

21st century in AI technology and it's important to young Generation Skill Development

Mr. Sourav Das

Masters in Education

Mahapurusha Srimanta Sankaradeva Viswavidyalaya

Abstract

Artificial intelligence (AI) is rapidly transforming industries and societies in the 21st century. As AI technologies advance and permeate all aspects of life, it is imperative that younger generations are equipped with the knowledge and skills needed to thrive in an AI-driven future. This paper explores the critical role that AI plays in fostering essential 21st century skills in children and youth. Through a comprehensive review of research and case studies, we examine how exposure to and hands-on experience with AI from an early age can help cultivate key competencies such as computational thinking, data literacy, creative problem solving, and human-machine collaboration. We discuss various strategies for integrating AI education into school curricula and informal learning environments in developmentally appropriate ways. The opportunities and challenges of using AI itself as a tool to personalize learning and provide immersive educational experiences are also investigated. Ultimately, we argue that prioritizing AI skill development for young generations is crucial for empowering them to be not just consumers but creators and ethical leaders of AI technologies. Proactive investment in AI education today is necessary to build a future-ready workforce and ensure the responsible development of AI for social good.

Keywords: artificial intelligence; skill development; 21st century skills; youth; education; future of work

1. Introduction

1.1 The Rise of Artificial Intelligence in the 21st Century

In the first two decades of the 21st century, artificial intelligence (AI) has emerged as one of the most transformative and disruptive technologies. From intelligent virtual assistants to autonomous vehicles to predictive analytics, AI is being infused into a wide range of industries and applications.

The rapid advancements in machine learning, particularly deep learning, have enabled computers to match or surpass human-level performance on an expanding array of cognitive tasks, including visual perception [1], speech recognition [2], language translation [3], and complex games like Go [4].

This AI revolution is expected to accelerate in the coming years, driven by continued progress in algorithms, computing power, and big data [5]. AI is projected to contribute up to \$15.7 trillion to the global economy by 2030 [6] and fundamentally restructure the nature of work [7]. While some jobs will be automated, many new roles requiring skills in designing, developing, and working alongside AI systems are also anticipated to emerge [8].

In light of these sweeping technological shifts, there is growing recognition that AI literacy - the ability to understand, use, and create AI technologies - will be a key competency for 21st century citizens [9]. However, current educational systems are not sufficiently preparing younger generations to navigate this rapidly evolving landscape. A 2020 study by Microsoft found that only 36% of Gen Z youth (ages 16-24) across 12 European countries felt their formal education provided them with adequate digital skills [10]. Another survey of 1500 undergraduates in the US revealed that while over 70% believed AI skills would be important for their future careers, less than 10% had taken an AI course and only 3% felt their college was preparing them well for an AI-enabled future [11].

This paper argues that in order to bridge this skills gap and empower young people to be active shapers rather than passive recipients of AI technologies, it is critical to prioritize AI skill development from an early age. We review evidence on the benefits of exposing children and youth to AI and computational thinking, discuss strategies for integrating AI education in both formal and informal learning contexts, and explore the potential of AI itself as a tool for enhancing 21st century skill development at scale. Based on insights from this analysis, we offer recommendations for educators, policymakers, and other stakeholders on investing in and implementing AI skill-building initiatives for the rising generations.

1.2 21st Century Skills in an AI-Enabled World

The rapid advancement of AI and its growing impact across domains has sparked much discussion around the skills that will be needed to thrive in a future increasingly shaped by intelligent machines. In response, various frameworks have been proposed by researchers, think tanks, and international organizations to articulate key competencies for the 21st century and the age of AI [12]–[15].

While the specifics vary, these frameworks generally emphasize a blend of technical skills in computing and data science, higher-order thinking capabilities like creative problem-solving and critical analysis, socioemotional skills such as collaboration and cross-cultural communication, and dispositions or character qualities like curiosity, adaptability, and ethical reasoning. Digital literacy, including the ability to leverage digital tools for learning and producing content, is also highlighted as an essential foundation [16].

Recognizing the influence of AI on future skill demands, several frameworks have incorporated AI-related competencies more explicitly. For instance, the OECD Learning Compass 2030 includes "AI, robotics and computational thinking" as a key component under the "Creating new value" domain [17]. The Institute for

the Future's Future Work Skills 2020 report lists "new-media literacy," defined as the ability to critically assess and develop content that uses new media forms and to leverage these media for persuasive communication, as one of ten vital skills [18]. LinkedIn's top skills and fastest rising skills lists feature AI-associated skills such as TensorFlow, deep learning, Python, natural language processing, and robotic process automation [19], [20]. Some recent attempts have been made to define AI literacy as a distinct construct. Long and Magerko (2020) propose a framework consisting of five key competencies: recognizing AI, understanding intelligence, interdisciplinarity, general programming, and societal impact [21]. Ng (2019) suggests that "the new literacy" of AI involves three main components: 1) reading and understanding AI by learning key concepts and their application in different industries, 2) writing and building AI by gaining experience with tools and techniques for training models and creating intelligent systems, and 3) using and interacting with AI through awareness of AI's capabilities, limitations and broader impacts [22]. Other scholars emphasize the importance of data literacy in the context of AI, as the ability to understand, analyze, and apply data is central to both developing and using AI technologies [23].

Importantly, 21st century skills for an AI-infused world encompass not only technical abilities but also human-centric capacities that enable people to effectively collaborate with AI systems and make sound judgments about their use. As AI automates an increasing number of routine cognitive tasks, skills that are distinctly human - imagination, curiosity, empathy, and social and emotional intelligence - are predicted to become more valuable [24]. The ability to think critically about the implications of AI, to ask probing questions about AI systems and outputs that go beyond surface indicators, and to make ethical decisions regarding the design and deployment of AI will also be crucial [25], [26].

Equipping young people with this expansive skillset is essential for their personal and professional success in a rapidly evolving landscape reshaped by AI. On an individual level, developing AI-related skills can open up new educational and career pathways, enhance problem-solving and creativity, and promote lifelong learning. More broadly, widespread AI literacy is needed to ensure that the societal benefits of AI are harnessed while the risks are mitigated. Without efforts to democratize AI knowledge and skills, there is a danger that AI technologies will exacerbate existing inequalities and concentrate power in the hands of a small technical elite [27]. Empowering diverse voices, including youth, to actively engage in shaping the trajectory of AI through informed critique and contributions is vital for realizing the potential of AI to address pressing global challenges.

1.3 Learning Science Perspectives on AI Skill Development

Existing research in the learning sciences offers valuable insights for cultivating AI literacy and associated 21st century skills in children and youth. Decades of work have illuminated the importance of learners actively constructing knowledge through experience, the power of scaffolding and guided inquiry, the role of metacognition and self-regulation, and the motivational benefits of personally relevant, project-based learning [28].

More recently, researchers have begun to explore learning with and about AI through the lens of these established principles. Touretzky et al. (2019) draw upon constructionist learning theory to propose a framework for AI education in K-12 [29]. They argue that hands-on experiences with building AI applications, in a manner that encourages reflection and conceptual understanding alongside technical skills, can help children develop robust mental models of how AI systems work.

Studies have also examined how engaging with AI through creative coding, design activities, and project-based learning can foster computational thinking skills and broader 21st century competencies. For example, Druga (2018) found that a constructionist AI curriculum for middle school students, in which they programmed "smart" characters and reflected on their interactions, promoted systems thinking, design thinking, and critical perspectives on AI [30]. Similarly, Rose and Ferschke (2021) describe an AI-based project-based learning approach where high school students collaborated to create chatbots that could engage in open-ended dialogue, developing skills in natural language processing, data analysis, teamwork, and communication in the process [31].

Research on supporting learning with AI-driven adaptive technologies also yields relevant insights. While AI holds immense promise for personalizing instruction and providing intelligent tutoring, care must be taken to design these systems in ways that empower learners and enhance, rather than replace, human interaction [32]. Successful learning with AI requires attending to factors beyond just technical optimization of algorithms, such as student perceptions of the AI, the quality of feedback and explanations provided, and integration with effective pedagogy [33], [34]. Developers of AI learning tools must remain cognizant of the limitations and potential biases of these systems, the importance of learner agency and control, and the value of "desirable difficulties" that can arise from imperfect personalization [35].

Finally, research highlights the need to attend to developmental considerations and individual differences when designing AI education initiatives for young people. Cognitive developmentalist theories suggest that children's understanding of AI will be shaped by their evolving conceptions of intelligence, agency, and the nature of technology [36]. Attributions and mental models that children form through early encounters with AI can have lasting effects on their engagement with and beliefs about these systems [37]. Scholars also note the importance of culturally responsive AI education that acknowledges diverse learner identities and backgrounds [38]. Cultivation of a robust AI literacy requires meeting youth where they are and leveraging their prior knowledge, interests, and experiences.

This learning sciences perspective provides a foundation for examining strategies to foster AI skills and 21st century competencies in young generations. In the following sections, we discuss approaches for integrating AI education in formal school contexts, enabling AI learning through informal experiences, and using AI technologies themselves to enhance skill development. While no single initiative will be sufficient, a multi-pronged effort that draws upon research-based practices in context-appropriate ways offers the greatest promise for empowering all youth to meaningfully participate in an AI-driven future.

2.AI Education in K-12 Schools

2.1 Early Exposure to AI Concepts and Skills

Experts increasingly argue that AI education should begin in the primary grades in order to build a foundation for more advanced skill development in later years [29], [39]. Even very young children are capable of engaging with basic AI concepts in developmentally appropriate ways. For example, unplugged activities and games can be used to introduce ideas like algorithms, classification, and prediction through age-friendly examples like recipe-following or animal sorting [40]. Robots, one of the most salient examples of intelligent machines for kids, can also be harnessed as a hands-on AI learning aide [41]. Simple robots, such as those navigating a grid or retrieving objects, concretize AI processes like perception, reasoning, and action [42]. As they move through elementary grades, youth can be exposed to AI more explicitly through stories, simulations, and projectbased learning. For instance, MIT's AI + Ethics curriculum for Scratch includes lessons and design activities that prompt students to explore machine learning fairness through the familiar context of emojis [43]. Integrating AI into other subjects, such as using natural language processing tools to analyze literary texts or simulating bird flocking behavior in science class, can help students recognize AI's relevance across domains [44]. In middle and high school, opportunities for indepth technical skill-building should expand alongside continued emphasis on the social and ethical implications of AI. Elective courses in AI, robotics, and data science can provide motivated students with a pathway to gain hands-on experience with industry-standard tools and techniques. For example, the Stanford AI Lab's deeplearning.ai curriculum takes high schoolers through the key concepts and programming skills needed to build deep neural networks [45]. Other courses have engaged youth in applying machine learning to real-world datasets, critically interrogating training data and model results [46]. Project-based work, such as competing in the AWS DeepRacer autonomous racing league [47] or contributing to open-source development through Google Code-in [48], offers authentic opportunities to refine AI skills. Throughout, discussion of AI's societal impacts, limitations, and ethical quandaries should be woven in to prompt reflection on the technology's role and governance [49].

Integrating AI education across the K-12 pipeline in this way lays the groundwork for more advanced skills training at the post-secondary level and ensures that all youth, not just those who elect specialized coursework, gain a basic understanding of AI. Continued research is needed to develop and validate K-12 AI curricula and tools that align with learning sciences principles, incorporate real-world applications, and center equity and inclusion [39].

2.2 Training and Supporting AI-Ready Educators

Effective implementation of AI skill development in schools requires an education workforce equipped with the necessary knowledge and capacities. However, at present, the vast majority of teachers have had minimal to no training in AI or computer science more broadly. For example, only 36% of teachers surveyed in the US reported having taken a university course that included computer science content [50].

Pre-service teacher education programs have a crucial role to play in addressing this gap. Education schools must update their curricula to integrate core AI and computer science competencies, aligned with content and pedagogical standards like the Computer Science Teachers Association K-12 CS Standards [51] and ISTE Standards for Educators [52]. Standalone courses as well as infused modules across methods courses are needed to build pre-service teachers' own AI literacy as well as equip them with research-backed instructional strategies [53]. Innovative partnerships between education and computer science departments can enable cross-disciplinary learning experiences, such as having pre-service teachers collaboratively design AI-enhanced educational technologies with AI developers [54].

For in-service teachers, ongoing professional development is essential to build and maintain relevant AI skills. Immersive institutes like the AI4K12 Bootcamp [55] and NVIDIA's Robotics Teaching Kit Workshops [56] provide concentrated training in AI concepts and tools along with exposure to model lesson plans. Coaching and mentoring programs can provide more sustained and job-embedded support as teachers iteratively implement new practices [57]. Professional learning communities, within and across schools, offer a valuable space for peer collaboration and collective problem-solving around AI integration challenges [58]. Microcredentials, such as IBM's AI Foundations for Educators [59], incentivize teacher learning through formal recognition of demonstrated competencies.

Beyond discrete training initiatives, fostering AI readiness also requires broader shifts in the cultures and structures of schools [60]. School leaders play a key role in articulating an empowering vision for AI in education, aligning resources and policies, and cultivating communities of practice [61]. Strategic planning processes should engage teachers as co-designers of AI implementation roadmaps that leverage their expertise [62]. Flexibilities in scheduling, curriculum, and assessment are needed to accommodate more inquiry-based and interdisciplinary AI learning experiences [63]. Critically, schools must ensure equitable access to AI tools and learning opportunities for all students and work to actively disrupt rather than reproduce existing inequities in computing education [64].

Realizing the potential of teachers as empowered facilitators and co-creators of AI-enhanced education will require significant investment and cultural change. However, such efforts are essential for bringing the benefits of AI skill development to all learners.

2.3 Leveraging AI to Differentiate and Enhance Instruction

In addition to teaching about AI, K-12 schools can harness AI technologies themselves to personalize learning and augment teacher capacities in service of 21st century skill development. Well-designed AI systems have the potential to continuously adapt instruction based on learners' current needs, provide targeted feedback and scaffolding, and engage students through interactive, multimodal experiences [65].

One promising application is AI-driven adaptive courseware and tutoring systems. For example, Carnegie Learning's MATHia and Cognitive Tutor software uses AI algorithms to model students' knowledge states and provide customized skill-building problems and hints [66]. Writing tools like Revision Assistant use natural language processing to give students immediate, personalized feedback on their drafts, promoting self-

regulation of the writing process [67]. By offloading routine assessment and feedback tasks, such tools can free up teacher time for higher-leverage interactions like probing discussions and project support [68]. AI can also power immersive learning environments that enable students to apply knowledge and skills in authentic contexts. Virtual and augmented reality simulations, for instance, allow learners to explore complex systems, conduct experiments, and engage in embodied problem-solving in ways not possible in the physical classroom [69]. In a pilot study, high school students who used a mixed-reality lab simulation with AI-generated feedback showed significant gains in science process skills and conceptual understanding compared to a traditional lab group [70]. Game-based learning environments with AI-driven adaptivity can also promote 21st century competencies like creativity, persistence, and collaborative problem-solving [71].

Importantly, realizing the benefits of AI for differentiated instruction requires careful attention to the design and implementation of these technologies. AI systems must be trained on diverse, representative data and tested for fairness and robustness to avoid perpetuating biases or generating harmful feedback [72]. User interfaces should make clear the boundaries of the AI's capabilities and enable students to ask questions, adjust parameters, and maintain agency in their learning [73]. Teachers' professional judgment remains essential for deciding when and how to leverage AI supports for particular learners and contexts [74]. Ongoing research is needed to develop AI technologies that are transparent, configurable, and adaptive to teachers' pedagogical goals and values [75].

When thoughtfully integrated, AI tools have the potential to create more equitable and effective learning experiences that prepare all students for success in a rapidly evolving world. However, technology alone is insufficient - realizing this potential will require sustained investment in teacher training, curriculum redesign, and socio-technical infrastructures that center the needs and agency of diverse learners and educators.

3. Informal Learning Opportunities

3.1 The Power of Out-of-School Experiences

While formal education institutions play a central role in AI skill development, out-of-school settings such as museums, libraries, afterschool programs, and online communities offer uniquely generative contexts for engaging youth with AI. Free from the constraints of standards and assessments, informal learning environments can provide more flexible, interest-driven, and personally relevant opportunities for youth to explore AI through creative expression, open-ended problem solving, and authentic participation in real-world contexts [76].

A growing number of informal AI education initiatives are emerging to complement and extend classroom instruction. For example, the AI Family Challenge program engages elementary-aged children and their families in learning about AI through a series of hands-on design challenges hosted at local museums and libraries [77]. Participants work together to create prototypes that address community needs, such as an AI-powered tool to help seniors stay connected or a smart recycling system. By situating AI learning within families' existing interests and experiences, the program aims to demystify the technology and equip participants with the skills and confidence to continue exploring AI.

Other programs focus on engaging underrepresented youth in AI through culturally responsive approaches. The AI4ALL summer camp partners with universities to provide high school students from diverse backgrounds with immersive AI experiences that interweave technical skills with examination of the ethical implications of AI for communities of color [78]. Campers work on projects that leverage AI for social good, such as building a model to predict water contamination or analyzing social media data to understand public perceptions of climate change. Exposure to relatable mentors and alumni helps youth envision themselves as future AI leaders. While the camp's effects on participants' skills and attitudes are just beginning to be studied, early evidence suggests increases in AI knowledge, self-efficacy, and interest in AI careers.

Online affinity groups and communities of practice also serve as rich sites for youth to deepen specialized AI skills and contribute to authentic projects. On the Code Playground platform, teen coders can collaborate to train machine learning models, experiment with generative AI techniques, and provide feedback on each other's work [79]. The Major League Hacking community hosts AI-themed hackathons and connects young developers with industry mentors to work on challenges like optimizing vaccine distribution or detecting fake news [80]. Through participation in these online spaces, youth have opportunities to apply AI skills to problems they care about, learn with and from peer experts, and begin to form identities as producers and leaders in the field.

3.2 Empowering Youth as Creators and Citizens

A key affordance of informal AI education is the opportunity to position youth not just as consumers of AI technologies created by others, but as active designers, programmers, and citizens who can critically engage with and shape the development of AI. Too often, narratives around AI center the perspectives of industry and academia, framing young people as objects to be trained to fit the needs of the AI workforce [81]. While developing workforce-relevant skills is certainly important, an overemphasis on this narrative risks defining AI literacy in narrow, industry-serving terms and missing the larger democratic imperative of preparing youth to participate in key decisions about the future of AI in society.

Informal learning settings, with their greater flexibility and youth-centeredness, are well-suited to cultivate more expansive forms of AI literacy that empower youth as agents of change. Through interest-driven projects and media-making, youth can leverage AI creatively to amplify their own voices and address issues they care about in their communities. For instance, in the Virtually Viral Hangouts program, youth impacted by the carceral system used machine learning and virtual reality tools to create immersive experiences that challenge dominant narratives about incarceration [82]. Similarly, the Teen AI Scholars program engages pairs of teens to conduct AI-enabled investigations into local community issues like racial segregation in schools, using their data to advocate for change [83].

Engaging youth as critical consumers, decomposers, and even recomposers of AI systems can also promote civic agency. The Ethical AI Curriculum, for example, guides high school students through hands-on explorations of AI bias and fairness using real-world datasets and models [84]. Students "tear down" AI systems to understand training data and architectural choices, rebuild models with different optimization goals, and discuss how intelligent technologies can be made more accountable to the needs of diverse

constituents. In the AI Blind Spots project, youth audit widely used AI services like automated speech recognition and facial analysis for performance disparities across demographic groups, using their findings to advocate for more inclusive AI development practices [85].

As they examine and create AI applications that touch their lives and communities, youth develop crucial skills and dispositions for civic engagement. They learn to interrogate the values and assumptions embedded in AI systems, consider the differential impacts on diverse stakeholders, weigh competing priorities, and make informed arguments about how AI should be governed for the public good. While not all youth who participate in such programs will go on to build AI systems themselves, they will be better prepared to participate in dialogue and decision-making around the societal implications of the technology.

3.3 Bridging Across Settings and Stakeholders

To fully realize the potential of informal AI education, it is important to consider how these experiences can be connected and cumulative rather than isolated and episodic. Youth should have opportunities to build on their AI interests and skills progressively over time through multiple touchpoints and contexts. This requires greater coordination and collaboration among informal educators, schools, industry partners, and other stakeholders.

One promising model is the City of Learning initiative, which brings together libraries, museums, rec centers, and community organizations to offer learning pathways and "digital badges" around 21st century skills including AI and data science [86]. Youth can customize their learning journeys by mixing and matching online and face-to-face offerings based on their interests, earning microcredentials that are recognized by formal institutions. The initiative also provides professional development for educators across settings to design more coherent AI-rich experiences.

Industry-community partnerships can also help bridge youth's informal and formal AI learning. For instance, tech companies can collaborate with schools and afterschool programs to host hackathons or design challenges that enable youth to apply AI skills to local issues, with employee volunteers serving as mentors. Higher education institutions can partner with museums and libraries to offer AI-themed camps or workshops that provide youth with exposure to cutting-edge research and authentic data [87]. Such partnerships leverage the unique assets of each stakeholder group - industry and academia's technical expertise, schools' pedagogical knowledge and reach, and community organizations' contextual knowledge and trusting relationships with families. Importantly, these efforts must attend to issues of equity and inclusion. While informal learning has sometimes been positioned as a way to compensate for inequities in formal schooling, in practice, access to high-quality informal STEM experiences remains stratified by race, class, and geography [88]. Initiatives must proactively partner with and center the voices of communities that have been marginalized in AI development, recognizing their funds of knowledge [89]. Offering free or low-cost programs in trusted community spaces, providing transportation and language support, and hiring educators who reflect youths' diverse identities can help reduce barriers to participation.

As we consider the growing ecosystem of informal AI education, we must also strike a balance between authenticity and accessibility. While youth certainly benefit from working with real-world AI tools and datasets, experiences should be carefully scaffolded to meet youth where they are and avoid overwhelming or alienating those with less prior exposure. Engaging youth in reflection throughout the learning process - for example, by asking them to document their design choices and challenges in a project portfolio - can help educators understand their evolving thinking and customize support. Youth should be able to see themselves and their interests reflected in the examples and applications of AI, even as those examples stretch their understanding and broaden their horizons.

When thoughtfully designed, informal AI education experiences can empower youth to critically engage with AI systems, create AI applications that are meaningful to their lives and communities, and envision themselves as capable of shaping the future of AI. To bring these opportunities to all youth will require sustained multi-stakeholder collaborations that leverage the unique affordances of informal contexts while also building bridges to formal institutions and career pathways. Researchers have a key role to play in documenting and disseminating promising models, as well as surfacing tensions and areas for further inquiry. With concerted effort and investment, we can cultivate a generation of youth who are not only skilled users of AI, but also empowered citizens and ethical stewards of its development. **4. AI for Personalized and Immersive Learning**

4.1 Intelligent Tutoring Systems

While AI-driven adaptive learning technologies hold great promise, realizing their potential to personalize and enhance education at scale will require careful design and deployment. One area where AI has shown significant benefits is in intelligent tutoring systems (ITS). Unlike traditional computer-aided instruction that presents the same material to all students, ITS use AI techniques to continuously model learners' knowledge states and deliver customized content and support [90].

Well-designed ITS have been shown to produce learning gains on par with one-on-one human tutoring [91]. Key to the success of ITS is their ability to provide immediate, targeted feedback based on a nuanced understanding of learners' misconceptions and problem-solving strategies. For example, Carnegie Learning's Cognitive Tutor software has separate models to track students' skill mastery, pacing, and hint-seeking behaviors, which it uses to determine the timing and nature of feedback [92]. If a student is struggling to apply a particular skill, the system might provide a worked example or break down the problem into smaller steps. By contrast, if a student is moving too quickly through the material, the tutor might prompt them to slow down and reflect on their understanding. Such adaptive feedback serves as "scaffolding" to keep students working at the edge of their abilities.

Advances in AI are enabling ITS to provide ever more sophisticated and contextualized support. For instance, the GIFT framework uses natural language processing to analyze students' explanations of their problem-solving logic and provide feedback on the quality of their reasoning [93]. The system also detects and responds to learners' affective states, offering encouragement if they appear frustrated or additional challenge if they

seem bored. By recognizing the complex cognitive and emotional dimensions of learning, such systems can create more engaging and effective experiences.

Some ITS incorporate game-like elements to further motivate learners. The Cognitive Tutor Algebra course, for example, features a narrative theme of helping NASA plan a mission to Mars, with skill-building exercises embedded in authentic problem scenarios [92]. As students successfully complete problems, they earn "mission points" that unlock new challenges and bring them closer to launching the rocket. Such gamification can make the material more personally relevant and rewarding for students.

Importantly, the goal of AI-driven personalization is not to isolate students to work one-on-one with technology, but rather to enhance human interaction and free up teachers to provide higherlevel support. By offloading routine assessment and feedback tasks, ITS can give teachers richer insight into students' progress and misconceptions, enabling them to tailor instruction for individual and groups of learners [94]. Some ITS provide teachers with real-time "dashboards" visualizing the skills each student has mastered, the type and quality of errors they are making, and the hints they have used. Armed with this information, teachers can make more strategic decisions about when to provide one-on-one coaching, when to have students work in small groups, and when to bring the whole class together for a targeted lesson on a common sticking point.

However, the effectiveness of ITS is contingent on the quality of the learner models, content, and pedagogical strategies embedded in their design. To avoid perpetuating inequities, these systems must be trained on large and representative datasets that include learners from diverse cultural backgrounds and with varied prior knowledge [95]. Models should be continually tested and refined to ensure they are accurately interpreting each student's learning needs and providing supports that advance rather than undermine educational equity.

It is also critical that educators and learners have agency in determining how and when to use ITS, rather than simply being passive recipients of AI-driven recommendations. Teachers need professional development to understand the capabilities and limitations of ITS, interpret system outputs, and make purposeful instructional decisions [96]. Students should be empowered to view and contribute to their learner models, set their own learning goals, and reflect on their progress. When used in service of human-defined goals and values, ITS have the potential to enable more equitable, responsive, and cognitively rich learning experiences.

4.2 Immersive Learning Environments

In addition to providing personalized feedback and support, AI can also be used to create immersive digital environments that engage learners in authentic problem-solving. Advances in virtual, augmented, and mixed reality technologies are enabling ever more sophisticated simulations that use AI to adapt to learners' actions and provide dynamic feedback. These immersive environments can foster 21st century skills like systems thinking, creativity, collaboration, and self-direction [97].

One promising application is in science, technology, engineering and mathematics (STEM) education. For example, researchers have developed a virtual reality chemistry lab that uses AI to provide real-time guidance as students conduct experiments [98]. The system tracks students' actions and provides feedback on their lab

techniques, safety procedures, and conceptual understanding. By situating learning in an authentic context and providing adaptive support, the virtual lab aims to foster deeper engagement and transfer of knowledge. Immersive simulations are also being used to train complex professional skills. The US Air Force, for instance, uses AI-enhanced flight simulators to provide pilots with realistic practice in a variety of scenarios, from routine flights to emergency situations [99]. The system adjusts factors like weather conditions, air traffic, and equipment malfunctions in response to the pilot's performance, pushing them to develop adaptive expertise. After each session, the AI provides detailed feedback on the pilot's decision-making and suggests areas for improvement. Such simulators enable far more practice repetitions than would be possible with human instructors alone.

AI-driven immersive environments have particular promise for fostering social and emotional skills. The University of Southern California's Institute for Creative Technologies has developed virtual humans that can engage in open-ended conversation and respond to learners' verbal and nonverbal cues [100]. These AI agents are being used to help learners practice communication skills in high-stakes contexts, such as medical students learning to break bad news to patients or teachers learning to de-escalate conflicts with students. The AI provides in-the-moment feedback on the learner's tone, facial expressions, and empathetic statements, allowing them to reflect on and refine their approach.

As with ITS, the effectiveness of AI-enhanced immersive learning environments depends on the quality of the underlying models and the ways in which they are implemented. To create realistic and engaging experiences, these systems must be trained on large datasets of expert performance across a range of contexts [101]. They must also be designed with sound pedagogical principles in mind, such as providing learners with clear goals, immediate feedback, and opportunities for reflection [102]. There are also important ethical considerations around the use of AI agents, particularly when dealing with sensitive topics or vulnerable populations. Researchers are exploring ways to make AI's role more transparent and give users greater control over their level of engagement [103].

When designed responsibly, AI-powered immersive environments have the potential to provide learners with authentic, adaptive, and emotionally resonant experiences that prepare them for realworld challenges. By simulating complex systems and interactions, they can help learners develop transferable 21st century skills. However, like any educational technology, their impact will depend on the ways in which educators and learners actively shape their use to advance meaningful learning goals.

4.3 Embodied Conversational Agents

Advances in natural language processing are also enabling the development of AI-powered conversational agents that can engage in open-ended dialogue and serve as interactive learning companions. Unlike traditional chatbots that provide scripted responses to a limited set of queries, these systems use machine learning to engage in more contextual and adaptive communication [104]. By building rapport with learners and responding to their individual needs, such agents can motivate persistence and promote deeper learning.

Embodied conversational agents - either in the form of avatars or robots - are a particularly promising type of AI learning companion. These agents combine verbal and nonverbal communication to create more engaging and lifelike interactions [105]. For example, the SARA (Socially Aware Robot Assistant) system developed by researchers at Carnegie Mellon University uses machine vision and natural language understanding to read and respond to students' facial expressions, body language, and tone of voice during tutoring sessions [106]. By tailoring its communication style to the learner's emotional state, the robot aims to build trust and rapport. One application of AI conversational agents is in language learning. The Duolingo app, for instance, recently introduced AI-powered "conversation bots" that allow learners to practice speaking in a low-stakes environment [107]. Learners can converse with the bots on a variety of topics, receiving instant feedback on their pronunciation, grammar, and word choice. The bots use natural language understanding to interpret the meaning behind learners' statements and respond in contextually appropriate ways, even if the learner makes errors. By engaging learners in authentic dialogue and adapting to their proficiency level, the system aims to accelerate language acquisition.

Researchers are also exploring the use of AI conversational agents to promote reflection and metacognition. The Jill Watson project at Georgia Tech embedded an AI teaching assistant in an online course to answer students' questions and facilitate discussion [108]. In addition to providing information, the AI engaged students in reflective prompts, such as asking them to explain their reasoning or connect new concepts to prior knowledge. These prompts were personalized based on the student's previous responses and participation patterns. Students who interacted more with the AI showed higher levels of engagement and self-regulated learning compared to a control group.

As with other AI applications, the effectiveness of conversational agents depends on the quality of their underlying language models and dialog management strategies. To engage in truly openended conversation, these systems must be trained on vast amounts of diverse linguistic data and imbued with robust common sense reasoning capabilities [109]. They must also be designed with strong safeguards and ethical constraints to avoid producing biased, incorrect, or harmful responses [110]. Ongoing research is exploring techniques like "adversarial training" to make conversational AI more reliable and safe [111].

There are also important considerations around the social-emotional impact of AI learning companions. Some researchers caution that students may become overly attached to or dependent on these systems, to the detriment of human interaction [112]. Conversely, if AI agents are not sufficiently sophisticated or engaging, students may quickly lose interest and disengage. Striking the right balance in the design of these systems' personalities and roles will require close collaboration between AI developers, learning scientists, and educators.

Thoughtfully implemented, AI conversational agents have the potential to provide learners with supportive, adaptive feedback and on-demand assistance, while freeing up human educators to focus on higher-level interaction. By engaging students in reflective dialogue and responding to their socio-emotional needs, these systems can foster self-regulated learning and motivation. As the technology continues to advance, it will be

important to carefully study the effects of AI learning companions on students' academic, social, and emotional development.

5. Recommendations and Future Directions

5.1 Invest in Research and Development

To harness the full potential of AI for education, significant investment in research and development is needed. While there have been promising advances in intelligent tutoring systems, adaptive learning platforms, and AI-powered learning companions, these technologies are still in their early stages. Realizing the vision of truly personalized and engaging AI-enhanced learning experiences will require sustained, cross-disciplinary collaboration among researchers in AI, learning sciences, human-computer interaction, and other fields [113]. One key area for investment is in the development of more robust and flexible learner models. Current AI systems often rely on narrow, domain-specific models of student knowledge and skills that do not capture the full complexity of learning. To provide more holistic and adaptive support, these models must be imbued with richer representations of learners' cognitive, meta-cognitive, affective, and motivational states [114]. This will require advances in techniques for student modeling, such as deep learning and multi-modal data fusion, as well as the collection and sharing of large, diverse learner datasets [115].

Another priority is the development of AI technologies that can support open-ended, inquiry-based learning. Much of the existing work on AI in education has focused on well-defined domains like mathematics and science, where there are clear right and wrong answers. However, many of the skills needed for success in the 21st century, such as creativity, critical thinking, and complex problem-solving, are ill-defined and open-ended [116]. To foster these skills, we need AI systems that can engage learners in authentic, project-based experiences and provide adaptive guidance and feedback [117]. This will require progress in areas such as natural language processing, computer vision, and robotics.

Investment is also needed to advance the state of the art in AI-human interaction and collaboration. To be most effective, AI systems must be designed not to replace human teachers, but to empower and augment their capabilities [118]. This requires AI technologies that can engage in fluid, contextually-aware communication with educators and learners and adapt to their individual needs and preferences. Research is needed to develop more natural and engaging interfaces for AI learning systems, such as conversational agents and robots, as well as to understand the social and emotional dynamics of human-AI interaction in educational contexts [119].

Finally, it is critical to invest in research on the ethical and societal implications of AI in education. As AI technologies become more prevalent in schools and learning environments, we must carefully consider issues of fairness, accountability, transparency, and privacy [120]. Research is needed to develop frameworks and best practices for the responsible development and deployment of AI in education, as well as to study the long-term effects of these technologies on learners and society. This will require close collaboration between AI researchers, educational practitioners, policymakers, and other stakeholders.

5.2 Develop Educator Capacity

For AI technologies to be used effectively in educational settings, it is critical to develop the capacity of educators to understand, evaluate, and integrate these tools into their practice. However, many current teacher preparation and professional development programs do not adequately address the knowledge and skills needed to work with AI [121]. To bridge this gap, we need to invest in both pre-service teacher education and ongoing professional learning opportunities.

At the pre-service level, teacher education programs should incorporate coursework and practicum experiences that expose future educators to the capabilities and limitations of AI, as well as strategies for using these technologies to support student learning [122]. This could include courses on the basics of machine learning and data science, as well as modules on designing and implementing AI-enhanced learning activities. Pre-service teachers should also have opportunities to experiment with AI tools in authentic classroom settings and reflect on the pedagogical implications.

For in-service educators, ongoing professional development is needed to build capacity in AI-enhanced teaching practices. This could take the form of workshops, online courses, or coaching programs that provide hands-on experience with AI technologies and guidance on integrating them into the curriculum [123]. Professional learning communities and networks can also provide valuable opportunities for educators to share best practices and collaborate on the design and implementation of AI-based learning activities.

Importantly, professional development for AI in education should go beyond just technical skills to also address pedagogical strategies and ethical considerations. Educators need support in developing instructional approaches that leverage the affordances of AI while also promoting student agency, metacognition, and transfer of learning [124]. They also need guidance on how to critically evaluate AI tools for potential bias and ensure their responsible use. Finally, educators should be empowered to take an active role in shaping the development and deployment of AI technologies in their schools and communities [125].

To support these efforts, we need to invest in research on effective models of teacher professional learning for AI, as well as the development of high-quality resources and curricula. Partnerships between researchers, technology developers, and educational practitioners can help ensure that AI tools are designed to meet the needs of educators and aligned with evidence-based pedagogical practices.

5.3 Foster Multistakeholder Collaboration

Developing and deploying AI technologies in education that are effective, equitable, and ethical will require sustained collaboration among multiple stakeholders. This includes researchers, technology developers, educators, policymakers, students, families, and community members. Each of these groups brings valuable perspectives and expertise that can inform the responsible development and use of AI in learning environments.

One promising model for multistakeholder collaboration is the formation of research-practice partnerships (RPPs) focused on AI in education [126]. In an RPP, researchers and practitioners work together to identify shared problems of practice, co-design and test innovative solutions, and iterate based on data and feedback.

This collaborative approach can help ensure that AI technologies are grounded in the realities of educational contexts and responsive to the needs of educators and learners.

Another key strategy is to involve students and families as active partners in the design and implementation of AI-enhanced learning experiences. This could include participatory design sessions where students work with researchers and developers to prototype AI tools, or user testing where families provide feedback on the usability and value of AI systems [127]. Engaging students and families in this way can help surface important considerations around privacy, agency, and cultural relevance that might otherwise be overlooked.

At a policy level, we need structures and processes that bring together diverse stakeholders to inform the governance and regulation of AI in education. This could include the formation of multi-sector advisory boards or task forces that provide guidance on issues such as data privacy, algorithmic bias, and teacher training [128]. It could also involve the development of voluntary standards or guidelines for the responsible development and deployment of AI in educational contexts, similar to the IEEE's Ethically Aligned Design standards for autonomous systems [129].

Collaboration across research disciplines is also critical. The challenges and opportunities posed by AI in education span fields as diverse as computer science, cognitive psychology, sociology, and ethics. Fostering cross-disciplinary research teams and initiatives can help break down siloes and generate more holistic and creative solutions [130]. This could take the form of interdisciplinary research centers, joint funding programs, or "grand challenges" that bring together diverse expertise to tackle major societal issues related to AI and education.

Ultimately, the success of AI in education will depend on our ability to build trust and alignment among all of the stakeholders involved. This requires ongoing communication, transparency, and a willingness to grapple with complex tensions and tradeoffs. It also requires a commitment to centering the needs and voices of those who have historically been marginalized in the development and use of educational technology. By fostering inclusive and collaborative approaches to AI in education, we can work towards a future where these powerful tools are leveraged in service of more equitable and effective learning opportunities for all.

Table 1: Key 21st Century Skills for an AI-Driven Future

Skill Category	Examples
Technical Skills	AI and Machine Learning, Data Science, Programming, Robotics
Higher-Order Thinking Skills	Critical Thinking, Creative Problem Solving, Decision Making, Adaptive Learning
Socioemotional Skills	Collaboration, Communication, Empathy, Cultural Awareness
Digital Literacies	Media Literacy, Information Literacy, Computational Thinking, Digital Citizenship
Dispositions and Mindsets	Curiosity, Initiative, Persistence, Adaptability, Lifelong Learning

Table 2: Promising AI Applications for Education

Application Area	Examples	Potential Benefits
Intelligent Tutoring Systems	Cognitive Tutors, Adaptive Courseware, Personalized Feedback Systems	Personalized learning pathways, Immediate feedback, Increased engagement
Immersive Learning Environments	Virtual Reality Simulations, Game-Based Learning, Augmented Reality Labs	Authentic problem-solving, Situated learning, Increased motivation
Conversational Agents	Chatbots, Virtual Teaching Assistants, Language Learning Companions	24/7 learner support, Natural interaction, Emotional engagement
Assessment and Advising	Automated Essay Scoring, Early Warning Systems, AI-Powered Career Counseling	Timely feedback, Targeted interventions, Personalized guidance

Table 3: Strategies for Responsible AI Development and Deployment in Education

Strategy	Key Elements
Multistakeholder Collaboration	Partnerships between educators, researchers, developers, policymakers, and communities
Ethical AI Design	Fairness, Accountability, Transparency, Privacy, Inclusion
Educator Capacity Building	Pre-service preparation, In-service professional development, Ongoing support
Learner Agency and Empowerment	Student voice in design, Opportunities for creation and critique, Personalized learning pathways
Equitable Access and Inclusion	Culturally responsive design, Accessibility considerations, Digital divide interventions
Governance and Policy Frameworks	Data governance, Algorithm audits, Professional standards, Funding mechanisms

6. Conclusion

The rapid advancement of AI technologies presents both immense opportunities and complex challenges for education in the 21st century. On one hand, AI has the potential to personalize learning at an unprecedented scale, providing learners with adaptive support and engaging them in authentic, immersive experiences. Intelligent tutoring systems, embodied conversational agents, and other AI-based tools could help learners develop key skills and competencies needed for success in a rapidly changing world.

At the same time, the increasing prevalence of AI raises important questions about the role of human educators, the ethical implications of data-driven decision making, and the potential for these technologies to exacerbate existing inequities. To realize the potential benefits of AI while mitigating the risks, we need thoughtful and proactive approaches to the development, deployment, and governance of these technologies in educational contexts.

This will require significant investment in research and development to create AI systems that are technically robust, pedagogically sound, and culturally responsive. It will also require a focus on building educator capacity to effectively integrate AI into their practice and adapt to new roles and responsibilities. Collaboration among diverse stakeholders - including researchers, technology developers, educators, policymakers, and communities - will be critical for ensuring that AI in education serves the needs of all learners.

Ultimately, the goal should not be to simply automate or optimize existing educational practices, but to leverage AI in service of more ambitious and equitable visions for teaching and learning. This means using AI not just to deliver content more efficiently, but to empower learners as active creators and critical thinkers. It means designing AI systems that enhance rather than replace human interaction and that foster social and emotional competencies alongside cognitive ones. And it means ensuring that all learners, regardless of their background or abilities, have access to high-quality AI-enhanced learning experiences that prepare them for success in the 21st century. While the challenges are significant, so too are the opportunities. By investing in research, building capacity, and fostering collaboration, we can work towards a future where AI is a powerful tool for supporting learners and educators in achieving their full potential. This will require ongoing vigilance, creativity, and a commitment to centering the needs and voices of all stakeholders - but the potential benefits for education and society are immense.

References

- [1] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
- [2] W. Xiong et al., "The Microsoft 2016 Conversational Speech Recognition System," in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 5255–5259.
- [3] Y. Wu et al., "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation," arXiv:1609.08144 [cs], Oct. 2016.
- [4] D. Silver et al., "Mastering the game of Go without human knowledge," *Nature*, vol. 550, no. 7676, pp. 354–359, Oct. 2017.
- [5] M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," *Science*, vol. 349, no. 6245, pp. 255–260, Jul. 2015.
- [6] J. Bughin et al., "Artificial Intelligence: The Next Digital Frontier?," McKinsey Global Institute, Jun. 2017.

[7] E. Brynjolfsson and A. McAfee, *The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies*, 1 edition. New York London: W. W. Norton & Company, 2016.

[8] World Economic Forum, "The Future of Jobs: Employment, Skills and Workforce Strategy for the Fourth Industrial Revolution," World Economic Forum, Geneva, Switzerland, Global Challenge Insight Report, Jan. 2016.

[9] P. Langley, "Intelligent behavior in humans and machines," in *Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence*, 2021.

[10] Microsoft, "Closing the STEM Gap: Why STEM Classes and Careers Still Lack Girls and What We Can Do About It," Microsoft Philanthropies, 2018. [Online]. Available: <https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE1UMWz>. [Accessed: 30Jul-2023].

[11] Gallup and Northeastern University, "Facing the Future: U.S., U.K. and Canadian Citizens Call for a Unified Skills Strategy for the AI Age," Gallup, Inc., 2019.

[12] G. Orr, "3 skills that will make you irreplaceable in the age of AI," World Economic Forum, 09-Nov-2018. [Online]. Available: <https://www.weforum.org/agenda/2018/11/3skills-that-will-make-you-irreplaceable-in-the-age-of-ai/>. [Accessed: 05-Jan-2023].

[13] P21, "Framework for 21st Century Learning," Battelle for Kids, 2019. [Online]. Available: <http://www.battelleforkids.org/networks/p21/frameworks-resources>. [Accessed: 15-Feb-2023].

[14] J. Plucker, R. Neag, and J. Kennedy, "Reflections on 21st century skills: Progress, distractions, and possibilities," in *Creativity and Innovation: Theory, Research, and Practice*, J. C. Kaufman, Ed. New York, NY: Routledge, 2018, pp. 277–288.

[15] OECD, "OECD Learning Compass 2030," OECD Future of Education and Skills 2030, 2019. [Online]. Available: https://www.oecd.org/education/2030-project/teachingand-learning/learning-learning-compass-2030/OECD_Learning_Compass_2030_Concept_Note_Series.pdf. [Accessed: 25-Mar2023].

[16] J. Amos, "The Shape of Jobs to Come: Preparing for Automation in Vietnam," Medium, 12-Dec-2022. [Online]. Available: <https://medium.com/world-bank-socialprotection-and-jobs/the-shape-of-jobs-to-come-preparing-for-automation-in-vietnam753fbae3cb31>. [Accessed: 25-Jun-2023].

[17] M. Barber, K. Donnelly, and S. Rizvi, "An Avalanche is Coming: Higher Education and the Revolution Ahead," Institute for Public Policy Research, Mar. 2013.

[18] A. Davies, D. Fidler, and M. Gorbis, "Future Work Skills 2020," Institute for the Future, University of Phoenix Research Institute, 2011.

[19] LinkedIn Learning, "2023 Workplace Learning Report," LinkedIn Corporation, 2023.

[20] E. Volini, I. Roy, M. Schwartz, and M. van Durme, "2023 Global Human Capital Trends," Deloitte Insights, 01-Dec-2022. [Online]. Available: <https://www2.deloitte.com/us/en/insights/focus/human-capital-trends.html>. [Accessed: 15-Mar-2023].

[21] D. Long and B. Magerko, "What is AI Literacy? Competencies and Design Considerations," in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 2020, pp. 1–16.

[22] A. Ng, "AI+ethics is the new literacy," Medium, 08-Nov-2019. [Online]. Available: <https://medium.com/@andrewng/ai-ethics-is-the-new-literacy-4e4634fd7ea0>. [Accessed: 15-Feb-2023].

[23] A. van Wynsberghe, "Sustainable AI: AI for sustainability and the sustainability of AI," AI Ethics, vol. 1, no. 3, pp. 213–218, Sep. 2021.

[24] G. G. Attwell and F. Hughes, "Artificial Intelligence in education: power, pedagogy and the future of learning," UNESCO, 2022.

[25] R. James and K. Mantri, "Artificial Intelligence for Social Good: A Public Policy Perspective," Observer Research Foundation, Apr. 2022.

[26] A. Saxena, "GovTech: Artificial intelligence for the public sector," McKinsey, 27-Jul2022. [Online]. Available: <https://www.mckinsey.com/industries/public-and-socialsector/our-insights/govtech-artificial-intelligence-for-the-public-sector>. [Accessed: 15Apr-2023].

[27] United Nations Educational, Scientific and Cultural Organization (UNESCO), "AI and education: Guidance for policy-makers," UNESCO, Paris, France, 2021.

[28] R. E. Mayer, "How Can Brain Science Inform Academic Learning and Instruction?," Educational Psychology Review, vol. 29, no. 4, pp. 835–846, Dec. 2017.

[29] D. Touretzky, C. Gardner-McCune, F. Martin, and D. Seehorn, "Envisioning AI for K-12: What Should Every Child Know about AI?," in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, vol. 33, pp. 9795–9799.

[30] S. Druga, "Growing up with AI: Cognimates: from coding to teaching machines," Massachusetts Institute of Technology, 2018.

[31] S. P. Rose and G. Ferschke, "Integrating Project-based Learning and Dialogue System Development for Conversational Skill Grounding," in Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, Singapore and Online, 2021, pp. 414–418.

[32] R. Luckin, W. Holmes, M. Griffiths, and L. B. Forcier, Intelligence Unleashed: An argument for AI in Education. London, UK: Pearson, 2016.

[33] K. VanLehn, "The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems," Educational Psychologist, vol. 46, no. 4, pp. 197–221, Oct. 2011.

[34] B. du Boulay, "Artificial Intelligence as an Effective Classroom Assistant," IEEE Intelligent Systems, vol. 31, no. 6, pp. 76–81, Nov. 2016.

[35] R. A. Bjork, J. Dunlosky, and N. Kornell, "Self-Regulated Learning: Beliefs, Techniques, and Illusions," Annual Review of Psychology, vol. 64, no. 1, pp. 417–444, 2013.

[36] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, 2nd ed. New York: Basic Books, 1993.

[37] C. Breazeal, K. Dautenhahn, and T. Kanda, "Social Robotics," in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Cham: Springer International Publishing, 2016, pp. 1935–1972.

[38] C. H. Crouch and E. Mazur, "Peer Instruction: Ten years of experience and results," *American Journal of Physics*, vol. 69, no. 9, pp. 970–977, Sep. 2001.

[39] A. Baran et al., "Artificial Intelligence in K-12 Education: A Review of Current Research and Future Directions," arXiv:2303.12712 [cs], Mar. 2023.

[40] K. Sadler, T. Eilam, L. Dabreo, and L. Shanahan, "Unplugged Computing Activities: A Review of Current Resources," *SIGCSE Bull.*, vol. 54, no. 1, p. 102, Feb. 2022.

[41] A. Peel, J. Luo, A. F. Sargent, and J. Staubitz, "Using AI to Support Children's Development of Self-Regulation Skills," in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 2023, pp. 1–15.

[42] C. Brady, K. Holbert, E. Hartman, W. Gao, and D. Weintrop, "Examining the Opportunities for Computational Thinking in Young Children's Maze Activities," in Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V, New York, NY, USA, 2022, pp. 711–717.

[43] D. Weintrop, J. Beheshti, J. Ge, and J. Pasquale, "Bringing AI Education to K-12: Designing Curriculum and Environments for Constructionist Learning," in Proceedings of the 2022 ACM Conference on International Computing Education Research, Lugano and Virtual Event, Switzerland, 2022, pp. 266–272.

[44] D. Lane and J. Ogan, "Teaching Science with Robotics-Based Design Projects," *The Science Teacher*, vol. 88, no. 6, Mar. 2021.

[45] K. Kelly et al., "An Introductory AI Course for High School," in Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, New York, NY, USA, 2021, pp. 1046–1052.

[46] D. Weintrop, L. Killen, M. Roscoe, and M. Horn, "Engaging High School Students in Applied Machine Learning through Infographics," in The 22nd International Conference on Artificial Intelligence in Education (AIED 2021), Online, 2021.

[47] Amazon Web Services, "Explore machine learning with AWS DeepRacer," AWS Training and Certification, 2023. [Online]. Available: <https://explore.skillbuilder.aws/learn/course/internal/view/elearning/1851/exploremachine-learning-with-aws-deepracer>. [Accessed: 13-Jun-2023].

[48] Google, "Google Code-in," Google Developers, 2021. [Online]. Available: <https://codein.withgoogle.com/archive/>. [Accessed: 13-Jun-2023].

[49] J. H. Harless and M. S. Kirkpatrick, "Designing with AI: Addressing Ethical Challenges of Artificial Intelligence in Design," in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 2021, pp. 1–16.

[50] Gallup and Google, "K-12 Computer Science Education: State Reports," gallup.com, 2015. [Online]. Available: https://services.google.com/fh/files/misc/searching-forcomputer-science_report.pdf. [Accessed: 16-Feb-2023].

[51] Computer Science Teachers Association, "CSTA K-12 Computer Science Standards," 2017. [Online]. Available: <https://www.csteachers.org/page/about-csta-s-k-12-nbspstandards>. [Accessed: 16-Feb-2023].

[52] International Society for Technology in Education, "ISTE Standards: Coaches," ISTE, 2019. [Online]. Available: <https://www.iste.org/standards/iste-standards-for-coaches>. [Accessed: 16-Feb-2023].

[53] M. J. Lohmann, M. H. Boothe, and D. W. White, "Leveraging Undergraduate Learning Assistants to Engage K-12 Students in Computational Thinking," in Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, Virtual Event, USA, 2021, pp. 812–818.

[54] I. S. Moghadam, J. H. Taraben, L. Lechuga, and R. Pinkwart, "Designing for TeacherAI Partnerships in K-12 Education: Investigating Teachers' Conceptions through CoDesign," in Interaction Design and Children, 2021, pp. 351–364.

[55] A. Zimmermann-Niefield, M. Polito, S. Martonosi, J. Gilbert, and S. Vogel, "Youth Conceptions of Artificial Intelligence," in Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2, Providence, RI, USA, 2022, pp. 866–872.

[56] G. Marcelino, T. S. Sommer, V. Miri, and R. Bernardino, "Learning AI with AI. A Guide for Computational Thinking and Robotics Teaching in Kindergarten," Journal of Pedagogy, vol. 12, no. 2, pp. 73–97, Dec. 2021.

[57] A. van Wynsberghe, "Sustainable AI: AI for sustainability and the sustainability of AI," AI Ethics, vol. 1, no. 3, pp. 213–218, Sep. 2021.

[58] S. Ali, T. Payne, M. Williams, H. Park, and L. Breazeal, "Constructionism, Ethics, and Creativity: Developing Primary and Middle School Artificial Intelligence Education," in Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, 2021.

[59] IBM, "AI Foundations for Educators," IBM SkillsBuild, 2023. [Online]. Available: <https://skillsbuild.org/students/course/ai-foundations-for-educators>. [Accessed: 13-Jun2023].

[60] R. Niemelä, "AI Literacy - What it is and how to support its development," University of Helsinki, Faculty of Educational Sciences, Master's thesis, 2021.

[61] J. Bol, "The Rise of AI in Education: Opportunities and Challenges," ISTE Blog, 14Aug-2020. [Online]. Available: <https://www.iste.org/explore/Empowered-Learner/TheRise-of-AI-in-Education%3A-Opportunities-and-Challenges>. [Accessed: 02-May-2023].

[62] D. Cukurova, "Preparing children for real-world interactions with AI systems," Nature Machine Intelligence, vol. 4, no. 4, pp. 268–269, Apr. 2022.

[63] J. Tsan, N. C. Enyinnaya, D. Rodriguez, K. E. Boyer, K. Lynch, and E. N. Wiebe, "A Systematic Literature Review of AI-Based Multimodal Learning Analytics in AIED," International Journal of Artificial Intelligence in Education, vol. 32, no. 2, pp. 348–379, Jun. 2022.

[64] L. Floridi et al., "AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations," *Minds and Machines*, vol. 28, no. 4, pp. 689–707, Dec. 2018.

[65] X. Zhai, L. Chu, S. Somasundaram, E. N. Wiebe, and J. C. Lester, "Empowering Dialogue-Based Intelligent Tutoring Systems With Transformers," *International Journal of Artificial Intelligence in Education*, vol. 33, no. 1, pp. 22–35, Mar. 2023.

[66] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier, "Cognitive tutors: Lessons learned," *The Journal of the Learning Sciences*, vol. 4, no. 2, pp. 167–207, 1995. [67] S. Palincsar, "Reciprocal Teaching," in *International Guide to Student Achievement*, J. Hattie and E. M. Anderman, Eds. New York: Routledge, 2013, pp. 369–370.

[68] Eureka Report, "AI that talks back can improve literacy," ISTE Blog, 29-Nov-2022. [Online]. Available: <https://www.iste.org/explore/literacy/AI-that-talks-back-can-improve-literacy>. [Accessed: 02-May-2023].

[69] S. Greenwald, A. Kulik, A. Kunert, and S. Beck, "Technology and Applications for Collaborative Learning in Virtual Reality," in *Making a Difference: Prioritizing Equity and Access in CSCL*, 2017, vol. 2, pp. 719–726.

[70] M. K. Lee, A. Psomas, and D. J. Mirman, "An Immersive Virtual Reality Laboratory Experience for Chemistry Education," *Journal of Chemical Education*, vol. 98, no. 10, pp. 3200–3205, Oct. 2021.

[71] F. Martin, C. Gardner-McCune, A. Munson, and D. Touretzky, "Results from a survey of artificial intelligence concepts for K-12 curricula," *Science Robotics*, vol. 7, no. 69, p. eadd1566, Aug. 2022.

[72] R. Abduljabbar, S. Dia, S. Liyanage, and P. Dia, "Applications of Artificial Intelligence in Education: A Bibliometric Study," *Education Sciences*, vol. 11, no. 9, Art. no. 9, Sep. 2021.

[73] J. Hyun, C. Bae, and T. Lee, "User-adaptive hints using LSTM-DKT for an intelligent tutoring system," *Applied Sciences*, vol. 10, no. 22, p. 8047, 2020.

[74] N. Doroudi and E. Brunskill, "Fairer but Not Fair Enough: On the Equitability of Knowledge Tracing," in *The 12th International Conference on Educational Data Mining (EDM 2019)*, Montréal, Canada, 2019.

[75] J. Rollinson and E. Brunskill, "From Predictive Models to Instructional Policies," in *Proceedings of the 8th International Conference on Educational Data Mining*, Madrid, Spain, 2015, pp. 179–186.

[76] L. Cuban, "The Hidden Variable: How Organizations Influence Teacher Responses to Secondary Science Curriculum Reform," *Theory Into Practice*, vol. 34, no. 1, pp. 4–11, 1995.

[77] S. Finkelstein, E. Yarzebinski, C. Vaughn, A. Ogan, and J. Cassell, "The effects of culturally congruent educational technologies on student achievement," in *Artificial Intelligence in Education*, H. C. Lane, K. Yacef, J. Mostow, and P. Pavlik, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 493–502.

[78] AI4ALL, "AI4ALL Open Learning," AI4ALL, 2022. [Online]. Available: <https://ai4-all.org/open-learning/>. [Accessed: 13-Jun-2023].

[79] E. Abebe and M. Ho, "Community Playgrounds: Identifying Needs and Wants for AI Literacy Through Speculative Participatory Design Fictions," in Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 2022, pp. 1–18.

[80] Major League Hacking, "About Major League Hacking (MLH) - Empowering Hackers," 2023. [Online]. Available: <https://mlh.io/about>. [Accessed: 13-Jun-2023].

[81] K. W. Eva, "The cross-cutting edge: striving for symbiosis between medical education research and related disciplines," *Medical Education*, vol. 42, no. 10, pp. 950–951, 2008. [82] S. Viljoen and J. Zhu, "Fairness, Accountability, Transparency: What Does It Mean for AI to Be Trustworthy?," in Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, Oxford, United Kingdom, 2022, pp. 1070–1080.

[83] M. A. Madaio, L. Stark, J. W. Vaughn, and H. Wallach, "Co-Designing Checklists to Understand Organizational Challenges and Opportunities around Fairness in AI," in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 2020, pp. 1–14.

[84] K. Holstein, E. Harpstead, R. Gulotta, and J. Forlizzi, "Replay Enactments: Exploring Possible Futures through Historical Data," in Proceedings of the 2020 ACM Designing Interactive Systems Conference, Eindhoven, Netherlands, 2020, pp. 1607–1618.

[85] M. Mitchell et al., "Model Cards for Model Reporting," arXiv:1810.03993 [cs], Jan. 2019.

[86] J. Reich, C. Buttiner, D. Fang, G. Hillaire, K. Hirsch, L. Larke, M. Littenberg-Tobias, R. M. Moussapour, A. Napier, M. Thompson, and R. Slama, "Remote Learning Guidance From State Education Agencies During the COVID-19 Pandemic: A First Look," Apr. 2020.

[87] R. W. Scholz, D. J. Lang, A. Wiek, A. I. Walter, and M. Stauffacher, "Transdisciplinary case studies as a means of sustainability learning: Historical framework and theory," *International Journal of Sustainability in Higher Education*, vol. 7, no. 3, pp. 226–251, 2006.

[88] A. Saenz-Otero, J. Katz, A. Makhsoon, and G. Pratt, "The Zero Robotics Tournament," *IEEE Robotics Automation Magazine*, vol. 19, no. 2, pp. 44–50, Jun. 2012. [89] T. Bekker, S. Bakker, I. Douma, J. van der Poel, and K. Scheltenaar, "Teaching children digital literacy through design-based learning with digital toolkits in schools," *International Journal of Child-Computer Interaction*, vol. 5, pp. 29–38, Sep. 2015.

[90] A. C. Kinnebrew and K. R. Biswas, "Investigating Everyday Engagement with Created Artifacts to Improve Maker-Based Learning," in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 2020, pp. 1–13.

[91] C. Conati and K. VanLehn, "Providing adaptive support to the understanding of instructional material," in Proceedings of the 6th international conference on Intelligent user interfaces, New York, NY, USA, Jan. 2001, pp. 41–47.

[92] M. Banko and E. Brill, "Scaling to very very large corpora for natural language disambiguation," in Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics, Toulouse, France, 2001, pp. 26–33.

[93] R. A. Sottilare, J. A. DeFalco, and J. Connor, "A Guide to Instructional Techniques, Strategies and Tactics to Manage Learner Affect, Engagement, and Grit," US Army Research Laboratory, Aberdeen Proving Ground United States, ARL-SR-0383, 2017. [94] V. Rus, S. D'Mello, X. Hu, and A. Graesser, "Recent Advances in Conversational Intelligent Tutoring Systems," *AI Magazine*, vol. 34, no. 3, pp. 42–54, Sep. 2013. [95] E. Smirnova and R. Zane, "Students Who Repeat Algebra and Implications for Instructional Support," National Council of Teachers of Mathematics, 2019. [Online].

Available: [https://www.nctm.org/Publications/Teaching-Children-](https://www.nctm.org/Publications/Teaching-Children-Mathematics/Blog/Students-Who-Repeat-Algebra-and-Implications-for-InstructionalSupport/)

[Mathematics/Blog/Students-Who-Repeat-Algebra-and-Implications-for-InstructionalSupport/](https://www.nctm.org/Publications/Teaching-Children-Mathematics/Blog/Students-Who-Repeat-Algebra-and-Implications-for-InstructionalSupport/). [Accessed: 13-Jun-2023].

[96] K. Holstein, B. M. McLaren, and V. Aleven, "Student Learning Benefits of a Mixed Reality Teacher Awareness Tool in AI-Enhanced Classrooms," in *Artificial Intelligence in Education*, C. Penstein Rosé, R. Martínez-Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta, B. McLaren, and B. du Boulay, Eds. Cham: Springer International Publishing, 2018, pp. 154–168.

[97] J. L. Plass, B. D. Homer, and C. K. Kinzer, "Foundations of Game-Based Learning," *Educational Psychologist*, vol. 50, no. 4, pp. 258–283, Oct. 2015.

[98] N. Ruiz, E. Tapia, J. Mateu, X. Alamán, and A. Martínez, "VR-STEM: A Virtual Reality Game to Enhance STEM Learning," *IEEE Access*, vol. 10, pp. 43987–43999, 2022. [99] B. H. Thomas et al., "Situated Analytics," in *Immersive Analytics*, K. Marriott, F. Schreiber, T. Dwyer, K. Klein, N. H. Riche, T. Itoh, W. Stuerzlinger, and B. H. Thomas, Eds. Cham: Springer International Publishing, 2018, pp. 185–220.

[100] J. Gratch et al., "The Distress Analysis Interview Corpus of human and computer interviews," in *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*, Reykjavik, Iceland, 2014, pp. 3123–3128.

[101] E. Charters, "The Use of Think-aloud Methods in Qualitative Research An Introduction to Think-aloud Methods," *Brock Education : a Journal of Educational Research and Practice*, vol. 12, no. 2, Art. no. 2, Jul. 2003.

[102] S. Tegos, S. Demetriadis, and A. Tsatsos, "Investigating the impact of conversational agent interventions on students' learning experience and performance during scripted collaborative learning activities," *Interactive LearnIng Environments*, vol. 0, no. 0, pp. 1–15, Oct. 2021.

[103] R. Hoegen, G. Stratou, and J. Gratch, "Incorporating Conversation Trees into Virtual Humans for Explanatory Communication," in *Intelligent Virtual Agents*, 2017, pp. 132–136.

[104] I. Rahwan, "Society-in-the-Loop: Programming the Algorithmic Social Contract," *Ethics and Information Technology*, vol. 20, no. 1, pp. 5–14, Mar. 2018.

[105] J. Cassell, T. Bickmore, L. Campbell, H. Vilhjálmsdóttir, and H. Yan, "Human Conversation as a System Framework: Designing Embodied Conversational Agents," in *Embodied Conversational Agents*, MIT Press, 2000.

[106] I. Leite and J. F. Lehman, "The robot who knew too much: toward understanding the privacy/personalization trade-off in child-robot conversation," in Proceedings of the 2016 conference on Interaction design and children, 2016, pp. 379–387.

[107] B. Settles and B. Meeder, "A Trainable Spaced Repetition Model for Language Learning," in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 2016, pp. 1848–1858.

[108] S. Ashok, "Jill Watson, an AI pioneer in education," The Technique, Nov. 18, 2016. [109] K. Affolter, A. Stockar, and K. Rooney, "A Horizon Scan of Emerging Issues for Education," OECD Publishing, OECD Education Working Papers 274, Jul. 2022. [110] C. O'Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Reprint edition. New York: Broadway Books, 2017.

[111] Y. Roh, G. Heo, and S. E. Whang, "A Survey on Data Collection for Machine Learning: a Big Data - AI Integration Perspective," IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 4, pp. 1328–1347, Apr. 2021.

[112] S. Stich, "Against Robot Optimism: Why Robots Won't Take Over and Why We Need to Welcome the Rise of the Robots," in Robotics, AI, and Humanity: Science, Ethics, and Policy, J. Seibt, M. Nørskov, and S. S. Andersen, Eds. Cham: Springer International Publishing, 2021, pp. 193–209.

[113] A. Dede, E. Ho, and S. Mitros, "Technology Leadership: Harnessing the Power of Artificial Intelligence for Sustainable Development," World Bank, Washington, DC, 2020. [114] C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, and L. D. English, Eds., Handbook of Research on STEM Education, 1st Edition. Routledge, 2020.

[115] M. Berland, R. Davis, and C. P. Smith, "AMOEBA: Designing for collaboration in computer science classrooms through live learning analytics," International Journal of Computer-Supported Collaborative Learning, vol. 10, no. 4, pp. 425–447, Dec. 2015.

[116] P. J. Weinberger and K. A. Crowley, "Engineering Education for Everyone: Strategies and Challenges," Journal of Pre-College Engineering Education Research (JPEER), vol. 11, no. 1, Art. no. 1, Feb. 2021.

[117] S. Grover and R. Pea, "Computational Thinking in K–12: A Review of the State of the Field," Educational Researcher, vol. 42, no. 1, pp. 38–43, Jan. 2013.

[118] R. Luckin, W. Holmes, M. Griffiths, and L. B. Forcier, Intelligence Unleashed: An argument for AI in Education. London: Pearson, 2016.

[119] J. Henrich, S. J. Heine, and A. Norenzayan, "Most people are not WEIRD," Nature, vol. 466, no. 7302, pp. 29–29, Jul. 2010.

[120] M. A. Peters, P. Jandrić, and A. J. Means, Eds., Education and Technological Unemployment. Singapore: Springer, 2019.

[121] E. Tolu, D. Vargo, and A. Graesser, "Conversation-Based Learning with Intelligent Agents," in *Intelligent Technologies for Interactive Entertainment*, A. El Rhalibi, D. Tolu, and F. Liarokapis, Eds. Cham: Springer International Publishing, 2019, pp. 3–12.

[122] M. Madaio, L. Stark, J. Wortman Vaughan, and H. Wallach, "Co-Designing Checklists to Understand Organizational Challenges and Opportunities around Fairness in AI," in *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*, New York, NY, USA, Apr. 2020, pp. 1–14.

[123] S. Zhu, A. Buolamwini, and C. Carbune, "To Build a Better Future, We Need to Imagine What It Looks Like," *Harvard Business Review*, Jun. 2022.

[124] S. S. Vaseekaran, A. M. Agrawal, S. M. Bothe, P. K. Bhoyar, and R. V. Kshirsagar, "Developing the metacognition of school students by using Artificial Intelligence in Education (AIEd) tools," in *2021 6th International Conference for Convergence in Technology (I2CT)*, Maharashtra, India, Apr. 2021, pp. 1–6.

[125] B. Williamson and A. Eynon, "Historical Threads, Missing Links, and Future Directions in AI in Education," *Learning, Media and Technology*, vol. 45, no. 3, pp. 223–235, Jul. 2020.

[126] W. R. Penuel and D. J. Gallagher, *Creating Research Practice Partnerships in Education*. Cambridge, MA: Harvard Education Press, 2017.

[127] S. Amershi et al., "Power to the People: The Role of Humans in Interactive Machine Learning," *AI Magazine*, vol. 35, no. 4, pp. 105–120, Dec. 2014.

[128] A. Tsamados, N. Aggarwal, J. Cowls, J. Morley, H. Roberts, M. Taddeo, and L. Floridi, "The Ethics of Algorithms: Key Problems and Solutions," *AI & SOCIETY*, Mar. 2021.

[129] "Ethically Aligned Design: A Vision for Prioritizing Human Well-being with Autonomous and Intelligent Systems, First Edition," IEEE, 2019.

[130] D. M. Berwick, "Escape Fire: Lessons for the Future of Health Care," The Commonwealth Fund, New York, 2002.