava, H. S. Tewari, Khalid B. Masood, Jai Singh, Magnetic and Dielectric Properties of La and Ni Co-substituted BiFeO₃ Nanoceramics, Front. Phys. 8, Article 282 (2020). - [5] Sajal Chandra Mazumdar, Sanjib Datta, Farhad Alam, Structural, Magnetic and Transport Properties of Gd and Cu Co-Doped BiFeO₃ Multiferroics, Journal of Applied Mathematics and Physics, 10, 2026-2039 (2022). - [6] H. Sangian, O. Mirzaee, M. Tajally, Reverse Chemical Co-Precipitation: An Effective Method for Synthesis of BiFeO₃ Nanoparticles, ACERP: 3(1), 31-36 (2017). - [7] H. S. Ahmad, N. Y. Lanje, S. S. Darokar, S. B. Bankar, D.C. Bisht, Kishor G. Rewatkar, Synthesis and dielectric characterizations of BiFeO₃ by solid state method, IJRBAT, Vol. II, Issue (3), 345-347 (2015). - [8] Guo Tian, Wenda Yang, Deyang Chen, Zhen Fan, Zhipeng Hou, Marin Alexe, Xingsen Gao, Topological domain states and magnetoelectric properties in multiferroic nanostructures, National Science Review, 6: 684–702 (2019). - [9] Md. Masud Parvez, Synthesis of Yttrium Doped Bismuth Feraites Nanoparticles by Modified Pechini Sol-Gel Method, SEU Journal of Science and Engineering, 11 (2), 41-48 (2017). - [10] V. Srinivas, A. T. Raghavender, K. Vijaya Kumar, Structural and Magnetic Properties of Mn Doped BiFeO₃ Nanomaterials, Physics Research International, Volume 2016, Article ID 4835328, 5 pages. - [11] Jogender Singh, Crystal structure investigation of La doped BiFeO₃ multiferroics by Rietveld analysis, Research & Reviews: Journal of Physics (RRJoPHY), 7 (1), 34-37 (2018). - [12] S. Saha, S. J. Ghanawat, R. D. Purohit, Solution combustion synthesis of nano particle La_{0.9}Sr_{0.1}MnO₃ powder by a unique oxidant-fuel combination and its characterization, J. Mater. Sci., 41, 1939-1943 (2006). - [13] Yogesh A. Chaudhari, Chandrashekhar M. Mahajan, Ebrahim M. Abuassaj, Prashant P. Jagtap, Pramod B. Patil, Subhash T. Bendre, Ferroelectric and dielectric properties of nanocrystalline BiFeO₃ multiferroic ceramics synthesized by solution combustion method (SCM), Materials Science-Poland, 31(2), 221-225 (2013).