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Abstract: This study proposes a deep learning-based approach for Deepfake prediction using CNN. The preferred method involves 

training a CNN architecture on a dataset of real and fake images obtained in Kaggle, followed by transfer learning using Xception, 

which has already been trained on the ImageNet dataset. The model learns to distinguish between real and fake images by identifying 

patterns and features unique to each class. The results show that the proposed CNN-based approach performs decently in predicting 

fake images, and we are aiming forward to achieve better results. 

 

Index Terms - Deepfake, Image Detection, Convolutional Neural Networks, Deep learning, Image Processing. 

I. INTRODUCTION 

Deepfake technology is a type of machine learning that can create realistic-looking videos of anyone or anything. It uses artificial 

neural networks and generative adversarial networks to detect facial features and generate new images. Deepfakes are mostly used 

to create fake pornographic content, but they can also be used to spread misinformation and commit financial fraud.  

 

The study you mentioned investigates the use of Convolutional Neural Networks (CNNs) for deepfake image recognition. The 

authors evaluate previous studies and approaches, identify difficulties, and outline potential future paths. CNNs are deep learning 

models that can learn complex and nonlinear mappings from input images to output landmarks. They can achieve high accuracy and 

robustness on challenging face images or videos. The use of CNNs for deepfake image recognition is a promising area of research, 

but there are still many challenges to overcome. For example, deepfakes can be created using a variety of techniques, and it can be 

difficult to detect them all. Additionally, deepfakes can be created using a small amount of training data, which makes it difficult to 

train accurate detection models.  

 

Despite these challenges, researchers are making progress in developing more effective deepfake detection techniques. For 

example, some researchers are using transfer learning to improve the accuracy of deepfake detection models. Transfer learning is a 

machine learning technique that allows a model to use knowledge learned from one task to improve its performance on another task. 

Researchers are investigating the use of CNNs for deepfake image recognition, but there are still many challenges to overcome. 

Despite these challenges, researchers are making progress in developing more effective deepfake detection techniques. 

II. MATERIALS AND METHODS 

A. Dataset 

To improve model generalization, a comprehensive dataset of 140,000 Kaggle images (70,000 real, 70,000 fake) was randomly 

sampled. 20,000 images were selected for training, ensuring diversity and balanced representation. 

 

 

B. Data Pre-Processing 

By performing various alterations on the original photos, data augmentation is a pre-processing technique used to fictitiously 

expand the amount of the training dataset. Here firstly, we applied rescaling by dividing the pixel values by 255, thereby normalizing 

the input pixel range to 0-1. Subsequently, we introduced random rotations within the range of -10 to +10 degrees, horizontal and 

vertical shifts of up to 10% of the image's width and height. 

III. PROPOSED MODEL 

The proposed model is a Convolutional Neural Network (CNN) architecture specifically designed for the task of classifying 

images as either deepfake or non-deepfake. The model leverages the Xception model, which is a pre-trained CNN with weights 

obtained from training on the extensive ImageNet dataset. By utilizing the Xception model as the base, the proposed architecture 

benefits from its advanced feature extraction capabilities.   

 

The model begins with the inclusion of the Xception model's top layers for initial feature extraction. Following this, a sequence 

of fully connected layers is added to further refine the extracted features.  The first fully connected layer comprises 512 units and 

employs the Rectified Linear Unit (ReLU) activation function, enabling the network to capture complex nonlinear relationships 

within the data. To mitigate the risk of overfitting, a dropout layer with a rate of 0.5 is inserted after the initial fully connected layer. 

Subsequently, another fully connected layer with 128 units and ReLU activation is introduced, followed by another dropout layer 

with a rate of 0.5. This additional dropout layer aids in further regularizing the model. Finally, a fully connected layer with 64 units 
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and ReLU activation is appended to the architecture. The output layer consists of a single unit with sigmoid activation, producing a 

probability score that signifies the likelihood of an image being classified as a deepfake. The sigmoid activation function constrains 

the output between 0 and 1, enabling an interpretable probability interpretation. 

 

 
Fig.1: CNN Architecture 

IV. EXPERIMENTAL SETUP 

The model is evaluated on both the training and validation datasets. The training set evaluation demonstrates a low loss value of 

0.0458, indicating minimized discrepancies between predicted and actual values. The accuracy score of 98.56% reflects the model's 

proficiency in correctly classifying deepfake and non-deepfake images within the training set. The validation set evaluation exhibits 

a slightly higher loss value of 0.1232. However, the accuracy score of 95.11% indicates that the model maintains a good level of 

generalization. 

 

 
Fig.2: Experimental result 

 

V. RESULTS AND DISCUSSION 

The evaluation results validate the proposed model's effectiveness in accurately classifying deepfake images. The model achieved 

notable precision, recall, and F1- scores for both the "real" and "fake" classes, with values ranging from 0.94 to 0.95. Moreover, the 

model exhibited an overall accuracy of 95% on the test dataset, affirming its robustness in distinguishing between deepfake and non-

deepfake images. These findings substantiate the model's potential for practical implementation in real-world scenarios, contributing 

to the advancement of deepfake detection techniques. 
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Fig.3: Confusion Matrix 

 

 
Fig.4: Classification Report 

VI. CONCLUSION 

This research paper proposed a deep learning-based approach using CNN for deepfake prediction. By training a CNN architecture 

on a dataset of real and fake images and leveraging transfer learning with the Xception model pre-trained on the ImageNet dataset, 

the model aimed to discern patterns and features specific to each class. The results of the study indicated that the CNN-based approach 

showed promising performance in predicting fake images. However, further improvements are desired to achieve even better results. 

We can further test our dataset with available pre-trained models other than Xception and perform a comparative study of the results 

and conclude which model works the best. We can also work further on generalization of the model by obtaining samples from 

various sources. 
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