

WASTE CLASSIFICATION SYSTEM UTILIZING SEQUENTIAL CONVOLUTIONAL NEURAL NETWORK

¹Deepadharshini S, ²Hamshika P, ³Deepika K, ⁴Dr R N Devendra Kumar

¹²³UG Students, ⁴Associate Professor

¹²³⁴Department of Computer Science and Engineering

¹²³⁴Sri Ramakrishna Institute of Technology, Coimbatore, Tamil Nadu, India

Abstract : The global waste challenge brought on by the world's rapid population growth is addressed by the "WASTE CLASSIFICATION SYSTEM UTILIZING SEQUENTIAL CONVOLUTION NEURAL NETWORK" project. It uses deep learning algorithms to classify waste materials automatically, including aluminum, plastic, paper, glass, cloth, iron, and vegetable waste. An easy-to-use user interface provides useful reuse recommendations. Waste management is streamlined by the system's automation, which lowers operating costs and encourages sustainable habits. It is in line with the current waste management approach, which emphasizes the importance of technology in tackling environmental concerns, and requires little human participation. This creative method seeks to promote appropriate recycling and disposal habits for a more sustainable future while also helping to manage waste in a cleaner, more economical, and efficient manner.

IndexTerms - Waste classification, CNN, Deep learning, Adam optimizer, Waste reuse, User interface.

I. INTRODUCTION

The increase in the world population has resulted in a corresponding rise in trash production in recent times. Every person adding to this expanding trash stream makes it more and more important to manage garbage effectively and to properly classify it, separating recyclables from non-recyclable materials. Since it guarantees that recyclable materials are kept out of landfills and put back to use, this kind of classification is essential for sustainable waste management, recycling, and recycling practices. The "WASTE CLASSIFICATION SYSTEM UTILIZING SEQUENTIAL CONVOLUTIONAL NEURAL NETWORK" project is a trailblazing approach to this rapidly expanding world wide challenge. This project's primary goal is to meet the pressing demand for an automated system that can quickly and accurately separate a wide variety of waste products. The system's comprehensive approach is demonstrated by the inclusion of materials such as aluminum, plastic, paper, glass, cloth, iron, and vegetable waste, all of which are accounted for.

Furthermore, the initiative distinguishes itself by offering a comprehensive trash management solution rather than just a classification tool. It makes the crucial move of offering workable recommendations for the recycling of waste products that have been identified. This project aspect, which aims to lessen the environmental impact of trash generation, fits in perfectly with the increasing global emphasis on sustainability. The fact that this cutting-edge waste management system is accessible is crucial. Because of its intuitive interface, waste management procedures can be easily incorporated by individuals, governments, and businesses. A key element of the system is automation, which greatly accelerates the waste segregation procedure. This not only saves time but also results in significant cost savings, which are frequently essential for trash management and municipalities.

This project's main goal extends beyond automation; it aims to develop and implement creative, sustainable waste management strategies with the least amount of human involvement. It emphasizes the critical role that technology plays in tackling the environmental difficulties brought on by increasing trash volumes by being in line with current waste management trends. In addition, it works to promote ethical recycling and garbage disposal methods, which promotes a greener, more economical, and cleaner method of managing waste. As we dig further, we will examine the project's history, problem description, suggested solution, benefits, and extent, offering a thorough understanding of this ground-breaking waste management endeavor.

II. SCOPE OF THE PROJECT

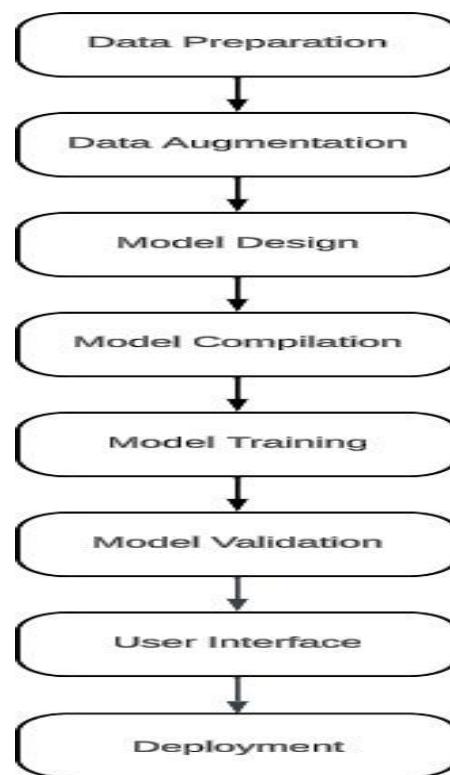
This project's main goal extends beyond automation; it aims to develop and implement creative, sustainable waste management strategies with the least amount of human involvement. It emphasizes the critical role that technology plays in tackling the environmental difficulties brought on by increasing trash volumes by being in line with current waste management trends. In addition, it works to promote ethical recycling and garbage disposal methods, which promotes a greener, more economical, and cleaner method of managing waste. As we dig further, we will examine the project's history, problem description, suggested solution, benefits, and extent, offering a thorough understanding of this ground-breaking waste management endeavor.

In addition, the project highlights the incorporation of cutting-edge technology into garbage management, acknowledging the significance of automation in enhancing productivity and mitigating the ecological consequences of waste production. In order to understand waste composition and user behavior and to guide research and policy development in the fields of waste management and sustainability, it recognizes the importance of data collection and analysis. Applications for the project can be found in a number of industries, such as waste-to-energy plants, recycling centers, educational institutions, and municipal waste management.

Apart from the principal components previously mentioned, the suggested project incorporates multiple other aspects that render it a comprehensive and progressive endeavor. The project's potential effect and significance are increased by these extensions:

- **Data-Driven Insights:** The initiative recognizes that gathering and analyzing data is essential. Important insights can be gained from the data collected regarding trash composition, origins, and user behavior. A deeper understanding of waste management issues is made possible by this data-driven approach, which also makes it possible to formulate policies, conduct research, and make evidence-based decisions in the larger context of sustainability.
- **Versatile Applications:** The project's uses go beyond the control of municipal garbage. It can be modified for usage in waste-to-energy facilities, recycling centers, business buildings, educational institutions, and more. This flexibility demonstrates how well it can handle waste management issues in a variety of industries.
- **Global Relevance:** The project's emphasis on ecofriendly methods and sustainability is in line with international initiatives to cut waste and encourage appropriate disposal of waste. It is relevant globally since it can be utilized in different geographical contexts.
- **User-Friendly Interface:** Creating an interface that is easy to use guarantees that a broad spectrum of users, including both professionals in waste management and regular people, may reap the advantages of the system. This focus on accessibility encourages participation and active engagement in environmentally friendly trash management techniques.

III. PROPOSED SYSTEM


By using Convolutional Neural Networks (CNNs) to automate the classification of various waste materials, such as aluminum, plastic, paper, glass, cloth, iron, and vegetable waste, the suggested system presents an advanced method of trash management. The system is accessible to a broad audience due to its user-friendly interface. Beyond categorization, it offers helpful recommendations for repurposing waste materials in line with sustainability objectives. Automation is essential since it lowers operating expenses and greatly increases waste management efficiency. By encouraging appropriate trash disposal, recycling, and reuse activities, the system seeks to lessen the negative environmental effects of waste generation and promote a cleaner, more sustainable environment. The goal of this cutting-edge system is to improve waste classification accuracy and efficiency while addressing the shortcomings of current waste management techniques. It not only makes garbage management more efficient, but it also promotes environmentally friendly behavior. Research and policy development in the fields of sustainability and waste management can benefit from the insights provided by the system's data collecting and analysis. The suggested method, which has applications in many different industries, has the ability to revolutionize waste management procedures and support the effective and ecologically conscious categorization and reuse of garbage.

IV. EXISTING SYSTEM

Depending on local conditions, the current waste management systems vary greatly, however many of them share similar characteristics. Hand sorting waste is still a common practice in many areas, when refuse pickers and municipal employees manually separate waste materials into recyclables and non-recyclables. This process is labor-intensive, time consuming, and dangerous for the participants' health and safety. Although human interaction is frequently still necessary, some more developed locations have implemented semi automated garbage management systems that include equipment like conveyor belts and sensors to help with sorting.

The capacity to make educated judgments and optimize waste management techniques is hampered by the frequently inadequate data collection and analysis in the field of waste management. Ineffective recycling techniques and inappropriate waste disposal procedures also cause pollution and resource depletion, which raises environmental issues. These systems may also be inefficient financially, resulting in significant labor and operating costs and endangering the health and safety of the workforce. A growing number of creative waste management solutions are needed in light of these issues. These solutions must make use of cutting-edge technology like deep learning to automate garbage classification, boost productivity, and lessen the negative environmental effects of waste generation.

V. SYSTEM ARCHITECTURE

Fig 5.1 : System Architecture

Fig 5.1 describes the system architecture as follows,

5.1.1 Data Preparation

Data preparation is the process of cleaning and converting raw data before processing and analysis. It is a necessary step before processing and frequently include reformatting data, fixing changes, and integrating datasets to enhance data.

5.1.2 Data Augmentation

Data augmentation is a technique used in deep learning (DL) and computer vision to artificially expand the size of a dataset by performing various modifications on existing data. The purpose is to diversify the dataset, increasing variability while decreasing overfitting, which can occur when a model is trained on a small amount of data. Data augmentation is very effective when the supplied dataset is minimal.

5.1.3 Model Design

Model design is the process of envisioning, designing, and structuring a deep learning model to solve a particular job or problem. It entails making judgments regarding the model's design, parameters, and components depending on data attributes and task objectives. Model design is a critical phase in the machine learning process, with a major impact on model performance.

5.1.4 Model Compilation

In deep learning (DL), model compilation refers to the act of constructing a model for training by defining specific settings and parameters that affect how the model is trained. This step is normally carried out after the model architecture has been determined during the model design stage. Compilation is a necessary step before training a machine learning model on a specific dataset.

5.1.5 Model Training

Model training is the process of educating a deep learning model to make correct predictions using a labeled dataset. During training, the model modifies its parameters (also known as weights and biases) in response to the input data and matching target labels. The goal is to minimize a stated loss function, which measures the difference between the model's predictions and the actual target values.

5.1.6 Model Validation

The process of assessing a trained model using a testing data set is known as "model validation." Part of the same data set that is used to create the training set is called the testing data set.

5.1.7 User Interface

A User Interface (UI) is the point where a user interacts with a computer system or software application. It includes all of the visual, aural, and tactile components that enable people to engage with a device, software, or system. A user interface's major

objective is to permit effective communication between the user and the machine, allowing users to efficiently control and operate the system.

5.1.8 Deployment

Deployment in the context of software or machine learning is the process of making a software program, system, or machine learning model available and functioning for users. It entails transferring produced and tested code or models from the development environment to the production environment, where they can be accessed and used by end users.

VI. LITERATURE REVIEW

Goel et al.[2021], A novel method to trash management is presented by the suggested Smart Garbage system. In addition to separating waste into dry, metallic, and wet categories, it also automatically turns wet waste into compost that may be utilized in farming and gardening. In order to keep bins from overflowing, the system also uses the Internet of Things (IoT) to deliver notifications. This integrated solution guarantees effective waste collection with real-time monitoring, improves waste segregation, and fosters sustainability by reusing organic waste for agricultural applications. [1]

Raj et al. [2020], Using sensors and motors, the proposed IoT-enabled trash segregator is an advanced system that effectively separates municipal waste into two primary categories: biodegradable and non-biodegradable. The system also has an easy-to-use cloud connection, which makes managing and storing data easier. This novel method facilitates easy access to and analysis of the gathered data while also improving the accuracy of trash segregation. With the efficient separation of biodegradable and non-biodegradable materials, it represents a major advancement in waste management procedures and sustainability promotion. [3]

Namratha et al.[2021] By distributing smart bins throughout communities, the Automatic garbage Management and Segregation System—which is based on the Internet of Things, aims to improve garbage management. With the use of sensors, it reduces human labor and increases efficiency by automatically sorting waste, keeping an eye on bin levels, and alerting authorities for prompt collection. [4]

Vignesh et al. [2022], The suggested system works by means of reflected signals from the IR sensor, which is activated by garbage insertion. Different waste types can be identified using IR and proximity sensors, and harmful gas levels can be tracked by a gas sensor. Using a particular model, this data makes waste sorting possible. After that, the microcontroller rotates a DC motor to sort metal, dry garbage, and other materials into different bins, minimizing the need for human participation. [5]

VII. RESULT

7.1 Output

```

Epoch 24/30
24/245 [=====] - 309s 1s/step - loss: 1.0036 - accuracy: 0.6542 - val_loss: 2.6419 - val_accuracy: 0.3311
Epoch 6/30
24/245 [=====] - 309s 1s/step - loss: 0.9683 - accuracy: 0.6610 - val_loss: 2.0436 - val_accuracy: 0.3811
Epoch 7/30
24/245 [=====] - 306s 1s/step - loss: 0.9469 - accuracy: 0.6768 - val_loss: 2.0484 - val_accuracy: 0.3599
Epoch 8/30
24/245 [=====] - 313s 1s/step - loss: 0.9271 - accuracy: 0.6772 - val_loss: 2.0169 - val_accuracy: 0.3668
Epoch 9/30
24/245 [=====] - 310s 1s/step - loss: 0.9109 - accuracy: 0.6795 - val_loss: 1.8888 - val_accuracy: 0.4281
Epoch 10/30
24/245 [=====] - 311s 1s/step - loss: 0.9102 - accuracy: 0.6874 - val_loss: 1.8847 - val_accuracy: 0.4096
Epoch 11/30
24/245 [=====] - 308s 1s/step - loss: 0.8921 - accuracy: 0.6941 - val_loss: 2.5812 - val_accuracy: 0.3534
Epoch 12/30
24/245 [=====] - 307s 1s/step - loss: 0.8727 - accuracy: 0.6944 - val_loss: 2.1689 - val_accuracy: 0.4099
Epoch 13/30
24/245 [=====] - 304s 1s/step - loss: 0.7921 - accuracy: 0.7550 - val_loss: 1.6700 - val_accuracy: 0.5216
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings.

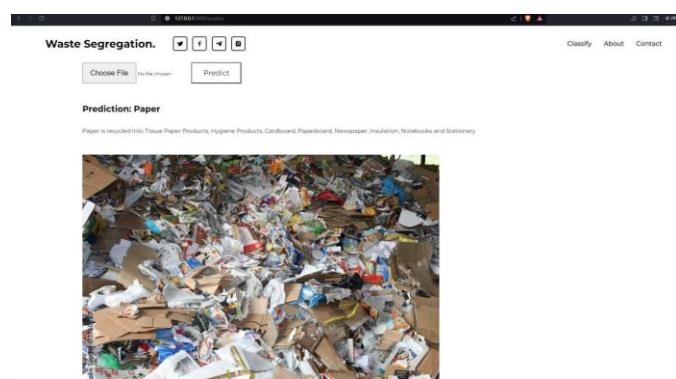
```

Fig 7.1.1Output

Fig 7.1.1shows the output of a training session for a deep learning model.

Fig 7.1.2 Classification of waste

Fig 7.1.2 depicts the output of the model validation. By selecting an image and clicking on the classify button the category of the waste is displayed.


7.2 User Interface

The user interface (UI) of the waste management system is carefully developed to prioritise accessibility and ease of use for a pleasurable and user-friendly experience. Users may quickly enter data, upload images, and use sensors to collect trash data. While clear guidelines encourage sustainable habits for different waste classifications, progress indicators and real-time feedback improve user comprehension.

Fig 7.2.1 : User Interface

The fig 7.2.1 shows the user interface, where the user will be able to access the website to classify the type of waste.

Fig 7.2.2 : Predicted Output

The fig 7.2.2 depicts the predicted output for the image uploaded by the user.

VIII. CONCLUSION

The project uses a comprehensive data-driven methodology, with preprocessing and data collecting serving as the cornerstone activities. The project then carries out feature extraction, which is an essential step in locating pertinent data within the gathered material. Then, using deep learning techniques, this collected data is used to build an intricate model for precise trash classification. Together, these components provide a thorough and cutting-edge approach to solving today's waste management problems. The implementation of a data-driven strategy guarantees the system's ability to classify waste items in an effective and efficient manner, hence promoting environmentally responsible and sustainable waste management practices.

The system attempts to lessen the negative effects of waste generation on the environment by promoting appropriate garbage disposal, recycling, and reuse. Additionally, gathering and analyzing data offers insightful information for waste management and sustainability research and policy creation. The suggested method is a creative, economical, and efficient approach to contemporary trash management techniques, with a wide range of applications in industries, including educational institutions and municipal garbage management. It also helps to create a more sustainable and clean environment.

IX. ACKNOWLEDGEMENT

The authors are deeply grateful to The Honorable Principal and Faculties of Sri Ramakrishna Institute of Technology, Coimbatore for providing the necessary support, guidance and facilities for the preparation of the paper.

X. REFERENCE

- [1]. Goel, Mrigank, et al. "Smart Garbage Segregator and IoT Based Waste Collection system." 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, 2021.
- [2]. Agarwal, Cherry, Bhavesh Yewale, and Chaithali Jagadish. "Automatic waste segregation and management." International Journal of Engineering Research & Technology (IJERT) 9 (2020).
- [3]. Raj, Jeberson Retna, et al. "AN IoT based waste segregator for recycling biodegradable and non-biodegradable waste." 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). IEEE, 2020.
- [4]. Namratha, A. M., et al. "Automatic Waste Management and segregation system using IoT." International Journal of Engineering Research & Technology (IJERT)–2021 (2021).
- [5]. Vignesh, D. K., et al. "IoT based Smart Dustbin." 2022
- [6]. Yadav, Sachin, et al. "Waste classification and segregation: Machine learning and IoT approach." 2021 2nd international conference on intelligent engineering and management (ICIEM). IEEE, 2021.
- [7]. Parvin, Rejina, and V. Divya. "Automatic Segregation of Household Waste using Machine Learning Approaches." 2022 International Conference on Edge Computing and Applications (ICECAA). IEEE, 2022.
- [8]. Soundarya, B., et al. "CNN based smart bin for waste management." 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE, 2022.
- [9]. Shah, Jash, and Sagar Kamat. "A Method for Waste Segregation using Convolutional Neural Networks." 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE, 2022.
- [10]. Bhattacharya, Sabitabrata, et al. "Automated Garbage Classification using Deep Learning." 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). IEEE, 2023.
- [11]. Sheng, Teoh Ji, et al. "An internet of things based smart waste management system using LoRa and tensorflow deep learning model." IEEE Access 8 (2020): 148793-148811.
- [12]. Sosunova, Inna, and Jari Porras. "IoT-enabled smart waste management systems for smart cities: A systematic review." IEEE Access (2022).
- [13]. Ghahramani, Mohammadhossein, et al. "IoT-based route recommendation for an intelligent waste management system." IEEE Internet of Things Journal 9.14 (2021): 1188311892.
- [14]. Abdu, Haruna, and Mohd Halim Mohd Noor. "A Survey on Waste Detection and Classification Using Deep Learning." IEEE Access 10 (2022): 128151-128165.
- [15]. Yudhana, Anton, and Miftahuddin Fahmi. "Improving Waste Classification Using Convolutional Neural Networks: An Application of Machine Learning for Effective Environmental Management." Revue d'Intelligence Artificielle 37.4 (2023)
- [16]. Susanth, G. Sai, LM Jenila Livingston, and LGX Agnel Livingston. "Garbage waste segregation using deep learning techniques." IOP Conference Series: Materials Science and Engineering. Vol. 1012. No. 1. IOP Publishing, 2021.
- [17]. Thanawala, Deveshi, Aditya Sarin, and Priyanka Verma. "An approach to waste segregation and management using convolutional neural networks." Advances in Computing and Data Sciences: 4th International Conference, ICACDS 2020, Valletta, Malta, April 24– 25, 2020, Revised Selected Papers 4. Springer Singapore, 2020.
- [18]. Azis, Fatin Amanina, Hazwani Suhaimi, and Emeroylariffion Abas. "Waste classification using convolutional neural network." Proceedings of the 2020 2nd international conference on information technology and computer communications. 2020.
- [19]. Pandiaraja, P., et al. "Convolutional neural network for solid waste segregation and management." Int. J. Adv. Sci. Technol 29.7 (2020): 1661-1668.
- [20]. Karthikeyan, S., et al. "Application of deep learning for solid waste trash classification using deep CNN." Proceedings of ACM/CSI/IEEECS Research & Industry Symposium on IoT Cloud for Societal Applications. 2021.