JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR) An International Scholarly Open Access, Peer-reviewed, Refereed Journal

PREDICTION OF CRIME AGAINST WOMEN USING KMMSDL AND PPCSGO OPTIMIZATION TECHNIQUES

¹P. TAMILARASI, ²R. UMA RANI

 ¹Research Scholar, Department of Computer Science, Sri Sarada College for Women(Autonomous), Salem-16, India. (ORCID: 0000-0001-9788-4129)
 ²Principal, Sri Sarada College for Women (Autonomous), Salem-16, India.

Abstract : Women's safety is now a serious concern in India. In the ongoing efforts of many nations to manage it, preventing this crime is a crucial task. The number of crimes committed against women has been rising over the past few years. In 2021, crime against women increased by 15 point 3 percent from the year before, 2020, the National Crime Recorded Bureau (NCRB) report states. The Indian government is currently interested in addressing this problem and emphasizing social development more. Each year, a ton of information is produced as a result of the reporting of crimes. We may even be able to stop crime to some extent with the help of this information, which can be very helpful for assessing and forecasting crime. The process used to carry out data analysis involves looking over, cleaning up, transforming, and modeling data. In order to support decision-making, it is important to establish valuable information and present findings. Imputations of missing data are essential in research because poor imputation of absence variables leads to inaccurate prediction. It's critical to handle these kinds of missing data well. In this article, KMMSDL approaches are suggested for handling missing values, PPCSGO soft computing techniques are used for feature selection, and ensemble-based regression approaches are used to forecast crime against women. This study's main objective is to lower errors while improving machine learning's ability to predict outcomes. The suggested algorithms KMMSDL and PPCSGO, which offer an accuracy of 97.89 percent for the India-level Crime data set, have reduced the greatest number of errors. Higher accuracy was produced by the suggested method. With the aid of this outcome, the police department would be able to successfully manage the crimes against women in India in the future.

Keywords: Ensemble Methods, Feature Selection, Missing Values Imputation, KMMSDL, PPCSGO

I. INTRODUCTION

Data analytics is a scientific method for analyzing and interpreting raw data results. Many data analytics methods perform automatically, and the algorithms work over the essential information for human consumption. Data analytics has various stages, which are descriptive analytics, diagnostic analytics, predictive analytics and prescriptive analytics. Descriptive analytics investigates past details to answer the question, "What happened?" Diagnostic analytics is an advanced method. It is helpful for a response to the question of why it happened. Predictive analytics is useful for predicting future outcomes. Prescriptive analytics is also an advanced method that helps answer the question of what will work to control the incidence.

Missing value handling is more important in analytics. If the researcher deals with the missing values correctly, the result will be accurate. When handling the lost data, the researcher does two things: first, takes the missing values using various imputation methods and the second method removes the null values. The imputation techniques have given more accuracy when the disappearance percentage is low. If the absent value percentage is high, the result may vary. The missing value is handled in this article using the proposed method, KMMSDL. This method imputes the missing values using various statistics and Machine learning techniques.

Feature selection is a more critical process in machine learning. It works on the concept of garbage in and garbage out. Only some features are helpful when executing the machine-learning techniques, while others are useless. Using irrelevant information for the prediction may reduce the model's overall performance. Hence, it is essential to determine the irrelevant information in the datasets with the help of machine learning techniques. This paper uses the proposed method, PPCSGO, for feature selection. It is a hybrid technique of P-Value PCA and the Stochastic Gradient Optimization Method.

The ensemble is a method. The main goal of this method is to improve model accuracy by combining models rather than using a single one. The combined model increases the model's accuracy significantly. It has increased ensemble methods' popularity in machine learning. Boosting, bagging, and stacking are familiar types of ensemble techniques. Linear regression and support vector regressions are ensembled in this work for crime prediction.

2. LITERATURE REVIEW

Hema N et.al [1] has proposed Predictive modelling and decision tree techniques for impute the missing values on electronic health record.Rule based classifier and Naive bayesian methods are used to perform model accuracy. Phiwhorm K et.al [2] proposed adaptive imputation of missing values techniques for filling absent information with the help of three modules.In the first module the author focuses the pre-processing techniques and the author calculated the threshold value by using class centers and distance values of data samples. Finally discuss the missing values in the third module. Mustafa Alabadla et.al [3] proposed ensemble based novel approach (Extra impute) for impute the missing values on healthcare datasets this proposed method performances are compared with other imputation techniques like miss forest, multivariate impute, KNN Impute, Finally the proposed result observed good performance. Dharmendra Patel et.al[4] implemented single and multiple imputation methods for filling the absent information. Mean and mode values are used for impute the single implementation and regression is used as multiple implementation. Rahin Atig et.al[5] has proposed many algorithms for impute the missing data such as Gradient boost tree,KNN,Mice,Deep Learning etc.Finally the author found that the KNN along with deeplearning methods perforances are outstanding .It has given 100% accuracy compare than other classification prediction results.Ritu Aggrawal et.al[6] performed prediction of various fields such as student performance on early stage, crop production, disease prediction using various machinelearning techniques by applying the p-value for feature selection. Saba Bashir et.al [7] implements various feature selection techniques for classification using SVM on cleveland heart disease dataset with 94.45% accuracy. The author measures SVM performances using sensitivity, specificity and f values. AzzaAli et.al[8] has proposed fuzzy k top values for impute the missing values using numerical and categorical values. Finally conclude the output based on RMSE and execution time. the proposed techniques FKTM performed better with low RMSE and time. Phimmarin Keerin[9] improved the knn iputation performance on gene expression data by proposed method ordered weighted average methods.the author used six various gene expression records and conclude the result the missing ratio 5% and 10% values are given more accurate. Privanka Gupta[10] presented ensemple learning method such as majority-voting ,stacking and bagging for improving the heart disease prediction accuracy. The author implemented various classification techniques for prediction and conclude the result as the majority has given better result compare with others.

3. PROPOSED METHODOLOGY

3.1 DATA PRE-PROCESSING

Pre-processing is primary portion of developing machine learning performance.Pre-Processing is utilized to convert raw information to appropriate data.the normalization is one of the most familiar pre-processing methods this is implemented for extract the useful information.Mostly records are in numeric values.The classical pre-processing methods are used to handled these types of records.Standardization is one of the familiar classical pre-processing techniques.This method avoids the scale of attributes.Missing values imputation is one of the major process in data pre-processing.In this work,the soft computing proposed method(KMMSDL) is used for impute the missing values.Dimentionality reduction is main part in this paper.This is some other hellenic unsupervised machine learning techniques.The major role of this method is to reduce the dimension which means reduce the no of the features.In this paper proposed PPCSGO method for feature selection.The below algorithm1 used for impute the missing values.

Algorithm 1: Impute the Missing values using KMMSDL Methods

nput : Load the dataset (CAW_I) with missing values Attribute(MA)a1,a2,a3
Dutput: Predict the value using Proposed Imputed Method KMMSDL
Step 1 : Read the Record CAW_I
Step 2 : Find the missing value place
Step 3 : Estimate the Mean, Mode, Standard Deviation values using the below formula.
$\mu = \frac{\sum Xi}{N} \tag{1}$
Here μ denotes mean value of population .
Mode = L + h $\frac{(fm-f_1)}{(fm-1)+(fm-f_2)}$ (2)
Here L is the lowest limit, f is the frequency of the class, h is the interval of the values
$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (xi-\mu)^2}{n-1}} \tag{3}$
σ denotes standard deviation ,xi is the ith position value,n denotes total no of values
tep 4: Take the log value for calculated values and Step 5: Estimate the KNN value for missing values.
Step 6 : All statistics values are added with KNN. Step 7 : Fill the computed values in Missing Place.

3.2 FEATURE SELECTION

In this article the proposed method PPCSGO used for feature selection.which is ensemble method of P-Value,PCA and SGO(Stochastic gradient optimization techniques.

• P-Value

There are numerous features in the data-set that we encounter while developing a machine learning function for a realworld data-set, and not all of these property are always crucial. When breeding a model, adding unused attribute causes the model to be biased, more analyzable, and less veracious overall.Following are some well-liked methods for feature option in machine learning,there are filter,wrapper and embedded techniques.Backward elimination is a technique for retaining only the attribute that are important to the data-set, that is, those that importantly impact the parasitic variant.The amount of alteration a property will make to the selected output determines its substance level, or how crucial it is and how much it causation the conclusion.The significance level's p-value is pertain to as the hypothesis.In this article the P value is used for selecting the features.The P-value is a important statistical factor that aids in deciding whether the hypothesis is true or false. P-value can only ever be found between 0 and 1. A preset bar that should be set by the researcher is the level of significance . Normally, it is fixed to 0.05. The P-value calculation formula is $z = \frac{P^{\cap} - P0}{|P0(1-P_0)|}$ (4)

In formula four, P stands for samples, P0 for sample proportion null hypothesis, and n for sample count. The below Fig 1 shows the work flow of crime prediction.

Work Flow of Predict the Crime rate Against Women

Fig 1.Work Flow of Crime Prediction Against Women

• PCA - Principle component Analysis

As part of the statistical procedure known as PCA, rigid attributes of potentially correlated variables are transformed using an perpendicular transformation to produce a set of principal component values, which are values of linearly unrelated variables. In many fields, there is a proliferation of excessive amounts of data, but at the same time, it is becoming more difficult to interpret them. However, a variety of statistical techniques were required to significantly reduce their conditionality while protecting the majority of the information in the data in order to extract information from it. In other words, in order to reduce the possibility of over fitting, it is essential to trim the feature space in order to better understand the relationships between the variables. Lowering or reducing the feature space's dimensions is the process of dimensionality reduction. "Feature Exclusion" and "Feature Extraction," respectively, are the two techniques. is PCA is one of the familiar techniques for doing this,

which has the straightforward goal of cut down the spatial property of a data-set while preserving statistical information as much as possible. The following are some advantages of PCA.

- ✓ Given the orthogonal components, there is no data redundancy. Removes correlated features because principal components don't depend on one another.
- ✓ Since PCA removes correlated variables that are irrelevant to decision-making, it enhances the performance of the ML algorithm.
- ✓ By reducing the number of features, PCA aids in overcoming problems with data over fitting.

© 2024 JETIR March 2024, Volume 11, Issue 3

- Since PCA produces high variance, visualization is enhanced. noise reduction because the maximum variation basis is selected and the small variations in the background are automatically disregarded.
- Stochastic Gradient optimization

To find the model parameters that most closely match the predicted and observed outputs, machine learning applications frequently use the stochastic gradient descent optimization algorithm. It is a simple but successful strategy. Strictly speaking, stochastic gradient descent is utilized in machine learning projects. When combined with back propagation, it dominates neural network training applications. By changing the decision variables, the cost function, also known as the loss function, must be minimized. Numerous machine learning techniques address deeper optimization issues. By changing the model parameters, they typically try to reduce the discrepancy between the actual and predicted outputs. In a regression problem, the actual outputs y and the vectors of the input variables $x = (x_1, ..., x_r)$ are usually present. To get f(x) as close to y as possible, you want to find a model that converts x to a predicted response f(x). The primary objective of this approach is to reduce the discrepancy between the predicted value f(x) and the actual data y. The residual refers to this variation. To reduce the sum squared residuals the below formula 5 are used

$$SSR = \sum_{i} (y_i - f(x_i))^2$$
(5)

Where f(x) is predicted value and y represent actual data. The below algorithm 2 explains the feature selection process.

Algorithm 2: Feature Selection using PPCSGO Method

Input : Load the crime against women dateset
Output: Predict the crime rate using Proposed Method PPCSGO
Step 1: Read the Data Set
Step 2: Find missing values
Step 3: Fill the missed data by using KMMSDL method
Step 4: Calculate the P value for each attributes
Step 5: Set the 0.05 as the threshold value
Step 6: Apply PCA techniques for select the feature
Step 7 : Execute Stochastic Gradient Optimization method for better accuracy
Step 8: Predict the crime rate using Ensemble Method.

3.3 ENSEMBLE METHOD

Ensemble is a most familiar machine learning method. This model suffers by bias or variance. Bias mostly used for calculate the difference of actual and predicted value by model. When a model creates a simple model without taking into account the variation in the data, bias is introduced. The uncomplicated model getting errors when predicting both training and testing data because it doesn't follow the patterns of the data which mean the model has given high bias and variance. The model may perform exceptionally well on the training dateset, which indicates It provides low bias but fails on the test data-set and provides high variance. Therefore, ensemble learning techniques are developed in order to increase the model's accuracy. Combining several models that have been trained with machine learning algorithms is known as an ensemble. It combines weak learners, or low performing classifiers, with individual model predictions to produce the final prediction. In this article, The averaging ensemble methods are used along with linear regression.SGD regressor for crime predictions.

4. RESULTS AND DISCUSSIONS

• Statistical Analysis

The below Fig.2, Fig.3 shows missing values percentages of each column and Fig..4 shows descriptive report of the crime

against women dateset

0	<pre>dataset.isnull().mean() * 100</pre>							
	<1	8,695652						
	<2	0.000000						
	< 3	4.347826						
	C-4	13.043478						
	c5	4.347826						
	c6	8.695652						
	c7	0.000000						
	<8	4.347826						
	c9	13.043478						
	<10	4.347826						
	<11	4,347826						
	c12	4.347826						
	arr	0.000000						
	dtype:	float64						

Fig.2 .Missing Values in Percentage

	Folse	Folse	rolpo	Folse	Folse	rolpe	rolpe	Felpe	Folse	rolpe
1	False	False	False	Palse	False	False	False	False	False	False
- 2	Palse	Palse	False	Palse	Palse	False	False	Palse	False	False
	Palee	Palee	False	Pales	Palee	Palee	Palee	Palee	Palee	Palse
- 2	False	False	False	False	F = 1 = =	False	False	False	False	False
-	False	False	False	False	False	False	False	False	False	False
7	False	False	False	F = 1.0 -	F = 1 = =	ralse	False	False	Fp1.00	False
	False	ralse	False	False	False	ralse	False	False	False	False
-0-	False	False	False	False	False	False	False	False	False	False
1.0	False	False	False	False	False	False	False	False	False	False
1.1	Falce	False	Falco	Palse	P0100	Falce	Falco	False	F0100	Falce
	Palse	raise	ralse	r a) s e	raise	relse	raise	ralse	raise	raise
1.3	Palse	raise	raise	Palse	Palse.	raise	Palse	Palse	Palse.	raise
1.4	False	False	False	Palse	False	False	False	False	False	False
12	False	F0100	False	P 0100	10100	50100	False	60100	F 0 1 0 0	10100
17	False	False	False	False	False	False	False	False	False	False
1.0	Felse	Felse	Felse	Felse	Felse	Felse	False	False	Felse	Felse
3.19	Felse	rolee	Felse	Felpe	relee	rolee	Felse	Felse	relee	rolce
2.0	False	False	False	False	False	False	False	False	False	False
2.3	False	False	False	False	False	False	False	False	False	False
2.2	Palse	False	False	Palse	Palse	False	Palse	Palse	Palse	False
	- 2.2	= 3.2	46.11.11							
-	PAISE	raise	False							
1	Palse	Palse	False							
	False	50100	50100							
	False	False	False							
15	False	False	False							
6	False	rolse	False							
7	False	False	False							
-	False	False	False							
19	False	False	Falco							
3.0	***	ralse	ralse							
11	Palse	False	False							
		F								

	đ	d	đ	64	đ	c6	đ	68	đ	td)	di	d2	arr
count	23.00000	23,00000	21,0000	22 00000	23 00000	23 10 000	23,000,00	23.000000	23.00000	23.00000	23.00000	210000	23 10001
mean	538.782619	568 685852	54.30104	6031404	603 566217	66,19304	675,868585	683,696682	60.521739	725.391314	769.626007	127.595217	(3634
sti	643.386502	664 610989	633.117864	681,262293	685 172247	665 (1933)	725.572019	719.95(7)8	722.648970	760.409772	12482323	145.99207	0.499011
nin	8,00000	£.000000	11.00000	10000	17 00000	2 1000	13.00000	19.00000	18.006000	15.00000	15.00000	210000	[]()()]
2%	42,5000	57.0000	42.0000	4,000	51 0000	73.00000	12,50000	1253030	\$750000	120.50000	103.50000	133,50000	[] [] [] [] [] [] [] [] [] []
5%	298,00000	299.00000	353,00000	38 0000	38,000	42,0000	48,0000	517.00000	511.000000	555,00000	656.00000	651,00000	0,0000
195	344,0000	\$21,00000	522,00000	992 50000	962,50000	1022 100000	1025.00000	1185.00000	999.50000	1018/50000	1122.00000	1187,50000	10000
18	2851.00000	2091.00000	2758.00000	2050000	2521 00000	200 00000	3010.00000	2997,000000	2568.000000	3135.00000	3405.00000	3425.00000	1,0000

Fig.4.Descriptive Analytics of Crime Against Women Dataset

The below Fig.5 and 6 shows P values for each column, This value is used for selecting the features. Using this values removed the features which is greater than threshold value 0.05

□-			OLS Reg	ression mes	ults		
	pep. variabl	le:		PP R-squa	med:		0.310
	Hode1:		0	LS Add R	- squared t		-0.417
	Hethod:		Least Squar	es F-stat	istic:		0.4608
	Datei	P.P.	l, 20 Jan 20	23 Prob (P-statistic)		0.898
	Time:		10:20:	20 Log-L1	kelihood:		-11.074
	No. observat	tions:		23 AIC:			48.15
	Of Residuals	1		10 DIC:			62.91
	DF Model:			12			
	Covariance 1	Cype i	nonrobu	st			
		coef	std err		P>[1]	[0.025	0.9751
	const	0.3810	0.220	1.008	0.120	-0.12H	0.892
	ci.	-0,0032	0,004	-0.799	0.443	-0.012	0.005
	62	40.0007575	49. (HOH)	0.879	0.400	-0.004	0.010
	c3	-0.0006	0.011	-0.056	0.957	-0.025	0.023
	C.4.	-10.0101018	49.494386	-0.720	10. dilli	-0.024	0.012
	c5	0.0006	0.005	0.169	0.869	-0.009	0.011
	C6	0.0024	0,006	0.432	0.675	-0,010	0.015
	67	0.0017	0.005	0.316	0.759	-0.010	0.014
	CB .	-0,0012	0,006	-0.209	0.939	-0.014	0.012
	C10	40.4040/015	0.007	0.488	0.030	-0.012	0.010
	c10	-0.0019	0.009	-0.210	0.031	-0.022	0.010
	c11	-0.00033	49,4948.4	-0.001	0.561	-40.4011	43, 49496
	0.1.2	0.0011	0.003	0.423	0.681	-0.005	0.007
	Omnibusi		9.7	60 Durbin	-Matson:		2.715
	Prob(Omnibus	: : : :	0.0	00 Janque	-Bera (30):		2.250
	TRACEPULE		0.1	ee prob(3	II) i		0.325
	Nurtosis:		3.5	20 Cond.	No.		6,160+03

Fig .5. Find the P values for Selecting the Features

Fig 6: Compare the Each column P values

The following Fig 7,8,explains the PCA feature selection process. The Fig.7 shows standardized value in 4 PCA components. Fig.8 visualize the values in two principle component basis.

Fig 8: 2D based PCA The below PCA Fig. 9 shows the variance of the Ratio.

JETIR2403741 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

Fig .12 . P Value Based Prediction

The above Fig.10 shows comparision of Predicted and Actual Value using proposed values PPCSGO feature selection and Fig 11 shows actual and predicted values comparision using PCA, Fig 12 explains comparision of actual and predicted values using P value based feature selection.

The above Fig.10 shows comparision of Predicted and Actual Value using proposed values PPCSGO feature selection and Fig 11 shows actual and predicted values comparision using PCA, Fig 12 explains comparision of actual and predicted values using P value based feature selection.

Data Set	Different Types of	ifferent Types of Errors			
Crime	features Used	MSE	RMSE	R^2	
against	P-value	0.2537	0.2784	0.935	
women	PCA	32.5962	43.582	0.952	
in India	PPCSGO	0.2447	0.2365	0.9789	

 TABLE 1. Comparison of Algorithm Performance

The above table 1 describes the algorithms performance of Crime against women data prediction. Table 2 describes the NCRB actual and Predicted values comparision report.

TABLE 2. Compar	ison of NCRB Actu	al Values with	Predicted Values
-----------------	-------------------	----------------	------------------

Data Set	Actual and Predicted Values								
Crime	Row	Column	NCRB Values(Ac tualp	Predicted					
against women	2	6	10986	10900					
in India	72	11	20874	20176					
	194	9	18527	18394					

Fig .13 . Comparision of Actual & Predicted Value Using regression

The above fig 13 give graphical representation of Actual and Predicted values using simple regression techniques.

5.CONCLUSION

Crime against women is big problem of our nation.Crime rates are continuously increasing against women.To over come this issues crime prediction is important.Data analytics is a scientific method for analyzing and interpreting raw data results. Many data analytics methods perform automatically, and the algorithms work over the essential information for human consumption.Predictive analytics is one of the familiar process in data anlytics which is helpful for predict future values.In this work, KMMSDL,PPCSGO and ensemble based algorithms are proposed for predict the crime rate.This algorithms results are compared with NCRB crime report value.This two algorithms has given 97.89 % accuracy with less Mean Squared Errors.This result will be helpful for crime department for control the crimes against women in India.

References:

- [1] N. Hema and J. Selwyn, "Imputation of missing values in healthcare data using predictive modeling and decision tree," J. Pharm. Neg. Results, vol. 13, special issue 7, 2022.
- [2] K. Phiwhorm et al, "Adaptive multiple imputations of missing values using the class center," J. Big Data, vol. 9, no. 1, p. 52, 2022. doi:10.1186/s40537-022-00608-0.
- [3] M. Alabadla et al., "ExtraImpute: A novel machine learning method for missing data imputation," J. Adv. Inf. Technol., vol. 13, no. 5, pp. 470-476, Oct. 2022 [doi:10.12720/jait.13.5.470-476].
- [4] D. Patel et al., "Single and multiple imputation techniques to treat missing numerical variables (MNV) in perspectives of data science project A case study," Int. J. Eng. Trends Technol., vol. 70, no. 5, pp. 9-14, 2022 [doi:10.14445/22315381/IJETT-V70I5P202].
- [5] R. Atiq et al., "A comparison of missing value imputation techniques on coupon acceptance prediction," IJITCS, vol. 14, no. 5, pp. 15-25, 2022. doi:10.5815/ijites.2022.05.02.
- [6] R. Aggrawala and S. Palb, P-value feature selection technique for prediction of student performance, International Journal of Research Publication and Reviews Vol (2) Issue (8) (2021), pp. 1443-1450.
- [7] S. Bashir, et al., 'A Novel Feature Selection Method for Classification of Medical Data Using Filters, Wrappers, and Embedded Approaches.' A Novel Feature Selection Method for Classification of Medical Data Using Filters, Wrappers, and Embedded Approaches, Aug. 8 2022.
- [8] A. Ali et al., "Missing values imputation using Fuzzy K-Top Matching Value," J. King SaudUniv. Comput. Inf. Sci., vol. 35, no. 1, 426-437, 2023 [doi:10.1016/j.jksuci.2022.12.011].
- [9] P. Keerin and T. Boongoen, "Improved knn imputation for missing values in gene expression data," Comput. Mater. Continua, vol. 70, no. 2, pp. 4009-4025, 2022 [doi:10.32604/cmc.2022.020261].
- [10] P. Gupta and D. D. Seth, "Improving the prediction of heart disease using ensemble learning and FeatureSelection," Int. J. Adv. Soft Comput. Appl., vol. 14, no. 2, Jul., 2022,ISSN: 2074-8523.