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Abstract:  One of the most prevalent symptoms of cardiovascular disease, which remains a major global health concern, is 

arterial stenosis. In order to effectively diagnose and treat tapering arterial stenosis with dilatation, it is essential to understand the 

hemodynamic changes that occur. In order to thoroughly evaluate the fluid dynamics in these vascular situations, this work takes 

a complex approach by using the Ellis fluid biorheology model. A complex geometric structure seen in numerous vascular 

diseases is the tapering arterial stenosis with dilatation. Using computational fluid dynamics (CFD) models, the research aims to 

clarify the complex relationship between fluid rheology and vascular shape. In contrast to more conventional Newtonian models, 

the Ellis fluid model more accurately depicts blood rheology by taking into account the non-Newtonian behavior and shear-

thinning characteristics of blood. This research takes a methodical look at how hemodynamic factors such wall shear stress, 

velocity profiles, resistance to flow, and volumetric flow rate are affected by different levels of yield stress, shape parameter, and 

viscosity coefficient. The results show how important it is to take non-Newtonian factors into consideration when trying to 

foretell the hemodynamic effects of tapering arterial stenosis with dilatation. In addition, the study delves into the possible clinical 

consequences of these hemodynamic changes, with the goal of enhancing our knowledge of disease development and directing 

tailored treatment approaches. This research highlights the significance of including realistic biorheological factors in a thorough 

understanding of vascular pathophysiology and provides valuable insights into the hemodynamics of tapered arterial stenosis with 

dilatation by combining advanced computational models with clinically relevant geometric variations. These findings have the 

potential to lead to better methods of diagnosis and more efficient treatments for cardiovascular illnesses. 
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I. INTRODUCTION 

Research in the intricate and multidisciplinary field of hemodynamic evaluation of tapered arterial stenosis with dilatation 

utilizing Ellis fluid biorheology integrates concepts from biomedical engineering, rheology, and fluid mechanics. Using Ellis fluid 

models, this area investigates the hemodynamic behavior and its effects on vascular health as it pertains to blood flow through 

arteries with particular geometric features as tapering stenosis and dilatation.The buildup of atherosclerotic plaques and other 

pathophysiological processes can lead to arterial stenosis, which is the narrowing of an artery. When the diameter of an artery 

gradually decreases, a condition known as tapered stenosis occurs, making blood flow more difficult. In contrast, dilatation entails 

expanding a vessel, which can have intricate effects on hemodynamics as well. In this regard, the decision to use Ellis fluid 

models is crucial. The shear-thinning characteristic of Ellis fluids, which are non-Newtonian fluids, indicates that their viscosity 

reduces as the shear rate increases. Compared to more conventional Newtonian models, this rheological feature better captures 

how blood behaves. In order to more accurately portray the physiological conditions, hemodynamic characterisation utilizing Ellis 
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fluid biorheology accounts for the non-uniform nature of blood flow in tapering stenotic and dilated arteries. Evaluation of 

velocity profiles, pressure distribution, wall shear stress, and other pertinent parameters within the artery geometry may be 

important components of the hemodynamic characterization. Blood flow patterns under different situations are frequently 

simulated using computational fluid dynamics (CFD) and mathematical modeling. If we want to know how these geometric 

differences affect vascular health, we need to know how Ellis fluid biorheology explains the hemodynamic features of tapering 

arterial stenosis with dilatation. In the long run, this study might help us control and avoid problems caused by vascular anomalies 

by paving the way for better diagnostic and treatment methods for cardiovascular disorders. Models of blood flow that are not 

Newtonian were developed by Chaturani et al. (1985). Their focus is on how the narrowing affects blood flow within the artery. 

In order to delve into the stenosis vessel investigation, several mathematical fluid models are created, taking into account non-

Newtonian properties.  Utilizing the limited distinction strategy (FDM) and taking into account blood as a non-Newtonian liquid, 

Chakravarty and Mandal (1994) registered the time-subordinate blood stream in a covering stenotic corridor. In their numerical 

model of blood vessel blood stream, Mandal and Chakravarty (2000) expected the blood to be a Newtonian liquid and utilized the 

clinically pertinent time-differing design of covering stenosis shows in the supply route lumen and vascular wall adaptable 

deformability. The one-layered Bingham plastic progression of blood through a small conduit with a few stenoses and post-

stenotic dilatation was tended to by Singh and Singh (2012). They calculated the resistance-to-flow ratio for yield stresses of 0,.02 

and.04 n/m2 using blood viscosities of 0.00345, 0.004, and 0.00455 Pa.s and fluxes of 1, 10, and 100, respectively. Prasad et al. 

(2014) investigated the possibility of a constant flow of Jeffrey fluid through a tube with both dilatations and constrictions. 

Expecting a mid-line stenosis, they decided the accompanying conditions for speed, pressure drop, volumetric stream rate, 

protection from stream, and wall shear pressure: Rf is the ratio of the height of the stenosis to the post-stenotic dilatation. Blood 

stream through a tightening corridor with stenosis and dilatation was concentrated by Priyadharshini and Ponalagusamy (2015) 

utilizing the incompressible Herschel-Bulkley liquid model. Wall shear pressure and stream obstruction both ascent forcefully 

with expanding pivotal distance, and the ascent is considerably more articulated in the circumstance of a combining tightening 

corridor, as per their perceptions. Through a pivotally even, laminar, steady, one-layered blood stream in the corridor, Oghre and 

Okoronkwo (2016) concentrated on the effect of multi-unpredictable molded stenoses on non-Newtonian liquid. According to the 

Bingham plastic fluid equation, blood can flow above the yield stress value but cannot flow below it because it is a non 

Newtonian fluid. In a round tube with stenosis and dilatations, Prasad et al. (2016) concentrated on the progression of 

incompressible pair pressure liquid. There was a slight axially symmetric stenosis, according to their assumptions. The conditions 

for stream, speed, pressure drop, and wall shear pressure were additionally created in the wake of linearizing the stream 

conditions. Stream obstruction and strain drop both ascent with stenosis level however fall with post-stenotic dilatation, as per 

their discoveries. In 2016, Maiti explored the completely developed one-layered non-Newtonian blood move through a vein tube 

with post-stenotic dilatation and different stenoses. A pivotally symmetric yet radially non-symmetric numerous stenosed corridor 

was proposed for the consistent progression of blood. The impact of slip on consistent Herschel-Bulkley liquid course through a 

stenosed cylinder and its post-stenosis dilatation was concentrated by Raja et al. (2018). The stenosis is probably not too bad. 

Logical recipes for stream obstruction, speed, pressure drop, and wall shear pressure have been inferred. New to this study is 

Hussain et al. (2023) thought of computationally temperamental blood stream in a course with symmetric stenosis and aneurysm. 

Their examination can possibly propel clinical information by working on the recognition of stenotic-aneurysmal ailments and 

growing comprehension we might interpret the stenotic-aneurysmal conduit. 

 

II. MATHEMATICAL FORMULATION AND SOLUTION 

 

A condition that depicts the calculation of a wall can be composed as follows: 

𝑅

𝑅0
= [1 − 𝐵𝑖[𝑙𝑖

𝑠𝑖−1
(𝑧 − 𝛼𝑖) − (𝑧 − 𝛼𝑖)𝑠𝑖] 𝛼𝑖 ≤ 𝑧 ≤ 𝛽𝑖

1 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
]      (1) 
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The shape of the𝑖𝑡ℎ stenosis is determined by the parameter (𝑠𝑖 ≥ 2), which is related to the arterial radius 𝑅, the normal radius 

𝑅0, and the length of the 𝑖𝑡ℎstenosis is  𝑙𝑖. 

The distance from the beginning of the segment to the beginning of the 𝑖𝑡ℎ stenosis, denoted as 𝛼𝑖, is provided by 

𝛼𝑖 = ∑ (𝑑𝑗 + 𝑙𝑗)
𝑗
𝑗=1 − 𝑙𝑖           (2) 

The distance between the start of the section and the finish of the 𝑖𝑡ℎ stenosis, meant as, still up in the air by 

𝛽𝑖 = ∑ (𝑑𝑗 + 𝑙𝑗)𝑖
𝑗=1     (3) 

The starting point of the 𝑖𝑡ℎ stenosis is separated from the previous stenosis's end or, in the case where 𝑖 = 1, from the segment's 

beginning by the distance 𝑑𝑖. 

This is where the value of the constant 𝐵𝑖  is determined by  

𝐵𝑖 =
𝛿𝑖

𝑅0𝑙
𝑖

𝑠𝑖

𝑠𝑖

𝑠𝑖
𝑠𝑖−1

𝑠𝑖−1
     (4)  

The Ellis fluid model's constitutive equation is given by: 

𝜏 = 𝜏0 + 𝐾�̇�𝑛 + 𝜂�̇�            (5) 

Here's a breakdown of the terms:  

𝜏: Shear stress. 

𝜏0: Yield pressure, the base pressure expected to start stream. 

𝐾: Consistency index, a measure of the fluid's resistance to deformation. 

�̇�: Shear rate. 

𝑛: Flow behavior index, influencing the degree of shear-thinning or shear-thickening behavior. 

𝜂: Viscosity coefficient, representing the viscosity of the fluid. 

The value of 𝑛 can shift, and it decides the level of shear-diminishing or shear-thickening conduct in the liquid: 

𝑛 < 1: Shear-diminishing way of behaving (diminishing thickness with expanding shear rate). 

𝑛 = 1: Newtonian way of behaving (steady consistency paying little heed to shear rate). 

𝑛 > 1: Shear-thickening way of behaving (expanding consistency with expanding shear rate). 

Here we consider the case 𝑛 = 1 

𝜏 = 𝜏0 + 𝐾�̇� + 𝜂�̇�   

𝜏 = 𝜏0 + (𝐾 + 𝜂)�̇�  

𝑓(𝜏) = �̇� = −
𝑑𝑢

𝑑𝑟
=

𝜏−𝜏0

𝐾+𝜂
               (6) 

The flux 𝑄 that happens through the artery is determined by 

𝑄 = ∫ 2𝜋𝑟𝑢 𝑑𝑟
𝑅

0
     (7)  

Solving equation (7) and using the no-slip boundary condition  𝑢 = 0  when 𝑟 = 𝑅, we get 

𝑄 = ∫ 2𝜋𝑟𝑢 𝑑𝑟 = 2𝜋 [(
𝑟2

2
𝑢)

0

𝑅

− ∫
𝑑𝑢

𝑑𝑟

𝑅

0

𝑟2

2
𝑑𝑟]

𝑅

0
= 𝜋 ∫ 𝑟2 (−

𝑑𝑢

𝑑𝑟
)

𝑅

0
 𝑑𝑟  

𝑄 = 𝜋 ∫ 𝑟2 (−
𝑑𝑢

𝑑𝑟
)

𝑅

0
 𝑑𝑟   (8) 
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Applying (6) in (8) to obtain 

𝑄 = 𝜋 ∫ 𝑟2𝑓(𝜏)
𝑅

0
 𝑑𝑟   (9) 

It is possible to obtain the formulae for 𝜏  and 𝜏𝑅, which represent the shear at the wall, or when 𝑟 equals 𝑅. 

𝜏 = −
𝑟

2

𝑑𝑝

𝑑𝑧
, 𝜏𝑅 = −

𝑅

2

𝑑𝑝

𝑑𝑧
    (10) 

Here, 𝑝 represents the pressure. As a result of equations (8) and (9), we obtain 

𝜏

𝜏𝑅
=

𝑟

𝑅
⇒ 𝑟 =

𝑅

𝜏𝑅
𝜏 ⇒ 𝑑𝑟 =

𝑅

𝜏𝑅
𝑑𝜏  

𝑄 = 𝜋 ∫ 𝑟2𝑓(𝜏)
𝑅

0
 𝑑𝑟 = 𝜋 ∫ (

𝑅

𝜏𝑅
𝜏)

2

𝑓(𝜏)
𝜏𝑅

0
 

𝑅

𝜏𝑅
𝑑𝜏 = 𝜋 ∫ (

𝑅

𝜏𝑅
𝜏)

2

𝑓(𝜏)
𝜏𝑅

0
 

𝑅

𝜏𝑅
𝑑𝜏  

= 𝜋
𝑅3

𝜏𝑅
3 ∫ 𝜏2𝑓(𝜏)

𝜏𝑅

0
 𝑑𝜏    (11) 

The result can be obtained by substituting equation (6) and reconfiguring the equation. 

𝑄 = 𝜋
𝑅3

𝜏𝑅
3 ∫ 𝜏2 𝜏−𝜏0

𝐾+𝜂
𝑑𝜏 =

𝜋𝑅3

(𝐾+𝜂)𝜏𝑅
3 ∫ (𝜏3 − 𝜏2𝜏0) 𝑑𝜏 =

𝜋𝑅3

(𝐾+𝜂)𝜏𝑅
3 [

𝜏4

4
−

𝜏3

3
𝜏0]

0

𝜏𝑅𝜏𝑅

0
 

𝜏𝑅

0
   

𝑄 =
𝜋𝑅3

(𝐾+𝜂)𝜏𝑅
3 (

𝜏𝑅
4

4
−

𝜏𝑅
3

3
𝜏0) =

𝜋𝑅3𝜏𝑅
3

(𝐾+𝜂)𝜏𝑅
3 (

𝜏𝑅

4
−

𝜏0

3
) =

𝜋𝑅3

(𝐾+𝜂)
(

𝜏𝑅

4
−

𝜏0

3
)  

(
𝜏𝑅

4
−

𝜏0

3
) =

𝑄(𝐾+𝜂)

𝜋𝑅3 ⇒
𝜏𝑅

4
=

𝑄(𝐾+𝜂)

𝜋𝑅3 +
𝜏0

3
⇒ 𝜏𝑅 =

4𝑄(𝐾+𝜂)

𝜋𝑅3 +
4𝜏0

3
  

𝑄 =
𝜋𝑅3

(𝐾+𝜂)
(

𝜏𝑅

4
−

𝜏0

3
)    (12) 

 

 

From equation (11), we get 

𝜏𝑅 =
4𝑄(𝐾+𝜂)

𝜋𝑅3 +
4𝜏0

3
    (13) 

Putting the values of 𝜏𝑅 from equation (9) into the equation (12), we get 

−
𝑅

2

𝑑𝑝

𝑑𝑧
=

4𝑄(𝐾+𝜂)

𝜋𝑅3 +
4𝜏0

3
  

𝑑𝑝

𝑑𝑧
= −

2

𝑅
[

4𝑄(𝐾+𝜂)

𝜋𝑅3 +
4𝜏0

3
]    (14) 
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Equation (12) is integrated with respect to 𝑧, with the condition that 𝑝 equals 𝑝0 when 𝑧 equals zero and 𝑝 equals 𝑝1when 𝑧 equals 

𝑙. 

𝑝1 − 𝑝0 = −
8𝑄(𝐾+𝜂)

𝜋
∫

1

𝑅4

𝑙

0
𝑑𝑧 −

8𝜏0

3
∫

1

𝑅

𝑙

0
𝑑𝑧  

𝜆 =
𝑝1−𝑝0

𝑄
= −

8(𝐾+𝜂)

𝜋𝑅0
4 ∫ (

𝑅

𝑅0
)

−4𝑙

0
𝑑𝑧 −

8𝜏0

3𝑅0𝑄
∫ (

𝑅

𝑅0
)

−1𝑙

0
𝑑𝑧  

𝑔1 =
8(𝐾+𝜂)

𝜋𝑅0
4 , 𝑔2 =

8𝜏0

3𝑅0𝑄
   

𝜆 =
𝑝1−𝑝0

𝑄
= −𝑔1 ∫ (

𝑅

𝑅0
)

−4𝑙

0
𝑑𝑧 − 𝑔2 ∫ (

𝑅

𝑅0
)

−1𝑙

0
𝑑𝑧  

𝜆 =
𝑝1−𝑝0

𝑄
= −𝑔1 [∫ 𝑑𝑧

𝛼𝑗

0
+ ∑ ∫ (

𝑅

𝑅0
)

−4

𝑑𝑧 + ∑ ∫ 𝑑𝑧 + ∫ 𝑑𝑧
𝑙

𝛽𝑘

𝛼𝑗+1

𝛽𝑗

𝑚−1
𝑗=1

𝛽𝑗

𝛼𝑗

𝑚
𝑗=1 ] − 𝑔2 [∫ 𝑑𝑧

𝛼𝑗

0
+ ∑ ∫ (

𝑅

𝑅0
)

−1

𝑑𝑧 +
𝛽𝑗

𝛼𝑗

𝑚
𝑗=1

∑ ∫ 𝑑𝑧 + ∫ 𝑑𝑧
𝑙

𝛽𝑘

𝛼𝑗+1

𝛽𝑗

𝑚−1
𝑗=1 ]   

𝜆 =
𝑝1−𝑝0

𝑄
= −𝑔1 [∫ 𝑑𝑧

𝛼𝑗

0
+ ∑ ∫ (

𝑅

𝑅0
)

−4

𝑑𝑧 + ∑ ∫ 𝑑𝑧 + ∫ 𝑑𝑧
𝑙

𝛽𝑘

𝛼𝑗+1

𝛽𝑗

𝑚−1
𝑗=1

𝛽𝑗

𝛼𝑗

𝑚
𝑗=1 ] − 𝑔2 [∫ 𝑑𝑧

𝛼𝑗

0
+ ∑ ∫ (

𝑅

𝑅0
)

−1

𝑑𝑧 +
𝛽𝑗

𝛼𝑗

𝑚
𝑗=1

∑ ∫ 𝑑𝑧 + ∫ 𝑑𝑧
𝑙

𝛽𝑘

𝛼𝑗+1

𝛽𝑗

𝑚−1
𝑗=1 ]    

𝜆 =
𝑝1−𝑝0

𝑄
= −𝑔1 [∫ 𝑑𝑧

𝛼𝑗

0
+ ∑ ∫ (

𝑅

𝑅0
)

−4

𝑑𝑧 + ∑ ∫ 𝑑𝑧 + ∫ 𝑑𝑧
𝑙

𝛽𝑘

𝛼𝑗+1

𝛽𝑗

𝑚−1
𝑗=1

𝛽𝑗

𝛼𝑗

𝑚
𝑗=1 ] − 𝑔2 [∫ 𝑑𝑧

𝛼𝑗

0
+ ∑ ∫ (

𝑅

𝑅0
)

−1

𝑑𝑧 +
𝛽𝑗

𝛼𝑗

𝑚
𝑗=1

∑ ∫ 𝑑𝑧 + ∫ 𝑑𝑧
𝑙

𝛽𝑘

𝛼𝑗+1

𝛽𝑗

𝑚−1
𝑗=1 ]    

𝜆 = −𝑔1[∑ 𝑑𝑗 + 𝐼1
𝑚+1
𝑗=1 ] − 𝑔2[∑ 𝑑𝑗 + 𝐼2

𝑚+1
𝑗=1 ]  

𝐼1 = ∑ ∫ (
𝑅

𝑅0
)

−4

𝑑𝑧
𝛽𝑗

𝛼𝑗

𝑚+1
𝑗=1 , 𝐼2 = ∑ ∫ (

𝑅

𝑅0
)

−1

𝑑𝑧
𝛽𝑗

𝛼𝑗

𝑚+1
𝑗=1   

𝜆 = −(𝑔1 + 𝑔2) ∑ 𝑑𝑗 − (𝑔1𝐼1 + 𝑔2𝐼2)𝑚+1
𝑗=1   

If there is no abnormal segments 

𝜆𝑁 = −(𝑔1 + 𝑔2)𝑙  

Resistance to flow is given by  

𝜆1 =
𝜆

𝜆𝑁
=

∑ 𝑑𝑗
𝑚+1
𝑗=1

𝑙
+

(𝑔1𝐼1+𝑔2𝐼2)

(𝑔1+𝑔2)𝑙 
    (15) 

Where a stenoses system's walls extend the farthest into the lumen is where the shear stress on those walls is greatest. The point 

with the highest value of 𝛿𝑖 is referred to as 𝛿𝑚. After that, using equation (12). 
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The following expression represents the proportion that lies between the wall shear stress at any given site (𝜏𝑅) and the wall shear 

stress in a normal artery (𝜏𝑁). 

𝜏1 =
𝜏𝑅

𝜏𝑁
=

𝑔2+𝑔1(
𝑅

𝑅0
)

−3

𝑔1+𝑔2
    (16) 

It is possible to determine the ratio of the maximum wall shear stress to the normal wall shear stress by utilizing the equation (15) 

and substituting 𝑅 = 𝑅0 − 𝛿𝑚. This equation allows us to obtain the ratio. 

(𝜏1)𝑚𝑎𝑥 =
𝜏𝑅

𝜏𝑁
=

𝑔2+𝑔1(
𝑅0−𝛿𝑚

𝑅0
)

−3

𝑔1+𝑔2
=

𝑔2+𝑔1(1−
𝛿𝑚
𝑅0

)
−3

𝑔1+𝑔2
    (17) 

For 𝑖 = 2, we get  

𝑅

𝑅0
= [1 − 𝐵1[𝑙𝑖

𝑠2−1(𝑧 − 𝛼2) − (𝑧 − 𝛼2)𝑠2] 𝛼2 ≤ 𝑧 ≤ 𝛽2

1 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
]         (18) 

𝛼2 = ∑ (𝑑𝑗 + 𝑙𝑗)2
𝑗=1 − 𝑙2 = 𝑑1 + 𝑙1 + 𝑑2 + 𝑙2 − 𝑙2 = 𝑑1 + 𝑑2 + 𝑙1      (19) 

𝛽2 = ∑ (𝑑𝑗 + 𝑙𝑗) =2
𝑗=1 𝑑1 + 𝑙1 + 𝑑2 + 𝑙2 = 𝑑1 + 𝑑2 + 𝑙1 + 𝑙2       (20) 

𝐵𝑖 =
𝛿2

𝑅0𝑙2
𝑠2

𝑠2

𝑠2
𝑠2−1   

𝑠2−1
           (21) 

 

 

 

 

III. RESULTS AND DISCUSSION 
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 This graph (1) illustrates the three-dimensional change in flow resistance that occurs as a result of stenosis and dilatation length. It 

also illustrates the various values of yield stress on display. A decrease in flow resistance appears to be a direct consequence of an 

increase in yield stress, as indicated by the graph. When different amounts of volumetric flow rate are used, the three-dimensional 

change in flow resistance that is associated with stenosis and dilatation length is depicted in graph (2). This graph reveals that 

there is a correlation between the increase in volumetric flow rate and the increase in resistance to flow. As the viscosity 

coefficient is varied, graph (3) shows the three-dimensional fluctuation in flow resistance with respect to stenosis and dilation 

length. Noticeably, the effect of the viscosity coefficient on flow resistance is somewhat reduced in this graph. The graph (4) 

illustrates the three-dimensional changes in resistance to flow with regards to stenosis and dilatation length, for various values of 

the shape parameter. The graph demonstrates that when the form parameter increases, the resistance to flow decreases. For 

different yield stress values, the variation of wall shear stress with axial distance is shown in graph (5). The graph clearly shows 

that the wall shear stress grows as the yield stress does. A variety of dilated height values are depicted in graph (6), which shows 

how the wall shear stress varies with axial distance. It is clear from looking at this graph that the shear force on the wall decreases 

as the dilated height increases. 

 

IV. CONCLUDING REMARKS 

Using Ellis fluid biorheology to characterize the hemodynamics of tapering arterial stenosis with dilatation is an important step 

in understanding the complex dynamics of blood flow in vascular systems. The typical hemodynamic patterns within the 

circulatory system are greatly disrupted by arterial stenosis, in which blood vessels narrow, and subsequent dilatation, in which 

arteries widen. Recognizing that blood is not Newtonian and has its own set of rheological characteristics, this study takes a 

more subtle approach by using Ellis fluid as a model for blood rheology. This study has important implications for clinical 

practice and the development of therapies to treat vascular diseases because it investigates the hemodynamic complexities of 

tapered stenosis with dilatation, which improves our knowledge of the complicated fluid dynamics involved. The significance 

of clarifying the behavior of blood under conditions mimicking tapered arterial stenosis with dilatation is emphasized in this 

introduction, which sets the stage for a thorough examination of the study's results. 

V. FUTURE POSSIBILITY OF RESEARCH 

There is great potential for future study to further our understanding of vascular pathology through the hemodynamic assessment 

of tapering arterial stenosis with dilatation employing Ellis fluid biorheology. More complicated depictions of blood flow 

behavior in such geometries can be obtained by exploring advanced computer modeling techniques, such as fluid-structure 

interaction models. A combination of patient-specific modeling and integration of in vivo and in vitro experiments can improve 
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the therapeutic relevance of findings. The construction of tailored treatment plans could be aided by investigating the 

consequences of various geometric modifications, discovering hemodynamic biomarkers, and performing therapeutic intervention 

evaluations. Further information on how to improve patient outcomes could be gained from long-term research that investigate 

the consequences and prognosis of hemodynamic changes in tapering arterial stenosis as dilatation is implemented. Innovative 

research at the interface of fluid dynamics and biorheology can spark collaborative efforts across disciplines, bringing together 

cardiology, bioengineering, and biomechanics experts. This research could lead to diagnostic and therapeutic advances. 
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