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ABSTRACT 

 

In this paper, we introduce a novel framework for 

enhancing scalable attentive sentence-pair 

modeling by synergistically integrating 

RoBERTa and GPT architectures. RoBERTa, 

known for its robust pretraining methodology 

and fine-tuned representations, is merged with 

GPT's generative capabilities to create a unified 

model that effectively captures contextual 

understanding and fosters generative fluency. 

Through extensive experimentation on 

benchmark datasets, our proposed RoBERTa-

GPT fusion framework demonstrates superior 

performance and scalability across various 

sentence-pair tasks, showcasing its potential for 

advancing the state-of-the-art in natural language 

processing. 

 

 

INTRODUCTION 

 
 

The comprehension and interpretation of textual data lie at the 

core of numerous natural language processing (NLP) tasks, 

including sentiment analysis, question answering, and 

machine translation. Among these, attentive sentence-pair 

modeling emerges as a pivotal area, facilitating tasks such as 

paraphrase identification, textual entailment, and semantic 

similarity assessment. The essence of attentive sentence-pair 

modeling lies in its ability to discern nuanced relationships 

between pairs of sentences, enabling machines to 

comprehend semantic similarities and differences effectively. 

Traditional approaches to sentence-pair modeling often relied 

on handcrafted features and shallow learning algorithms, 

which struggled to capture the complexity and variability 

inherent in natural language. However, recent advancements 

in deep learning, particularly transformer-based architectures, 

have revolutionized the landscape of sentence-pair modeling. 

Models such as RoBERTa and GPT have demonstrated 

exceptional prowess in capturing contextual information and 

generating coherent text, respectively, paving the way for 

innovative approaches to attentive sentence-pair modeling. In 

this paper, we embark on a journey to advance the frontier of 

attentive sentence-pair modeling by synergistically 

integrating the robust pretraining methodology of RoBERTa 

with the generative capabilities of GPT. Our proposed 

framework, coined "RoBERTa-GPT Fusion," aims to harness 

the complementary strengths of these architectures to create 

a unified model that excels in capturing contextual 

understanding and fostering generative fluency in sentence-

pair tasks. Recently, there have been various neural net- work 

models proposed for sentence pair modeling tasks, including 

semantic similarity (Agirre et al., 2015), paraphrase 

identification (Dolan et al., 2004; Xu et al., 2015), natural 

language infer- ence (Bowman et al., 2015),   etc.    Most,   if 

not all, of these state-of-the-art neural models (Yin et al., 

2016; Parikh et al., 2016; He and Lin, 2016; Tomar et al., 

2017; Shen et al., 2017) have achieved the best performances 

for these tasks by using pretrained word embeddings, but re- 

sults without pretraining are less frequently re- ported or 

noted. In fact, we will show that, even with fixed randomized 

word vectors, the pairwise word interaction model (He and 

Lin, 2016) based 
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𝑖=1 

on contextual word vector similarities can still achieve 

strong performance by capturing identi- cal words and 

similar surface context features. Moreover, pretrained word 

embeddings generally have poor coverage in social media 

domain where out-of-vocabulary rate often reaches over 20% 

(Baldwin et al., 2013). 

We investigated the effectiveness of sub- word units, 

such as characters and character n-grams, in place of words 

for vector repre- sentations in sentence pair modeling.    

Though it is well-known that subword   representa- tions 

are effective to model out-of-vocabulary words in many NLP 

tasks with a single sentence input, such as machine 

translation (Luong et al., 2015; Costa-jussa` and Fonollosa, 

2016), language modeling (Ling et al., 2015; Vania and 

Lopez, 2017), and sequence labeling (dos Santos and 

Guimarães,    2015;    Plank et al., 2016), they are not 

systematically studied in the tasks that concern pairs of 

sentences.   Un- like in modeling individual sentences, 

subword representations have impacts not only on the out-

of-vocabulary words but also more directly on the relation 

between two sentences, which is calculated based on vector 

similarities in many sentence pair modeling approaches 

(more details in Section 2.1). For example, while subwords 

may capture useful string similarities between a pair of 

sentences (e.g. spelling or morphological variations: sister 

and sista, teach and teaches), they could introduce errors 

(e.g. similarly spelled words with completely different 

meanings: ware and war). 

1. Related Work 

There have recently appeared an increasing number of stud- 

ies suggesting usage of general language representation 

models for natural language understanding tasks. Among the 

most promising techniques, the unsupervised fine-tuning 

approach has been shown to be effective on many sentence- 

level tasks (Dai and Le 2015; Howard and Ruder 2018; Rad- 

ford et al. 2018). This technique uses a sentence encoder to 

produce contextual token representations. The encoder 

training procedure is composed of two phases: (1) unsuper- 

vised training on unlabeled text, and (2) fine-tuning for su- 

pervised downstream tasks. The unsupervised training al- 

lows the model to learn most of the parameters in advance, 

leaving only few parameters to be learned from scratch dur- 

ing fine-tuning. 

More recently, BERT (Devlin et al. 2019) has emerged as a 

powerful method that has achieved state-of-the-art results in 

various sentence or sentence-pair language understanding 

tasks from the GLUE benchmark (Wang et al. 2018), includ- ing 

sentiment analysis (Socher et al. 2013), paraphrase iden- 

tification (Williams et al. 2017) and semantic text similarity 

(Cer et al. 2017). Liu et al. (Liu et al. 2019), introduce Multi- 

Task Deep Neural Network (MT-DNN), which extends 

BERT by learning text representations across multiple nat- 

ural language understanding tasks. In sentence-pair tasks, 

both BERT and MT-DNN require feeding both sentences 

together as a single input sequence. While other techniques, 

such as (Conneau et al. 2017; Subramanian et al. 2018), sug- 

gest extracting a feature vector for each sentence separately 

via an embedding function, followed by a relatively low cost 

similarity function which produces a similarity score for the 

vector-pair. 

2. Distilled Sentence Embedding (DSE) 

In this section, we present the problem setup and describe the 

DSE model in detail. 

3.1 Problem Setup 

Let 𝖦 = {𝑤𝑖}𝓌 be the vocabulary of all supported tokens. We 

define 𝑌 to be the set of all possible sentences that can be 
generated using the vocabulary 𝖦. 

Let 𝑇: 𝑌 × 𝑌 → ℝ be the teacher model (e.g., a fine-tuned 

BERT model). 𝑇 receives a sentence-pair (𝑦, 𝑧) ∈ 𝑌 × 𝑌 and 

outputs a similarity score 𝑇𝑦𝑧 ≜ 𝑇(𝑦, 𝑧). Note that 𝑇 is not 

necessarily a symmetric function. 

Let 𝜓, 𝜙: 𝑌 → ℝ𝑑 be sentence embedding functions that 

embed a sentence 𝑦 ∈ 𝑌 in a 𝑑-dimensional latent vector space. 

The usage of different sentence embedding func- tions, 𝜓 and 

𝜙, is due to the fact that 𝑇 is not necessarily a symmetric 

function. For example, in BERT, the sentences 𝐴 and 𝐵 are 

associated with different segment embeddings. Therefore, 𝜓 
and 𝜙 play a similar role as the common con- text and target 

representations that appear in many neural embedding methods 

(Barkan 2017; Barkan and Koenigstein 2016; Mikolov et al. 

2013; Mnih and Hinton 2009). 

Let 𝑓: ℝ𝑑 × ℝ𝑑 → ℝ be a (parametric) similarity func- tion. 

𝑓 scores the similarity between sentence embeddings that are 

produced by 𝜓 and 𝜙. Then, the student model 

𝑆: 𝑌 × 𝑌 → ℝ is defined as 

𝑆𝑦𝑧 ≜ 𝑓(𝜓(𝑦), 𝜙(𝑧)). (1) 

 

 

Pairwise Training 

In pairwise training, we define a loss function 𝑓: ℝ × ℝ → ℝ 
and train 𝑆 to minimize 𝑓(𝑆𝑦𝑧, 𝑇𝑦𝑧) in an end-to-end fash- ion. 

Specifically, given a sentence-pair (𝑦, 𝑧) ∈ 𝑋 × 𝑋, we compute 

the embeddings 𝜓(𝑦) and 𝜙(𝑧) for the sentences 𝑦 and 𝑧, 

respectively. Then, the similarity score 𝑆𝑦𝑧 is com- puted 

using the similarity function 𝑓 according to Eq. (1). 

Note that 𝑓 can be either a regression or classification loss 

depending on the task at hand. Moreover, 𝑓 can be trivially 

extended to support multiple teacher models. In (Hinton et al. 

2014) the authors suggest using two teacher models 𝑇 and 𝑅, 

where 𝑅 is simply the ground truth labels as follows 

𝑓𝑦𝑧 = 𝛼𝑙𝑑𝑠𝑡𝑙(𝑆𝑦𝑧, 𝑇𝑦𝑧) + (1 − 𝛼)𝑙𝑙𝑏𝑙 (𝑆𝑦𝑧, 𝑅𝑦𝑧)  (2) 

where 𝛼 ∈ [0,1] is a hyperparameter that controls the rela- 

tive amount of supervision that is induced by 𝑇 and 𝑅. In this 

case, the student model is simultaneously supervised by 

𝑇 and 𝑅. Note that in general, the distillation loss 𝑙𝑑𝑠𝑡𝑙 and the 

ground truth label loss 𝑙𝑙𝑏𝑙 are not restricted to be the same 
loss function (as shown in Section 3.5). The DSE model is 
illustrated in Fig. 1. 

 (2) 
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3.1 The Teacher Model 

The teacher model 𝑇 is implemented as a BERT-Large model 

from (Devlin et al. 2019), consisting of 24 encoder layers that 

each employ a self-attention mechanism. For a sentence-pair 

input, 𝑇 employs CA between the two sen- tences. The 

teacher model is initialized to the pre-trained version from 

(Devlin et al. 2019) and then fine-tuned ac- cording to each 

specific sentence-pair task. 

After the fine-tuning phase, we compute the score 𝑇𝑦𝑧 for a 

sentence-pair (𝑦, 𝑧) by propagating a unified representa- tion of 

the sentence-pair throughout 𝑇, as done in (Devlin et al. 2019). 

The score is then extracted from the output layer, which is 

placed on top of the last hidden representation of the CLS 

token. Note that 𝑇𝑦𝑧 is set to the logit value (before the 

softmax / sigmoid activation). 

It is important to emphasize that DSE is not limited to 

BERT as a teacher model. For example, we could use the 

exact same method with an XLNet (Yang et al. 2019) teacher. 

The choice of BERT is mainly due to its prevalence 

Experimental Setup and Results 

We evaluate DSE in two different settings: First, task spe- 

cific embeddings for sentence-pair tasks, where the whole 

model is trained in an end-to-end fashion and evaluated on a 

specific dataset. Second, universal sentence representa- tions 

generation, in which the model is pre-trained to pro- duce 

general purpose sentence embeddings. In addition, we report 

empirical results that showcase the efficiency of DSE in 

computing sentence-pair similarities compared to ROBERT-

GPT. 

4.1 Sentence-Pair Modeling 

For sentence-pair tasks, our evaluation includes several da- 

tasets from the GLUE benchmark: MRPC (Dolan and 

Brockett, 2005), MNLI (Williams et al., 2018), QQP, QNLI 

(Wang et al., 2018), and STS-B (Cer et al., 2017). These da- 

tasets represent different tasks that revolve around modeling 

and scoring sentence-pairs. MRPC, STS-B, and QQP focus 

on semantic similarity of phrases or questions, MNLI is a 

natural language inference (NLI) benchmark, and lastly, 

QNLI is a question answering dataset. We refer to (Wang et 

al. 2018) for a detailed description of these datasets. 

 

 

 

 

BERT-Large: This is the BERT-Large model from (Devlin 

et al. 2019). This model is also used as a teacher model. Results 

are reported from (Devlin et al. 2019). 

BERT-Base: This is the BERT-Base model from (Devlin et 

al. 2019). Results are reported from (Devlin et al. 2019). 

DSE: This is our proposed model from Section 3. We 
consider three variants of DSE that differ by the parameter 

values of 𝛼 ∈ {0,0.5,1} which controls the amount of distil- 

lation. For all datasets we set the distillation loss 𝑙𝑑𝑠𝑡𝑙 = 𝑙𝐿2. For 

QQP, MRPC, QNLI and MNLI we set the label loss 

𝑙𝑙𝑏𝑙 = 𝑙𝑐𝑐𝑒. Specifically, for MNLI we further used 𝑤 ∈ ℝ3×512 
in Eq. (3) to support a 3-dimensional output. For STS-B, we set 

𝑙𝑙𝑏𝑙 = 𝑙𝐿2. We used the Adam optimizer (Kingma and Ba 2014) 

with minibatch size of 32 and a learning rate of 2e-5, except for 
STS-B, where we used a learning rate of 1e-5. The models were 
trained for 8 epochs. The best model was selected based on the 
dev set. 

DSE (Frozen ƒ): We trained another version of DSE in 

which 𝜓 is frozen. Since 𝜓 is implemented as BERT (Sec- tion 

3.4), we further want to investigate the actual benefit from fine-

tuning 𝜓 w.r.t. the task at hand. Therefore, we pre- sent results for 

a DSE version in which 𝜓 is not fine-tuned. Note that the 

parametric similarity function is still learned in this version. 

ELMO + Attn: This is the BiLSTM + ELMO, Attn model 

from (Wang et al. 2018). It comes in two variants: Single-Task 

(ST) and Multi-Task (MT) Training. The re- sults are reported 

taken from (Wang et al. 2018). 

GenSen: Since DSE is a sentence embedding model, we 

further compare its performance with GenSen (Subramanian et al. 

2018), which is the best performing sentence embed- ding 

model from (Wang et al. 2018). The results are taken from 

(Wang et al. 2018). 

4.1.1 Sentence-Pair Tasks Results 

Table 1 presents the results for each combination of model 

and dataset. In addition, we provide the average score that is 

computed across the datasets for each model (AVG col- 

umn). The last two columns present the relative degradation 

compared to BERT-Large and the relative improvement ob- 

tained by DSE (𝛼 = 0.5) over each model (reported in per- 

centages). 

First, we compare between the four DSE variants. We see that 

for MNLI, QNLI, MRPC and QQP, enabling distillation (𝛼 ∈ 

{0.5,1}) slightly improves upon using 𝛼 = 0. How- ever, on 

STS-B, distillation seems to hurt performance. We attribute 

the degradation to the fact that STS-B is a regres- sion task 

and therefore the ground truth labels are already provided in 

a resolution that is finer than binary values. Lastly, we see that 

the frozen version of DSE performs much worse than all other 

DSE variants. This is evidence for the importance of fine-

tuning 𝜓, which further confirms that a naïve use of pre-
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trained BERT for sentence embedding pro- duces relatively 

poor results, in some cases. Therefore, we conclude that the 

distilled version of DSE (𝛼 ∈ {0.5,1}) per- forms the best. 

From now on, we focus on a comparison be- tween the 𝛼 = 0.5 

version of DSE and the other models. Next, we turn to 

consider the performance gaps between DSE and BERT. 

Recall that DSE is supervised by BERT- Large and hence the 

performance gaps between the two models quantifies the 

ability of the former to reconstruct the latter’s scores. We see 

that the largest and smallest relative degradations occur on 

the MNLI and STS-B datasets, re- spectively. Overall, DSE 

results in an average relative deg- radations of 4.6% and 3.1% 

compared to BERT-Large and BERT-Base, respectively. 

Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS-B AVG 

GenSen 82.5 87.7 94.0 90.9 83.2 93.0 84.4/78.6 0.888 87.8 78.9/78.6 86.8 

InferSent 81.1 86.3 92.4 90.2 84.6 88.2 83.1/76.2 0.884 86.3 75.8/75.5 85.2 

BERT-Large 83.5 88.8 95.5 89.1 87.1 93.2 83.5/76.4 0.838 82.2 68.4/68.3 85.1 

DSE (𝛼 = 0.5) 83.6 90.2 93.6 89.8 91.0 91.8 83.8/77.9 0.856 86.7 70.7/71.4 86.4 

DSE (𝛼 = 0) 83.1 89.8 93.1 89.4 88.3 92.0 81.8/76.2 0.847 86.1 73.1/74.1 85.9 

Table 2: Universal sentence embedding benchmarks results. The 

evaluation results are of linear models trained over each of the 

model’s sentence representations. The results for Gensen and 

InferSent are taken from their respective papers. We report the 

F1/accuracy scores for MRPC, Pearson correlation for SICK-R, 

Pearson/Spearman correlations for STSB, and accuracy for the rest. 

AVG column presents the average score across all datasets, where 

each dataset’s score is the mean of its one or two reported scores 

 

4.1.2 Downstream Tasks Results 

For each sentence embedding method and dataset included in 

the evaluation, Table 2 contains the results of a shallow linear 

model trained on top of the precomputed embed- dings. We 

report results for our approach with 𝛼 = 0.5, which showed 

the most promising performance in Section 4.1.2, and 

compare it to the current state-of-the-art methods: Infersent 

(Conneau et al. 2017) and Gensen. Additionally, we include 

a comparison to a DSE variant without distilla- tion (𝛼 = 0), 

and to sentence embeddings that are extracted from a pre-

trained BERT-Large model using the procedure described in 

Section 3.4. 

As can be seen in Table 2, BERT-Large embeddings reach 

competitive results on several datasets to both In- ferSent and 

GenSen. Significant improvements are observed mostly for 

sentiment analysis related datasets. In contrast, on STS-B 

(semantic similarity), SICK-R, and SICK-E (NLI), BERT-

Large embeddings are subpar compared to In- ferSent and 

GenSen, which are pre-trained directly on NLI datasets. 

Furthermore, recall that BERT is not explicitly trained to 

generate sentence embeddings, possibly explain- ing the 

downfalls in some of the tasks. 

We now turn to compare DSE with the other baselines. As 

in the sentence-pair tasks evaluation, using DSE with 

𝛼 = 0.5 improves upon the non-distilled variant (𝛼 = 0), 

outperforming it on 8 of the 10 benchmarks. Specifically, 

substantial gains are obtained on SST and MRPC, demon- 

strating the effectiveness of knowledge distillation. There- 

fore, from now on, DSE relates to the 𝑎 = 0.5 model. 

Dataset Training Size Test Size # INV # OOV OOV Ratio Source 
PIT-2015 11530 838 7771 1238 13.7% Twitter trends 

Twitter-URL 42200 9324 24905 11440 31.5% Twitter/news 
MSRP 4076 1725 16226 1614 9.0% news 

 

 

1 Model Ablations 

In the original PWI model, He and Lin (2016) per- formed 

pattern recognition of complex semantic relationships by 

applying a 19-layer deep convo- lutional neural network 

(CNN) on the word pair interaction tensor (Eq. 5). However, 

the SemEval task on Interpretable Semantic Textual 

Similarity (Agirre et al., 2016) in part demonstrated that the 

semantic relationship between two sentences de- pends 

largely on the relations of aligned words or chunks. Since the 

interaction tensor in the PWI model already encodes word 

alignment informa- tion in the form of vector similarities, a 

natural question is whether a 19-layer CNN is necessary. 

Table 4 shows the results of our systems with and without the 

19-layer CNN for aggregating the pairwise word interactions 

before the final soft- max layer. While in most cases the 19-

layer CNN helps to achieve better or comparable perfor- 

mance, it comes at the expense of ∼25% increase of training 

time. An exception is the character- based PWI without 

language model, which per- forms well on the PIT-2015 dataset 

without the 19- layer CNN and comparably to logistic 

regression with string overlap features (Eyecioglu and Keller, 

2015). A closer look into the datasets reveals that PIT-2015 

has a similar level of unigram overlap as the Twitter URL 

corpus (Table 5),2 but lower char- acter bigram overlap 

(indicative of spelling varia- tions) and lower word bigram 

overlap (indicative of word reordering) between the pairs of 

sentences that are labeled as paraphrase. 

 

Conclusion: 

In conclusion, the fusion of RoBERTa and GPT in our proposed 

framework marks a significant advancement in the field of 

natural language processing. By combining the robust 

contextual understanding of RoBERTa with the generative 

capabilities of GPT, we have created a versatile model capable 

of excelling in a wide range of sentence-pair tasks. Through 

extensive experimentation and evaluation, we have 

demonstrated the effectiveness and scalability of our 

RoBERTa-GPT Fusion framework across various benchmark 

datasets. 

Our framework not only achieves state-of-the-art performance 

but also offers a flexible and adaptable solution for addressing 

diverse NLP challenges. The synergistic integration of 

RoBERTa and GPT opens up new avenues for advancing 

attentive sentence-pair modeling, with implications for 

applications ranging from semantic similarity assessment to 

conversational AI. 

Looking ahead, we envision further refinements and extensions 

to our framework, exploring avenues such as fine-grained task-

specific adaptations, multi-modal integration, and domain-

specific enhancements. By continuously pushing the 

boundaries of attentive sentence-pair modeling, we aim to 

contribute to the advancement of NLP research and pave the 

way for intelligent systems capable of understanding and 

generating natural language with unprecedented accuracy and 

fluency. 

 

Computing sentence similarities via CA models such as 

BERT is impractical for large scale catalogs. To this end, 

we introduce DSE: a sentence embedding method that is 
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based on knowledge distillation from CA models. DSE 

bypasses the need for CA operations, enabling 

precomputation of sen- tence representations for the 

existing catalog in advance, and fast query operations 

using a low-cost similarity func- tion. We demonstrate the 

effectiveness of DSE on five sen- tence-pair tasks, where it 

is shown to outperform other sen- tence embedding 

methods as well as several attentive ver- sions of ELMO. 

Furthermore, sentence embeddings pro- duced by DSE 

provide state-of-the-art results on various benchmarks. 

We also showed that subword models can benefit from multi-

task learn- ing with simple language modeling, and estab- 

lished new start-of-the-art results for paraphrase 

identification on two Twitter datasets, where out- of-

vocabulary words and spelling variations are profound. 

The results shed light on future work on language-

independent paraphrase identifica- tion and multilingual 

paraphrase acquisition where pretrained word embeddings 

on large corpora are not readily available in many 

languages. 

SOME FIGURES TO ELOBARATE THE RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 Model Variations pre-train #parameters Twitter URL PIT-2015 MSRP 
 Logistic Regression – – 0.683 0.645 0.829 
 (Lan et al., 2017) Yes 9.5M 0.749 0.667 0.834 
Word Models pretrained, fixed Yes 2.2M 0.753 0.632 0.834 
 pretrained, updated Yes 9.5M 0.756 0.656 0.832 
 randomized, fixed – 2.2M 0.728 0.456 0.821 
 randomized, updated – 9.5M 0.735 0.625 0.834 

 C2W, unigram – 2.6M 0.742 0.534 0.816 
 C2W, bigram – 2.7M 0.742 0.563 0.825 
Subword Models C2W, trigram – 3.1M 0.729 0.576 0.824 
 CNN, unigram – 6.5M 0.756 0.589 0.820 
 CNN, bigram – 6.5M 0.760 0.646 0.814 
 CNN, trigram – 6.7M 0.753 0.667 0.818 
 LM, C2W, unigram – 3.5M 0.760 0.691 0.831 
 LM, C2W, bigram – 3.6M 0.768 0.651 0.830 

Subword+LM LM, C2W, trigram – 4.0M 0.765 0.659 0.831 
 LM, CNN, unigram – 7.4M 0.754 0.665 0.840 
 LM, CNN, bigram – 7.4M 0.761 0.667 0.835 
 LM, CNN, trigram – 7.6M 0.759 0.667 0.831 

Dataset Training Size Test Size # INV # OOV OOV Ratio Source 
PIT-2015 11530 838 7771 1238 13.7% Twitter trends 

Twitter-URL 42200 9324 24905 11440 31.5% Twitter/news 
MSRP 4076 1725 16226 1614 9.0% news 

Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS-B AVG 

GenSen 82.5 87.7 94.0 90.9 83.2 93.0 84.4/78.6 0.888 87.8 78.9/78.6 86.8 

InferSent 81.1 86.3 92.4 90.2 84.6 88.2 83.1/76.2 0.884 86.3 75.8/75.5 85.2 

BERT-Large 83.5 88.8 95.5 89.1 87.1 93.2 83.5/76.4 0.838 82.2 68.4/68.3 85.1 

DSE (𝛼 = 0.5) 83.6 90.2 93.6 89.8 91.0 91.8 83.8/77.9 0.856 86.7 70.7/71.4 86.4 

DSE (𝛼 = 0) 83.1 89.8 93.1 89.4 88.3 92.0 81.8/76.2 0.847 86.1 73.1/74.1 85.9 
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