JETIR.ORG
 ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

 JDURNAL DF EMERGING TECHNDLDGIES AND INNDVATIVE RESEARCH (JETIR)An International Scholarly Dpen Access, Peer-reviewed, Refereed Jaurnal

An Optimization Technique for Solving MultiObjective Linear Fractional Programming Problem

Huma Akhtar

Assistant Professor and Head, Department of Mathematics, Govt. P.G. College Narsinghgarh, Rajgarh, India,

Abstract

This paper introduces a method for transforming a multi-objective linear fractional programming problem (MOLFPP) into a single-objective linear fractional programming problem (SOLFPP) using median of maximin and minimax techniques. The efficacy of the proposed approach is demonstrated through a numerical illustration.

Keywords: - Multi objectives linear fractional programming problem (MOLFPP), median of maximin and minimax.

1. Introduction: Linear Fractional Programming pertains to a category of mathematical optimization problems characterized by linear relationships among variables. These problems necessitate linear constraints and involve optimizing an objective function expressed as a ratio of two linear functions, such as profit/cost, output/employee etc.. This methodology finds application across various domains including production planning, financial analysis, corporate planning, healthcare management, hospital planning etc. A survey of multi-criteria linear programming issues (MCLP) is presented in [3], proposing an approach to construct multi-criteria functions within constraints ensuring that the optimal value of each problem exceeds zero. Sulaiman and Sadiq investigated the multi-criteria function using mean and median methodologies [5]. Additionally, Sulaiman and Salih examined the multi-criteria fractional programming problem employing mean and median techniques [6]. Nahar Samsun et al. advocated a novel geometric averaging technique for optimizing the objective function, consolidating multiple objective functions into a single one [2]. In 2016, Sulaiman et al. proposed a fresh technique utilizing the Harmonic mean of objective function values to tackle multi-criteria linear programming issues [4].Recently in 2021 Mojtaba Borza \& Azmin Sham Rambely [1] Proposed a new method to solve multi- objective Linear fractional problems.

To further expand upon this research, we have introduced the concept of Multi-Objective Linear Fractional Programming Problems (MOLFPP) and proposed an algorithm for resolving linear fractional programming issues pertaining to multi-objective functions. Our method leverages the median of maximin and minimax techniques. We substantiate the effectiveness of our approach through a numerical demonstration.

2. Mathematical form of LFPP:

The mathematical form of LFP problem is given as follows:

$$
\operatorname{Max.} Z=\frac{\left(c^{T} X+\alpha\right)}{\left(d^{T} X+\beta\right)}
$$

Subject to:

$$
\begin{gathered}
A X \leq b \\
X \geq 0
\end{gathered}
$$

where
i) $\quad X, \mathrm{c}$ and d are $\mathrm{n} \times 1$ vector,
ii) $\quad b$ is an $m \times 1$ vector,
iii) $\quad c^{T}, d^{T}$ denote transpose of vectors,
iv) $\quad \mathrm{A}$ is an $\mathrm{m} \times \mathrm{n}$ matrix and
v) $\quad \alpha, \beta$ are scalars.

3. Multi-Objective Linear Fractional Programming Problem:

The mathematical form of MOLFPP is given as follows:

Max. $z_{1}=\frac{c_{1}{ }^{T} \mathrm{X}+\alpha_{1}}{\mathrm{~d}_{1}{ }^{T} \mathrm{X}+\beta_{1}}$
Max. $Z_{2}=\frac{c_{2}{ }^{T} \mathrm{X}+\alpha_{2}}{\mathrm{~d}_{2}{ }^{T} \mathrm{X}+\beta_{2}}$

Max. $z_{r}=\frac{c_{r}{ }^{T} \mathrm{X}+\alpha_{\mathrm{r}}}{\mathrm{d}_{\mathrm{r}}{ }^{T} \mathrm{X}+\beta_{\mathrm{r}}}$
Min. $z_{r+1}=\frac{c_{r+1}{ }^{T} \mathrm{X}+\alpha_{\mathrm{r}+1}}{\mathrm{~d}_{\mathrm{r}+1}{ }^{T} \mathrm{X}+\beta_{\mathrm{r}+1}}$
-
$\operatorname{Min} . Z_{s}=\frac{c_{s}{ }^{T} \mathrm{X}+\alpha_{s}}{\mathrm{~d}_{\mathrm{s}}{ }^{T} \mathrm{X}+\beta_{s}}$
subject to:

$$
\begin{gather*}
A \mathrm{X} \leq \mathrm{b} \tag{3.2}\\
\mathrm{X} \geq 0 \tag{3.3}
\end{gather*}
$$

where
i) b is an m-dimensional vector of constants,
ii) $\quad \mathrm{X}$ is an n -dimensional column vector of decision variables,
iii) r is number of objective functions to be maximized,
iv) s is the number of objective functions to be maximized and minimized
v) (s-r) is the number of objective functions that is minimized.
vi) $\quad A$ is an $\mathrm{m} \times \mathrm{n}$ matrix of constants,
vii) $\quad c_{i}, d_{i}$ (where $i=1,2, \ldots, \mathrm{~s}$) are n -dimensional vectors of constants and
viii) $\quad \alpha_{i}, \beta_{i}($ where $i=1,2, \ldots, \mathrm{~s})$ are scalars.

All vectors are assumed to be column vectors unless transposed(T)

4. Method for Solving MOLFPP:

4.1 Median of maximin and minimax Technique:

Step1: First, we solve each objective function by using Kanti Swarup's Fractional Algorithm (KSFA) [7].
Step2: Next, we assign a name to the optimum value of each objective function Max $z_{i} \operatorname{say} \varphi_{i}, i=1,2, \ldots \mathrm{r}$ and $\operatorname{Min} z_{i}$ say $\varphi_{i}, i=\mathrm{r}+1, \mathrm{r}+2, \ldots, \mathrm{~s}$.

Step3: Choose $m_{1}=\min \left\{\varphi_{i}\right\}, \forall i=1,2, \ldots, \mathrm{r}$ and $m_{2}=\max \left\{\varphi_{i}\right\}, \forall i=\mathrm{r}+1, \ldots, \mathrm{~s}$ then calculate

$$
M d=\operatorname{Median}\left(\left|m_{j}\right|\right), \quad j=1,2
$$

Step4: Optimize the combined objective function by using KSFA[7] under the same constraints (3.2) and (3.3) as follows:

$$
\begin{equation*}
\operatorname{Max.} \mathrm{Z}=\frac{\left(\sum_{i=1}^{r} \operatorname{Max} z_{i}-\sum_{i=r+1}^{S} \operatorname{Min} z_{i}\right)}{M d} \tag{4.1}
\end{equation*}
$$

5. Numerical Example:

5.1. Example.

$\operatorname{Max.} Z_{1}=\frac{3 x_{1}-2 x_{2}}{x_{1}+x_{2}+1}$
Max. $Z_{2}=\frac{9 x_{1}+3 x_{2}}{x_{1}+x_{2}+1}$
Max. $Z_{3}=\frac{3 x_{1}-5 x_{2}}{2 x_{1}+2 x_{2}+2}$
Min. $z_{4}=\frac{-6 x_{1}+2 x_{2}}{2 x_{1}+2 x_{2}+2}$
Min. $z_{5}=\frac{-3 x_{1}-x_{2}}{x_{1}+x_{2}+1}$
Subject to:

$$
x_{1}+x_{2} \leq 2, \quad 9 x_{1}+x_{2} \leq 9, \quad x_{1}, x_{2} \geq 0
$$

Solution: After finding the value of each of individual objective functions by using KSFA[7], the results are given below:

Table 1

\boldsymbol{i}	$\boldsymbol{\varphi}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{m}_{\mathbf{1}}$	$\boldsymbol{m}_{\mathbf{2}}$	\boldsymbol{y}
$\boldsymbol{M d} \boldsymbol{d}$					
1	$3 / 2$	$(1,0)$			
	$9 / 2$	$(1,0)$			$9 / 8$
3	$3 / 4$	$(1,0)$			
4	$-3 / 2$	$(1,0)$		$-3 / 2$	
5	$-3 / 2$	$(1,0)$			

Formulate the combine objective function as follows:
Max. $\mathrm{Z}=\frac{\left(\sum_{i=1}^{r} \operatorname{Max} z_{i}-\sum_{i=r+1}^{S} \operatorname{Min} z_{i}\right)}{M d} \quad$ where $\quad \operatorname{Md}=\operatorname{Median}\left(\left|m_{j}\right|\right), \quad j=1,2$
Max. $Z=\frac{312 x_{1}-24 x_{2}}{18 x_{1}+18 x_{2}+18}$
subject to:

$$
x_{1}+x_{2} \leq 2, \quad 9 x_{1}+x_{2} \leq 9, \quad x_{1}, x_{2} \geq 0
$$

Hence the optimal solution is
Max. $\mathrm{Z}=8.67, \quad x_{1}=1, x_{2}=0$.

8. References:

[1]. Borza Mojtaba \& Rambely Azim Sham "A New Method to Solve Multi-Objective Linear Fractional Problems", Fuzzy Information and Engineering, Vol. 13, No. 3, 2021, 323-334 https://doi.org/10.1080/16168658.2021.1938868.
[2]. Nahar Samsun and Alim Md. Abdul, "A new geometric average technique to solve multi-objective linear fractional programming problem and comparison with new arithmetic average technique", IOSR Journal of Mathematics, Vol. 13, No. 3, PP. 39-52, 2017.
[3]. Sen. Chandra, A new approach for multi-objective rural development planning, The Indian Economic Journal, Vol. 30, No. 4, PP. 91-96, 1983.
[4]. Sulaiman, N.A. and Mustafa R.B.,"Using harmonic mean to solve multi-objective linear programming problems", American Journal of Operations Research, Vol. 6, No. 1, PP. 25-30, 2016.
[5]. Sulaiman N.A. and Sadiq G.W., "Solving the linear multi-objective programming problems; using mean and median values", Al-Rafiden Journal of Computer Sciences and Mathematical, University of Mosul, Vol. 3, No. 1, PP. 69-83, 2006.
[6]. Sulaiman, N.A. \& salih A. D., "Using mean and median values to solve linear fractional multi-objective programming problem", Zanco Journal for Pure and Applied Science, Salahaddin-Erbil University, Vol. 22, No.5, 2010.
[7]. Swarup Kanti, "Linear Fractional Functionals Programming", Operations Research, Vol. 13, Issue 6 (Nov.-Dec. 1965), PP. 1029-1036.

