
© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e161

Human-Computer Interaction in VR

1Shivam M Patel, 2 Dhavalgiri D Goswami,3Sweety Patel, 4Riddhi Mehta, 5 Utpal Patel

1,2 Students, 3,4,5 Assistant Professor

Computer Science & Engineering

Parul Institute of Technology, Parul University

Vadodara, Gujarat, India

Abstract: A novel method in virtual reality systems involves virtual mouse control using hand detection,

leveraging computer vision and machine learning algorithms. This technology finds applications in various
fields like gaming, medical interfaces, and augmented reality, aiming to enhance immersion in virtual

environments. However, current virtual systems still fall short of the ideal immersive experience. Hand
gesture recognition for human-computer interaction capitalizes on the intuitive nature of gestures, extending

everyday communication methods into the digital realm. By employing computer vision and machine

learning, predefined gestures can trigger specific actions, enabling contactless interaction with computers a
particularly relevant innovation amid the pandemic. This approach redefines conventional computer

operation, starting with developments like a virtual gesture-based volume controller. The advancement of this
technology owes much to the groundwork laid by previous researchers, with the primary objective being to

leverage computer vision and machine learning to address pandemic challenges and drive the future of
interactive technology, ultimately improving human-computer interaction through hand recognition

technology.

Keywords: vision-based approaches, computer vision, human-computer interface, hand gesture detection,

contactless interactive technologies

I. INTRODUCTION

The development of virtual mouse control based on hand recognition has transformed human-computer
interaction, providing users with an easy and uncomplicated way to interact with digital interfaces. Through

the use of computer vision techniques and machine learning algorithms, this technology allows users to move
a virtual mouse cursor without the need for physical contact or traditional input devices like a mouse or

touchpad. Rather, the digital screen recognises and translates the user's hand motions and gestures into

relevant actions. This introduction's study of hand-detection-based virtual mouse control systems
demonstrates the advancements, challenges, and uses in this field. Through a state-of-the-art examination, we

hope to illuminate the potential of this technology as well as the areas that still need research and development.

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e162

The concept of a "Virtual Mouse" in the context of Human-Computer Interaction (HCI) in virtual
environments requires the application of a number of different algorithms and techniques to enable smooth

interaction between users and the digital area. Users can travel and interact with virtual objects through

pointing techniques like ray-casting and direct manipulation, but collision detection algorithms and bounding
volume hierarchies are necessary for effective object selection and manipulation. Machine learning or rule-

based systems are used in gesture recognition to analyse user motions for activities like navigation and
manipulation. In the virtual environment, user interface strategies like menu selection and widget-based

interaction offer straightforward interfaces, and haptic and visual feedback mechanisms improve user

feedback and immersion. Optimization strategies like culling and adjusting the level of detail guarantee
responsiveness and seamless performance even in intricate virtual worlds. These algorithms and techniques

work together to produce a natural and engaging human-computer interface (HCI) in virtual environments
that promotes smooth interaction and increases user engagement.

1.1 Module for Hand Tracking

To accurately detect hand gestures, the first step was to construct a hand tracking module. This would serve
as the starting point for future applications. To do this and obtain the best outcomes, we can use Python's

computer vision and machine learning packages. In order to obtain even more precise findings, we also want

to study and boost our trust in hand detection.

1.2 Artificial Intelligence Virtual Mouse

Creating a virtual mouse that could already do multiple functions for controlling a computer system was the

ideal place to start. As a result, we may develop the very minimal capabilities required for complete computer
system management. We can precisely track the locations of the 21 points on an average human hand by using

the Hand tracking module that was previously stated. With this information, we can then utilise conventional
mouse features like click automation and pointer movement to correspond with our hand motions. Thus, we

can now proficiently handle a computer system by fully simulating a physical working mouse with our hands

and a camera.

1.3 Volume Controller Based on Gesture

With the hand tracking module, we are no longer constrained by the physical constraints of a mouse. Since
the index and thumb finger location data are already obtained for the virtual mouse, we can utilise these to

simulate a volume slider. Getting data doesn't come at an additional expense. Moreover, we are no longer

constrained by the physical constraints of a mouse. We can explore the world of creating new guidelines to
take the place of the antiquated mouse-operating customs. Many more similar advancements are in store for

us in the future.

1.4 Software Conditions

We utilise Python as our programming language for creating our appliances. OpenCV is a wonderful tool for

image processing and is frequently used as a Python library of methods for real-time computer vision. This
open-source library can track objections, identify faces, find landmarks, and do a lot more. It is compatible

with other languages, such as Python, Java, and C++. However, Mediapipe is widely utilised as an ML

solutions library for all main Google platforms, offering off-the-shelf solutions for applications like computer
vision, etc. Win32api is used to assign movement to the cursor. The Win32 application programming interface

capabilities can be accessed by the user through a collection of Python extensions for Windows. The main
use case for PyAutoGui is click automation. It's a Python automation module that knows how to move, scroll,

click, and drag. To get administrator access to Windows' quantity slider, use Pycaw. It's a Python module for

the Python Core Audio Windows Library created by Stanford students. Combining those modules, we create
a computer-vision based hand gesture recognition module that simulates human-computer interaction in a

highly accessible and affordable way, all for the price of a cup of coffee.

II. RELATED WORK

In recent times the use of virtual environments has increased significantly, so a lot of progress has been made

in the field of virtual mouse control using hand detection. This section provides review of some notable work
in this domain.

[1] Kollipara Sai Varun, me Puneeth and dr. T. PremJacob's Virtual Mouse Implementation with Opencv2019

uses computer vision to detect a webcam or embedded camera for manual movement and hand gesture
detection. The algorithm of the system uses a machine learning algorithm. Their proposed solution is based

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e163

on the latest technology that uses hand gestures. Hand movements are recorded by the camera. After that
manually marked key points are detected and depending on the detected gesture, the mouse cursor performs

different actions. Users can use the mouse in many ways without hardware or sensors; all you need is a hand

and a finger. In addition it is cost effective and easy to use.
[2] Dinh-Son Tran, Hyung Jeong Yang, Ngoc-Huynh Ho Soo HyungKim and Guee Sang Lee Real-Time

Virtual Mouse System Using RGB-D Images Enable Hand Recognition and Segmentation Microsoft Kinect
Sensor Version 2 with Depth Image and Fingertip. Using fingerprint recognition and RGB-D imaging offers

revolutionary virtual mouse technology. Using the Microsoft Kinect Sensor version 2. detailed skeletal joint

data images, the hand region of interest and the palm center are first found and converted to a binary image.
[3] Using computer vision to control the mouse cursor, a 2020 study by Monali Shetty, Christina Daniel,

Manthan Bhatkar, and Ofrin Lopez, Virtual Mouse With Object Tracking captures camera hand movements
using the HSV color detection method. Their goal is to\develop an object tracking application that interacts

with the system. Their approach, which uses hand gestures recorded by a web camera using the HSV color

recognition method, is a computer vision based mouse cursor control system. Using colored overlays or bars
tracked by a computer's webcam, their technology allows users to move the system cursor and perform mouse

actions such as left, right, and double-click with various hand gestures. The system is implemented using
Python real-time computer vision and the OpenCV package. The result is displayed on the screen of the

camera.

III. Architecture and Design of the System

3.1 Block Diagram for Architecture

The block diagram above (Figs. 1 and 2) effectively depicts how the modules function together to create the

AI Virtual Mouse and Gesture-based Volume Controller.

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e164

The above-described 21 Hand milestones are essential for implementing the previously given architecture
diagram into a working prototype. They act as the connecting thread that makes all of these components work

as a single unit.

3.2 Module Design
A computer vision library called OpenCV module aids in output capture and display. Install OpenCV using

pip. An open library of machine learning techniques for hand landmark recognition is called Mediapipe. The

cursor is moved using Win32api. Install mediapipe using pip. With PyAutoGUI, we can automate interactions
with other programmes by using Python scripts to control the mouse and keyboard. (pyautogui install using

pip). In real time, we determine the separation between the thumb and index fingers. Click automation uses
this distance. Pycaw employs the same range of distances as a volume slider and facilitates access to the

Windows volume slider. To recognise hands and show them using OpenCV's custom methods, we leverage

the media pipelines open dataset and the OpenCV module for the AI virtual mouse. Click automation and
cursor movement are handled by Win32api. With PyAutoGUI, we can automate interactions with other

programmes by using Python scripts to control the mouse and keyboard. The API has a straightforward design.
Using OpenCV and mediapipe, we employ a hand tracking module for the Gesture-based volume controller

to determine the distance in real-time between the index and thumb fingers. We can use the Windows volume

slider with Pycaw's assistance.

IV. Proposed Methodology

4.1 Module for Hand Tracking

The goal of the Hand tracking module is to serve as a basis for all of our future vision-based HCI initiatives
that include hand recognition. Because it is designed to be reusable and useful for a variety of uses, it helps

us lay the bricks ahead of time. To determine the whole frames per second, we employ the time module.

Conversely, the OpenCV library is represented by cv2. It is used to record the live video feed from the camera
and feed the mediapipe with the visual output. With the help of its extensively trained datasets, Mediapipe is

an ML solutions module that enables users to identify the hands in a picture. We then put a class for hand
detection and recognition into practice. It provides the relevant and essential techniques required to carry out

upcoming assignments. Here, the default constructor considers mode, max_Hands, tracking confidence,

detection confidence, and confidence. Initial values for these variables aid in defining the general project.
First, for instance, the max_Hands variable counts the total number of hands that the camera recognises. It

enables us to limit, according to use-case, the total number of recognised hands. Second, we may ascertain
whether the recognised object is the targeted object with the aid of the detection and tracking confidence. The

crucial function of this basic constructor is to establish the foundational requirements required for upcoming

undertakings. The Find Hands method is the first one we've written; if the module detects a hand, it returns
the corresponding frame from a live camera stream. The supplied image is first converted from BGR to RGB.

Given that BGR photos are not immediately recognised by mediapipe. The hand landmarks in the image are
then processed. In the event if landmarks 82 K. C. A. Eswaran et al. are present and the draw condition is set

to True, the procedure creates connections to visualise the recognised points. The revised image is then

instantly returned. The second defined method is the Find position method, which provides a list of all 21
hand landmark positions at any given time. We go over the self-results obtained with the earlier approach

iteratively. Among all the recognised hands, we can select a specific hand with the aid of the hand no.
parameter. The corresponding x and y coordinates of each hand landmark are then multiplied by the image's

height and breadth. Compiling this information into a list of positions indexed with their respective landmark
indices. This constantly updating list of positional landmark coordinates helps us recognize the exact position

of the recognized hand at any moment. This data is beneficial in identifying gestures and assigning actions to

them in real-time.

4.2 Artificial Intelligence Virtual Mouse

The AI virtual mouse that we are using here is identical to a standard mouse that is frequently used to control

a computer. The intention is to develop a version that requires little to no interaction from the user to function.
We import the aforementioned modules in order to accomplish the above specified purpose. Interestingly, we

use the hand tracking module we created before to provide hand recognition in this project. Win32api and
PyAutogui are two new modules that we present. These are essential for this model to accurately replicate a

functioning mouse on any Windows computer. We make use of the hand_detector class instance represented

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e165

by the object "detector." The previously defined methods find_Hands and find_Position are available to us.
By identifying hand-like features in our camera feed and returning the locations of the 21 hand landmarks in

relation to the image shape, these techniques help us recognise hand gestures. To obtain the following data,

we may check if our hand tracking module recognises hands at any given time by looking up poslist. Only the
index_tip, thumb_tip, middle_finger_dip, and middle_finger_pip positional data are needed. This will allow

us to develop the gesture-based volume controller and AI virtual mouse in the future. Given the camera, we
determine whether the index_tip's x and y coordinates exist. If found, we then set the cursor position in relation

to the computer specs frame using win32api's SetCursorPos function. We may continuously update the cursor

location in real-time by moving our index_tip section provided the camera, since this condition is included
inside a while loop that continues until our camera footage expires. By changing the camera angle to its mirror

image, we can add inverted controls for our virtual mouse, which is another cool feature. Those who are used
to inverted controls on their devices will find this useful. We can now freely move the cursor around the

computer screen. Starting with the most important button for interaction, we set out to integrate the other basic

features that characterise a normal computer mouse. The user's needs and desires were taken into
consideration when designing this. It is designed so that the user can click left without difficulty. In order to

move freely across the screen, the user is intended to adopt a specific hand position. Next, we determine the
euclidean distance between the thumb_tip and middle_finger_pip at any given time using their positional data.

We can now build a switch using the calculated distance. In front of the camera, we therefore move our

thumb_tip closer to the middle_finger_pip landmark. Every second that passes, the euclidean distance
between them is computed. To determine whether a user intends to click, we look to see if the spacing falls

below a predefined level. Therefore, we use pyautogui.click() to automate the left click capability at the user's
request as soon as we recognise their intent. However, because of the way the video camera footage is

captured, pyautogui.click() executes several clicks in a brief amount of time. In order to slow down the

detection process, we use a technique that involves determining whether the euclidean distance is a multiple
of five below the threshold distance of 20. As a result, only four of the twenty occurrences are observed at

any given time. As a result, the user has greater agency and control over this specific activity.Right now, to
carry out the mouse's other typical purpose. Depending on the application and position of the cursor, it allows

us to access a wide range of alternatives. to go in the direction that the user chooses. We use the same switch

based on Euclidean distance. It is used in between the middle finger dip and the thumb tip. Now, by comparing
this distance to a predetermined threshold. The right-click functionality can be enabled with pyautogui.click

(button = 'right') when the user's intent to click is detected by the euclidean distance measure.The same as
previously to lower the click-through rate and maintain the analogous feel to the left-click automation. We

determine whether the euclidean distance values that exceed the cutoff are multiples of five. In the course of

a single instant, this activity occurs numerous times. As a result, the user has more agency and control over
the automation of the right-click.

4.3 Volume Controller Based on Gestures
We have a virtual mouse that runs on vision and does all the tasks that one would expect from a standard
mouse. Next, we test the capabilities of vision-based systems. By doing this, we intend to replace the

antiquated conventions with new, improved ones. Our first project is to create a volume controller that uses

gestures. We choose this since it can function effectively with the data we have gathered for the virtual mouse
and doesn't need any extra information. This uses the hand-tracking module we developed, demonstrating its

reusability and versatility. Here, the distance measure is related to other ranges using Numpy. Here, we present
a brand-new module named pycaw. Stanford students created the Pycaw module to obtain administrator

access to the window's audio. We can actually imagine the dream of controlling a system without any physical

interaction by merging them with our programming. The entire procedure is included in the volume controller
function. First, we specify every requirement, including the height and breadth of the camera to be used. Then,

we obtain the live camera stream using cv2.Videocapture(0). Additionally, we define the image parameters.
This definition of the variable "Prev_time" will help us later on when figuring out the total frames per second.

Another term for an object in the hand tracking module is a detector. This enables us to get in touch with the

hand_Detector() class's default constructor. Afterwards, we initialise a number of member variables needed
for hand recognition. Next, we utilise the AudioUtilities function GetSpeakers() from the pycaw module.

Using this technique, all of the machine's active audio devices are collected, and the data is then stored in the
variable devices. The volume variable is assigned the current audio levels of the recognised devices by the

interface and cast() methods. To find an audio device's volume range, use GetVolumeRange(). Next, we

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e166

establish the lowest and maximum volumes and match them with the corresponding variables and VolRange
indices. The settings required for feature-based volume control will be specified using these cached values

obtained from the Pycaw module. We start our live video stream by utilising capture.With read(), we obtain

the frame for a single iteration of analysis. The hand tracking module's find_Hands and find_Position
functions receive this frame as input. They provide an updated image with hand connections visualised and a

list of all 21 hand landmark locations that the module has registered. For this specific module, we simply need
the thumb_tip and index_tip's positional coordinates. Thus, we keep those unique values separate in variables

like index_x, index_y, thumb_x, and thumb_y.The distance measure required to identify the user's intention

to adjust the volume depends heavily on these parameters. Next, we find the middle point of the thumb_tip
and index_tip. We use cv2.line() to visualise the distance measure between thumb_tip and index_tip, and

cv2.circle() to visualise the midway. The euclidean distance between the thumb_tip and index_tip is computed
by using math.hypot(). Now, by comparing this length measurement to a threshold of 20, we can use the

gesture of putting the thumb and index finger closer together to determine the user's intent. We utilise

cv2.circle() once more to alter the midway colour and visualise the lower bound when we observe such an
intention. As a result, this operation is somewhat analogous to how a switch operates. In the previous project,

we already automated left and right clicks using this. But in this case, it functions as a mute button to turn the
level down to zero. After determining our lower bound, we utilise the interp() function of the NumPy module

to link the length measure between the thumb_tip and index_tip to the volume range between the

predetermined minimum volume and maximum volume of an audio device that has been recognised. The
volume can then be used.To adjust the master volume level in light of changes in the length measure, use the

SetMasterVolumeLevel() function from Pycaw. The audio changes are simulated by computing the VolBar
and VolPer variables. To see the process in real time, we then feed these to the volume bar() function. The

live camera feed and volume changes are shown in real-time by this volume bar utility function. The

relationship between the volume slider in Windows and the measurement of the distance between the thumb
and index may be demonstrated by integrating openCV methods with numbers computed using NumPy.

4.4 Practical Purposes
In order to keep our code clean and readable, we write a few functions in advance. These features usually
need to be used repeatedly. As a result, we define these as utility functions to avoid having to redefine them

from the beginning each time. The time() method from the time Python module is utilised by the fps function

to obtain the current time at any given instant. Next, we compute the fps given above and use the cv2 module's
putText() function to visualise the results. To keep the computation current with the live camera feed, we

change the prev_Time variable at each iteration of the function call. To see the 21 identified hand landmarks
and their relationships, we utilise the aforementioned display mechanism. This feature is crucial because it

demonstrates how our highly customised hand recognition module operates on an individual basis. Here, we

compute and show the total frames per second determined at any given time in the live camera feed using the
fps() utility function. This is used to demonstrate the Hand Tracking module's effectiveness on a specific

device. We can see our continuously updated image along with the live camera feed by using the OpenCV
approach. This enables us to immediately see the results of our labour. Within the while loop, this procedure

runs and updates continuously with each input. We create a graph using matplotlib.pyplot to show the overall

code efficiency in terms of fps on the y-axis and time in seconds on the x-axis. Additionally, we use it to
evaluate and plot the overall efficiency of our code in the form of a coloured bar graph, where the y-axis

represents time in minutes and the x-axis represents frames per second. The entire live camera stream is then
interrupted by the cv2.waitkey(10) and 0xFF = ord('x') instructions, which use these as exit conditions to end

the while loop. In order to stop the application while it's running, the user can hit the 'X' key on his keyboard.

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e167

V. Result

5.1 Module for Hand Tracking

(Refer to Figures 3, 4, 5, and 6).

5.2 AI Mouse

(Refer to Figures 7, 8, 9, and 10).

5.3 A Volume Controller Based on Gestures

(Refer to Figures 11, 12, and 13).

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e168

VI. Results and Discussions
Our system combines advances in human-computer interaction, machine learning, computer vision, and hand

recognition technologies. It is compatible with every cutting-edge technical model created in those domains.
To assess the effectiveness of our apps, we counted the total frames per second.

Hand Tracker Module
(Refer to Figures 14 and 15).

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e169

AI Virtual Mouse
(See Figs. 16 and 17).

Gesture-Based Volume Controller

(See Figs. 18, 19 and 20).

S.No Modules Average Fps

1 Hand Tracking Module 26.0 Frames per second

2 AI Virtual Mouse 26.0 Frames per second

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e170

3 Gesture-based Volume Controller 26.0 Frames per second

Fig. 20. Synopsis of proposed models

VII. Challenges

Our goal is to increase the confidence in hand recognition using any regular camera on any conventional
system. In order to make this broadly available, our goal is to develop a model that requires the least amount

of user investment in terms of camera specs and functions optimally for all currently available devices. Our
goal is to increase the consistency of gesture detection. Low light levels and other distractions that happen in

the camera frame are the cause of the discrepancies that exist at the moment. We're trying to find ways to

make this better as much as we can at the lowest feasible expense. We are giving gestures an action. Certain
capabilities cannot be easily accessed by administrators for a price. It's been difficult for us to handle this on

our own. Our goal is to create a dynamic software system that can function on any system that is compatible
and has a computer and camera. At the moment, our model is limited to PCs running Windows. Our goal is

to extend this to a wide range of gadgets. We are enhancing the user's experience and interface. We now

onlyhave functional prototypes, but we intend to create fully functional, user-friendly applications soon. We
are preserving viability and accessibility while enhancing quality and accuracy. Our goal is to optimise as

much as possible to decrease expenses without sacrificing the application's integrity. Thus, utilising computer
vision and machine learning techniques, we have successfully constructed a hand tracking module to provide

a working model of an AI virtual mouse and gesture-based volume controller. This is the first of several

steps that must yet be done in order to commercially use computer vision and hand recognition technologies
for low-cost, highly accessible human-computer interaction.

VIII. Conclusion and Future Enhancement
Modern technologies such as machine learning, interactive intelligence, and computer vision have sparked

the creation of complex models of human-computer interaction. By using hand recognition algorithms to
identify particular finger positions, such the thumb and index, these models may automate tasks like volume

control and click automation by calculating the Manhattan distance between two points. Furthermore, the AI

mouse with gesture-based controls can be created by using the index finger location to move the cursor. This
technology may pave the way for totally virtual environments that can be gesture-controlled across a variety

of industries, including consumer electronics, entertainment, security, and healthcare. According to market
predictions, gesture recognition technologies are expected to increase significantly, indicating a trend towards

contactless interactive interfaces in addition to voice-controlled systems. Prominent instances comprise

Microsoft's Kinect for full-body tracking, KinTrans Hands Can Speak for interpreting sign language, GestSure
for touchless navigation in medical imaging, and gesture-operated entertainment systems seen in Audi and

BMW automobiles. Furthering the progress of gesture recognition technology are several open-source
initiatives, like PyTorch-based Real-time GesRec. Typically, computer vision methods such as mouse motion

generating packages and OpenCV are used in the implementation of these models, which facilitate a variety

of applications and streamline system usage. In order to improve user engagement with hardware and
computers, future research approaches might concentrate on developing hardware techniques for more precise

hand identification and investigating cutting-edge computational materials for picture processing.

IX. References

1. J. Katona, “A review of human–computer interaction and virtual reality research fields in cognitive

InfoCommunications,” Applied Sciences, vol. 11, no. 6, p. 2646, 2021.View at: Publisher Site | Google
Scholar,2021.

2. Virtual Mouse Control Using Colored Finger Tips and Hand Gesture Recognition ,(IEEE),sept 2020.

3. Virtual Mouse Event Handling Model using Gesture RecognitionNishtha Parashar, Danish Samad,

Shashi Kumar Verma,IJAST,vol.29 no.03,(2020).

4. R. M. Prakash, T. Deepa, T. Gunasundari and N. Kasthuri, "Gesture recognition andfingertip detection

for human computer interaction", 2017 International Conference on Innovations in Information Embedded

http://www.jetir.org/

© 2024 JETIR March 2024, Volume 11, Issue 3 www.jetir.org(ISSN-2349-5162)

JETIR2403422 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e171

and Communication Systems (ICIIECS), pp. 1-4, 2017.

5. B. J. Boruah, A. K. Talukdar and K. K. Sarma, "Development of a Learning-aid tool using Hand
Gesture Based Human Computer Interaction System," 2021 Advanced Communication Technologies and

Signal Processing (ACTS), 2021, pp. 1-5, doi: 10.1109/ACTS53447.2021.970835

6. V. Bazarevsky and G. R. Fan Zhang. On-Device, MediaPipe for Real-Time Hand Tracking

7. Banerjee, A. Ghosh, K. Bharadwaj, “Mouse Control using a Web Camera based on Color

Detection,”IJCTT,vol.9, March 2014.

8. Pradhan R, Kumar S, Agarwal R et al (2010) Contour line tracing algorithm for digital topographic
maps Int J Image Process 4:156–163.

9. Pradhan R, Kumar S, Agarwal R et al (2010) Contour line tracing algorithm for digital topographic

maps Int J Image Process 4:156–163.

10. Reza MN, Hossain MS, Ahmad M (2015) Real time mouse cursor control based on bare finger

movement using webcam to improve HCI. In: electrical engineering and information communication
technology (ICEEICT), 2015 international conference on. Pp 1–5.

11. Oikonomidis I, Kyriazis N, Argyros AA (2011) Efficient model-based 3d tracking of hand
articulations using kinect. In: BmVC. p 3.

http://www.jetir.org/

