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Abstract :  Crowd analysis, especially the precise counting of individuals, is becoming crucial in fields like urban planning, 

transportation, and event management. The two main challenges are: accurately counting individuals in varying crowd sizes and 

monitoring crowd density. To address the above challenges, we have proposed the Crowd Counting Stability Analyzer (CCSA) 

architecture to enable crowd counting and stability analysis in a density map. The CCSA architecture is designed in two phases (i) 

Crowd Counting and (ii) Stability Analyzer. The crowd counting uses a Unet Generative Adversarial Network (UGAN), 

composed of Uskip Connection, Unet Generator, and Discriminator. The crowd stability analyzer uses a Convolutional Neural 

Network (CNN) to classify the crowd density as very low, low, moderate, high, and very high in a density map. Additionally, to 

present crowd count details and their corresponding categories, we have constructed a new dataset known as ‘DataC’ having 48 

images with 12 distinct categories. The observation is evaluated using Mean Square Error (MSE) and Mean Absolute Error 

(MAE) metrics on diverse scenes and densities in the ShanghaiTech (A, B), UCF CC 50, and DataC datasets. The experimental 

results show the model’s effectiveness over MSGAN with the MAE and MSE metrics on the above datasets. 

 

IndexTerms - Unet Generative Adversarial Network (UGAN), CNN, USkip Connection, Density Map, Crowd Stability 

I. INTRODUCTION 

 

In intelligent video surveillance, crowd analysis techniques such as crowd counting and crowd stability are crucial for 

effective crowd management. These techniques are vital in various applications such as public space planning, smart city 

governance, traffic control, automated transport systems, and real-time disaster prevention. Crowd counting involves estimating 

the number of people in different scenes and it is conducted using detection, regression, and density estimation methods [1]. In 

density estimation methods, challenges in crowd counting such as low accuracy are addressed by utilizing the spatial structures 

of the crowd. This enhanced accuracy provides important insights into crowd dynamics. Crowd stability refers to the ability of 

the crowd to maintain safe and orderly movement during disasters, such as fire accidents, terror attacks, and earthquakes. It 

provides valuable insights by monitoring potential changes in the crowd gathering patterns and crowd densities [2]. The survey 

on crowd counting methods in computer vision, including architectures, learning methods, and evaluation metrics, are presented 

in [3], and the survey on Convolutional Neural Network (CNN)-based methods for crowd behavior analysis, covering its 

architectures, optimization methods, datasets, and temporal data approaches, are discussed in [4].  

 

A. Motivations: 

Enhanced crowd counting and stability analyzers are essential for crowd management and disaster prevention in applications 

such as event management, transportation hubs, and public spaces. 

 

B. Contributions:  

The main contributions of this work are to design the architecture of Crowd Counting Stability Analyzer (CCSA) to 

accurately count individuals and to assess Crowd Stability (CS) using density maps in the crowd.  

(i) The CCSA is developed in two phases namely (1) Crowd Counting to accurately estimate the number of people and (2) 

Stability Analyzer to assess the potential risk level in the crowd.  

(ii) The Crowd Counting incorporates UGAN, consisting of a Uskip Connection and a Unet Generator, with a discriminator. 

The Uskip Connection includes two passes namely (i) forward pass and (ii) backward pass which preserves high-resolution and 

spatial features.  

(iii) The Uskip Connection is designed to interpret latent representations, to solve image segmentation challenges while 

preserving the same dimensions for both input and output.  

(iv) The Unet Generator produces high-quality density maps, while the discriminator differentiates real and synthetic images, 

contributing to efficient crowd management. 
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C. Organizations of the Work: 

The paper is organized as follows. In section II, the Related work is discussed in brief, In section III, the CCSA 

Architecture is explained with background, problem definition, and architecture. In section IV, the CCSA Algorithm, 

Flowchart, Evaluation metrics, and Performance metrics are reviewed. In sections V and VI, Experimental Results, and Results 

and Discussions are analyzed. The conclusion is presented in section VII. 

 

II. RELATED WORK: 

In Table 1, a literature survey of related papers is presented. Gaewei et al., [5] have designed a Cross-scale convolution 

Spatial Generative Adversarial Network (CSGAN) to estimate the density of crowd images. The merits are that it uses loss 

functions such as adversarial, perceptual, and consistency to enhance counting accuracy. However, challenges like crowd density 

and path movements still need to be addressed in this work. Xinyue et al., [6] have combined density awareness and background 

segmentation to explore crowd enumeration with multitask learning methods. The drawback of the method is that dense dataset 

performance is not explored. Weixing et al., [7] have designed a dilated deep convolutional neural network, incorporating filters 

that utilize dilated convolution to enhance the accuracy of crowd counting. The dense datasets such as UCF CC 50 are not 

trained in this work to enhance the accuracy. 

 

Aichun et al., [8] have designed a Cascaded Attentional Generative Adversarial Network (CAGAN) using two models 

namely an attentional generator and a cascaded attentional discriminator. Dense and sparse datasets demonstrate better accuracy, 

while baseline methods like Multicolumn Convolutional Neural Network (MCNN) have not been employed for attentional 

generators in this work. Yuan et al., [9] have addressed challenges in saliency detection with a Linear Feedback Control System 

(LFCS), a semi-supervised learning framework. The LFCS optimizes saliency maps by integrating multiple cues and iterative 

convergence. It offers precise saliency estimation, however, achieving effective saliency detection in complex scenes remains a 

challenge. Xinghao et al., [10] have proposed an encoder-decoder Convolution Neural Network (CNN) to solve the challenges 

like multifaceted backgrounds, illusory perspective, and occlusion. The cross-scene datasets are accurately estimated using patch 

absolute error, but this work does not enhance the accuracy of detecting groups in close proximity or in cases of shrinking head 

size. 

 

Wang et al., [11] have addressed challenges in crowd counting such as data and methodology using GCC dataset and 

domain adaptation. The challenges in data are addressed using the GCC dataset consisting of crowd images. To enhance crowd 

analysis, domain adaptation, and supervised data are utilized. Compared to the conventional approach the domain adaptation 

reduces the tedious labeling efforts. However, this work does not focus on improving domain-adaptive crowd analysis or the 

generation of related data. Qingg et al., [12] have developed an algorithm Count Forest by combining Convolutional Neural 

Networks (CNN) and Deep Regression. The merit is that algorithm provides high accuracy with precision and real time analysis. 

The adaptive scene transformation is not implemented in this work to improve accuracy. Jian et al., [13] have designed a 

decoupled two-stage method to address challenges in crowd counting, localization, and artificial augmentation. The Decoupled 

two-stage crowd counting consists of Probability Map Regression (PMR) and Count Map Regression (CMR). The probability 

map regression needs to be implemented in this work. Reem et al., [14] have presented a crowd counting architecture that 

incorporates Bayesian Loss (BL). This approach involves point instruction and the BL loss operation, which encompasses the 

density map, the loss function, and the network structure. 

 

Guoshuai et al., [15] have implemented Span Architecture (SA) for addressing large-scale variations in crowd images, 

focusing on the construction of inter-range characteristics using deep CNNs. The model exhibits good performance in dense and 

medium-density scenes, but the accuracy of counting in sparse scenes needs to be improved. Saqib et al., [16] have proposed a 

Motion-Guided Filter (MGF) to enhance the overall detection accuracy using spatial and temporal information. The merits are 

that accurate monitoring and evaluation are integrated for enhanced crowd scene interpretation. Wang et al., [17] have examined 

fine-grained crowd counting to explore low-level behaviour of individuals like standing/sitting, towards or away, and violent or 

nonviolent behaviour. The overall counting performance across all scenarios has been improved but the classification is limited 

only to four categories. 

 

Wan et al., [18] have proposed SGANet, combining the Inception module, Inception-v3, and curriculum loss to address 

the scale variance in crowd images, while achieving a high counting accuracy. Zhou et al., [19] have designed a DPDNet, an 

RGB-D crowd counting employing density map guided detection to increase detection. Kong et al., [20] have presented a 

cascaded crowd counting that employs an attention mechanism and automatic scale-adaptive approach, to achieve efficient 

crowd counting. Sindagi et al., [21] have proposed a crowd counting technique by using a residual error prediction and a 

confusion judgment grading system. Wang et al., [22] have employed cross-dimensional urban forecasts and domain adaptation, 

in designing ST-DAAN, a transfer learning framework, which is used to estimate non-rural crowd counts. Gao et al., [23] have 

employed GAN with multilevel feature aware transformation and structured density map alignment for domain-invariant crowd 

counting. Tian et al., [24] have proposed PaDNet, a pan-density crowd counting integrating Density-Aware Network, Feature 

Enhancement Layer, and Feature Fusion Network, to achieve robust detection in varying density crowd scenarios. 
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TABLE I: LITERATURE SURVEY 

Authors/ Year/ Model/ Con- 
Cept 

Algorithm/ Implementa- 
tion/ Dataset 

Performance/ Advantages Future Directions/ Disadvantages 

YuanZhou et al., [1], Multi 
Scale Generative Adversarial 

Network(MS-GAN), 2020 

Generative adversarial 
network 

The density map is refined by 
Adversarial training 

Crowd estimation networks like 
MCNN, and CSRNet are not 

experimented as Generator 

Rongyong et al., [2], Crowd 
stability analysis model 

(CSAM), 2021 

Improved MCNN Precise crowd stability detec- 
Tion 

Monitoring factors like velocity  and 
panic is not explored in pedestrian 

Gaewei et al., [5], Cross-scale 
convolution spatial genera- 

tive adversarial network (CS- 

GAN), 2020 

GAN-based architecture Enhance counting accuracy Crowd density and crowd path move- 
ments still need to be addressed. 

Xinyue et  al.,  [6],  Density 
awareness and background 

segmentation, 2021 

Background 
segmentation and 

density classification 

Results are better with multi- 
task learning methods 

Dense dataset performance is not ex- 
plored. 

Weixing et al., [7], Pyramid 
dilated deep convolutional 

neural network(PDD CNN), 

2022 

Dot-Annotation for den- 
sity map 

Prediction of crowd count is 
Better 

UCFF CC 50 are not trained for accu- 
rate crowd count prediction. 

Jian et  al.,[13],  Decoupled 
two-stage crowd counting 

2021 

The   Probability   Map 
Regression (PMR) 

and Count Map 

Regression (CMR) 

are sub- modules. 

Decoupled  two-stage  count- 
ing (D2CNet) is enhanced to 

provide a better output model 

The probability map regression needs 
to be implemented. 

Wan et al., [17], Fine-Grained 
Counting, 2021 

Density and  segmenta- 
tion module 

The overall counting perfor- 
mance across all scenarios 

has been improved. 

The crowd is classified into four cate- 
gories only in this work 

Proposed Model, CCSA, 
2023 

Unet Generative adver- 
sarial network 

Preserved data during density 
map generation and build ac- 

curate maps 

The model to be  experimented  with 
video datasets 

 

 

Zhou et al., [25] have developed a linear feedback control system by incorporating a semi-supervised classifier for 

saliency detection. The model iteratively optimizes saliency maps using multiple cues and image features. Wang et al., [26] have 

proposed a congestion detection technique using a deep network in Vehicular Management, with multiple fusion networks. Xu et 

al., [27] have introduced the Depth Information Guided Crowd Counting (DigCrowd) method. This approach focuses on 

analyzing Extended Depth of Field (EDOF) scenes by effectively mapping crowd density and counting individuals in areas close 

to the viewer. Alashban et al., [28] have employed Single-Convolutional Neural Network (S-CNN3) with three Layers, for 

estimating crowd density, with high accuracy and efficiency. Zhang et al., [29] have achieved crowd counting accuracy in dense 

scenarios by utilizing a fully Convolutional Neural Network (CNN) and a Peak Confidence Map (PCM). Sharma et al., [30] have 

explored CNN-based architecture by integrating a scale-aware attention module and motion map-based features for analyzing 

crowd density and behavior. Jing et al., [31] have improved the YOLOX-nano model by integrating a Ghost Module to enhance 

lightweight vehicle detection. Cao et al., [32] have proposed YOLOv4 for enhanced traffic sign detection which surpasses 

existing object detection algorithms. Qingrong et al., [33] have presented the TCN-LSTM model to capture the patterns in traffic 

flow. The advantage of the model lies in its forecasting abilities, however, its effectiveness in the context of traffic collisions has 

not been explored in this work. Bai et al., [34] have designed the DUCAF-Net for drone image object detection with enhanced 

accuracy but have not explored its real-time processing capabilities. 

 

III. ARCHITECTURE 

A. Background 

The background of the work, problem definition, and CCSA architectures are explained in this section. 

Zhou et al., [1] have designed the architecture Multi Scale Generative Adversarial Network (MSGAN) to address the challenges 

of occlusion, perspective distortion, and visual similarity between pedestrian and background elements. MSGAN is designed in 

two phases namely (i) Generator and (ii) Discriminator. The generator is designed to build density maps for crowd images. It 

exhibits scale variations by combining, global and local features from multiple receptive fields and hierarchical convolution 

layers. Multicolumn CNN (MCNN) serves as a baseline for the generator to extract multiscale features with large-scale 

variation. The merit is that the generator detects individuals at different scales within the crowd. 

 

The adversarial network serves as the baseline for the discriminator which obtains the density maps and its corresponding crowd 

images from the generator. The generator and discriminator in a GAN engage in a min-max game, as outlined in game theory. 

Additionally, the discriminator employs an adversarial network to distinguish between real and fake images, as demonstrated in 

Equation (1, 2, 3). 
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In this min and max game, the generator (G) is trained with crowd images (IC) to produce the high-quality crowd density 

maps. On the other hand, the discriminator (D) utilizes the ground truth information to distinguish between real density maps 

(IM) and the density maps generated by G (G(IC). The main objective is to train G to produce realistic and accurate density 

representations so that D cannot differentiate between the generated and the actual density maps. 

 

B. Problem Definition 

The proposed Crowd Counting Stability Analysis (CCSA) architecture aims to accurately estimate crowd counts and 

detect potential instabilities by utilizing spatial data, such as density maps. 

 

C. Objectives 

(i) To develop the Crowd Counting Stability Analyzer (CCSA) that combines crowd counting and crowd stability in density   

     maps.  

(ii) To design the crowd-counting by integrating Uskip Connection, Unet Generator and a Discriminator, where Uskip  

      Connections preserve spatial information during image segmentation.  

(iii) To construct a crowd stability analyzer to classify crowd count into five categories namely very low, low, moderate, high,  

       and very high based on density values. 

 

D. CCSA Architecture 

The CCSA architecture is composed of UGAN and CNN. The UGAN is developed into three phases namely (i) Uskip 

Connection, (ii) Unet Generator, (iii) Discriminator, and CNN is used in Crowd Stability (CS) as shown in Fig. 1. The crowd 

counting generally focuses on generating density maps and estimating the number of individuals in a crowd. In this proposed 

architecture additionally, a new model named Crowd Stability (CS) has been integrated to enhance this process. The CS model 

utilizes a density map to categorize them into five categories very low, low, moderate, high, and very high based on density 

values. 

 

1) Uskip Connection: The Uskip Connection is designed with two passes viz., forward and backward pass. These passes, 

comprising three distinct blocks, enable the flow of information between the downsampling and upsampling operations. The 

forward pass is organized as three blocks the down block, the submodule block, and the up block. The down block performs a 

downsampling operation on the input. The submodule block forms the inner blocks which recursively contain its forward pass 

blocks. The up block implements an upsampling operation on the concatenated input. The forward pass achieves an upsampling 

operation on the concatenated input. It captures the context, and the spatial information and also enables the learned features 

that are specific to the segmentation task. 

 

The backward pass is also organized as three blocks : up block, the submodule block, and the down block. The up block 

achieves a backward upsampling operation on the input. The submodule block recursively contains its backward pass blocks. 

The down block implements a backward downsampling operation on the concatenated input. 

 

2) Unet Generator: The architecture of the Unet Generator, utilized for image segmentation tasks is illustrated in Table II. The 

components of the Unet Generator are skip connection blocks, forward pass, and weights functions. The Uskip Connection 

blocks construct the unet structure [31] by combining the outputs of each block with the corresponding upsampling block. The 

forward pass describes the flow of data that converts the input tensor into the output tensor. The weight function initializes the 

weights of the convolutional and batch normalization layers. It is implemented with Pytorch and is used in many applications. 

The Unet Generator model enhances the density map and crowd counting accuracy. The Unet Generator Loss (gl) measures 

generator’s effectiveness in fooling the discriminator through realistic images as shown in equation (4). 

 

 

 

 

where m denotes the number of samples, Z i denotes the random noise vector sampled from a prior distribution D(G(Zi )) 

represents the discriminator output, provided with a density map constructed by the generator. 

 

3) Discriminator: The discriminator model consists of four convolutional layers, one fully connected layer, 4*4 kernel, stride 

2, leaky or sigmoid activations, and batch normalization as shown in Table III. In the convolution layer, LeakyReLU is used as 

the activation function, while the sigmoid function is employed in the fully connected layer. The two data instances, namely real 

and fake are used to train the discriminator. In fake data instances, the density map is obtained from the generator, and in real 

data instances, a density map is obtained from real crowd images. The discriminator loss (dl) is used to classify the density map 

as real or fake. It is evaluated as given in equation (5) where Xi represents real crowd samples from the training dataset. The 

logarithm of the discriminator’s prediction for real data D(X(i )), enables the discriminator to correctly classify real data as real. 

The logarithm of 1 - D(G(Zi )), enables the discriminator to classify generated data as fake (close to 0). 
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FIG. 1: ARCHITECTURE OF CROWD COUNTING AND STABILITY ANALYZER 

 

 

 
TABLE II: Unet Generative Architecture Details 

 
Layer Input Size Output Size Details 

Downconv1 H × W × Cin 
H W 

2 × 2    × 64 Conv2d (4x4, stride 2), LeakyReLU, Batch- 
Norm2d 

Downconv2 
H W 

2 × 2    × 64 
H W 

4 × 4    × 64 Conv2d (4x4, stride 2), LeakyReLU, Batch- 
Norm2d 

Downconv3 
H W 

4 × 4    × 64 
H W 

8 × 8    × 64 Conv2d (4x4, stride 2), LeakyReLU, Batch- 
Norm2d 

Downconv4 
H W 

8 × 8    × 64 
H W 

16 × 16  × 64 Conv2d (4x4, stride 2), LeakyReLU, Batch- 
Norm2d 

Downconv5 
H W 

16 × 16  × 64 
H W 

32 × 32  × 64 Conv2d (4x4, stride 2), LeakyReLU, Batch- 
Norm2d 

Downconv6 
H W 

32 × 32  × 64 
H W 

64 × 64  × 64 Conv2d (4x4, stride 2), LeakyReLU, Batch- 
Norm2d 

Upconv5 
H W 

32 × 32  × 64 
H W 

16 × 16  × 64 ConvTranspose2d (4x4, stride 2), ReLU, Batch- 
Norm2d 

Skip Connection 
H W 

16 × 16 ×128 
H W 

16 × 16 ×128 Concatenate features from Upconv5 and Down- 
conv5 

Upconv4 
H W 

16 × 16 ×128 
H W 

8 × 8    × 64 ConvTranspose2d (4x4, stride 2), ReLU, Batch- 
Norm2d 

Skip Connection 
H W 

8 × 8 × 128 
H W 

8 × 8 × 128 Concatenate features from Upconv4 and Down- 
conv4 

Upconv3 
H W 

8 × 8 × 128 
H W 

4 × 4    × 64 ConvTranspose2d (4x4, stride 2), ReLU, Batch- 
Norm2d 

Skip Connection 
H W 

4 × 4 × 128 
H W 

4 × 4 × 128 Concatenate features from Upconv3 and Down- 
conv3 

Upconv2 
H W 

4 × 4 × 128 
H W 

2 × 2    × 64 ConvTranspose2d (4x4, stride 2), ReLU, Batch- 
Norm2d 

Skip Connection 
H W 

2 × 2 × 128 
H W 

2 × 2 × 128 Concatenate features from Upconv2 and Down- 
conv2 

Upconv1 
H W 

2 × 2 × 128 H ×W ×Cout ConvTranspose2d (4x4, stride 2), ReLU, Batch- 
Norm2d 

Skip Connection H × W × 128 H ×W ×Cout Concatenate features from Upconv1 and Down- 
conv1 

 

 

 

 

4) CCN: Crowd Stability (CS): A Convolutional Neural Network (CNN) is defined as a deep learning model designed with 

specialized layers, such as convolution and pooling, to 4) CCN: Crowd Stability (CS): A Convolutional Neural Network 

(CNN) is defined as a deep learning model designed with specialized layers, such as convolution and pooling, to learn 

automatically and extract essential spatial patterns from the images. CS enables accurate estimation of crowd density without 
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the dependency on hand-crafted features. Designed using the sequential API from Keras, CS comprises two convolutional 

layers followed by a max-pooling layer, a flattened layer, and a dense layer with 5 neurons and a softmax activation function. 

In Table IV, the CS layers summary of a density map to predict the crowd category is shown. 

 

         

 TABLE III: Discriminator Architecture Details   TABLE IV: CNN Model  

 

  

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CROWD COUNT STABILITY ANALYZER  

A. Algorithm 1: UGAN: Unet Generative Adversarial Network 

Algorithm 1 and CCSA flowchart in Fig. 2 explains a Unet Generative Adversarial Network (UGAN). The UGAN consists of 

(i) Uskip Connection, (ii) Unet Generator, (iii) Discriminator. The Uskip Connection concatenates lower-level and higher-level 

feature maps with convolution, batch normalization, and ReLU activation. The functions generate the combined features of a 

given image to aid in feature extraction and integration. 
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The Unet Generator constructs an image with a downsampling to capture features and an upsampling to build the generated 

image. It also obtains the combined image feature from Uskip Connection which is used in training to determine a real or fake 

output image after comparing it with its database. The Discriminator evaluates the authenticity of real and generated images 

using convolution, batch normalization, leaky ReLU activation, flattening, and fully connected layers. The training function 

iteratively updates the Unet generator and discriminator using adversarial training. 

 

B. Algorithm 2: CNN: Crowd Stability using Convolutional Neural Network 

Algorithm 2 explains a Convolutional Neural Network (CNN) for crowd stability. The crowd stability constructs the sequential 

CNN model by including two Conv2D layers with relu activation, two MaxPooling2D layers with a stride of 2, and one Dense 

layer with softmax activation. The CS module predicts crowd count categories using CNN for every image in the dataset. The 

crowd category is calculated from the predicted count where a value up to 25 corresponds to very low, 25 to 50 corresponds to 

low, 50 to 75 corresponds to moderate, 75 to 100 corresponds to high, and other higher value indicates a very high crowd count. 

 

     

      

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, crowd counting can be implemented to analyze crowd density in busy urban areas such as crowded streets as 

shown in Fig. 3. 

 

 

 

(i) Input: The CCSA algorithm constructs a density map to find the count of crowd images which is explained in Algorithm 1   

     and flowchart ( Fig. 2 ).  

 

(ii) Crowd Count Prediction: The CCSA algorithm utilizes UGAN to predict crowd counts on density maps. The UGAN   

      consists of a generative network that builds a density map while the discriminator determines the authenticity of the   

     generated density map. 

 

(iii) Output: From the generated density map, the determined crowd count is categorized into very low, low, moderate, high,    

       and very high. 
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C. Evaluation Metrics 

 

The Mean Squared Error: The Mean Squared Error is defined as the mean of the squared differences among the predicted 

values, denoted as yˆ, and the actual values, denoted as y as shown in equation (6). 

 

 

 

 

The Mean Absolute Error: The Mean Absolute Error is defined as the average of the absolute differences among the predicted 

values, denoted as yˆ, and the actual values, denoted as y as shown in equation (7). 

 

 

 

 

 

The CCSA architecture is evaluated with MSE and MAE parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: ShanghaiTech, UCF CC 50, DataC Dataset Samples and Details 

 

 

D. Performance Metrics: Datasets 

The experiments are conducted on four datasets namely (i) ShanghaiTech-A Dataset, ii) ShanghaiTech-B Dataset, iii) UCF CC 

50 datasets, and iv) DataC. 

(i) ShanghaiTech-A Dataset The ShanghaiTech is a sizable crowd-counting dataset, having 1198 marked-up pictures of 330,165 

individuals. The dataset is partitioned into two parts, ShanghaiTech A and ShanghaiTech B. ShanghaiTech A has 482 photos of 

which 182 are used for testing, while the remaining 300 are used for training. The advantage of this dataset is that it has the 

most annotated people of varied sizes. 

 

(ii) ShanghaiTech-B Dataset The ShanghaiTech-B, a part B component of the Shanghaitech has been used to evaluate the 

experiment model. The 716 pictures are depicting 716 different scenarios, each representing a single scenario. In ShanghaiTech 

B, 400 images are used for training and three hundred sixteen images are for testing. The advantage of this dataset is that the 

coordinates of the head’s center are shown in each image.  

 

(iii) UCF CC 50 Dataset UCF CC 50 crowd dataset is built of extremely dense images. It has 50 images with 63,974 head 

annotations in total. The head counts vary from 94 to 4,543 per image. The advantage of the dataset is that the images are dense 

with large variances.  

 

(iv) DataC Dataset The dataset DataC is constructed with 48 images of 12 distinct categories such as Games, Street, Pedestrian, 

Protest, Cafeteria, School, Transport, Urban Design, Worship Places, Market Place, Playground, and Malls from the internet. 

The merit of the dataset is to analyze diverse crowd categories, which is not explored in other datasets. 

 

Fig. 4 shows a sample of four datasets and Fig. 5 displays a summary of four datasets where FPS denotes the number of frames. 

In these datasets, there are considerable differences in crowd densities, population distributions, and perspective distortions, and 

hence these datasets are used to evaluate the crowd counting technique. Fig. 6 displays ShanghaiTech, UCF CC 50, DataC 

Dataset samples and details. 

 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The CCSA architecture is implemented on NVDIS Geforce TitanX GPU equipped with 12 GB of memory. The Unet 

generator and discriminator are trained in an adversarial manner. In training the discriminator’s parameters such as loss 

functions and optimizers are updated based on the comparison of scores between real and fake images, enhancing its ability to 

differentiate them. Simultaneously, the generator’s parameters are also updated, driving it to generate fake images that 

successfully deceive the discriminator. The training concludes after specified epochs, yielding a generator capable of producing 

realistic images. 
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The CCSA architecture can be applied in various examples such as Transportation Hubs, Urban Planning, and Public 

Spaces Designing. The transportation hubs like airports, train stations, and bus terminals are shown in Fig. 7 where crowd 

counting can be used to assess passenger movement and density flow. The knowledge can be used to optimize transportation 

operations such as adding more gates, upgrading ticket systems, and reducing waiting times. It can also be used to develop more 

effective crowd management strategies, such as enhancing security, and safety measures. The Urban Planning and Public 

Spaces Design like malls, theatres, stadiums, and playgrounds are shown in Fig. 8, where crowd counting can be implemented 

to analyze crowd density. Understanding crowd density with patterns in Fig. 9 can provide better design decisions, for public 

spaces such as Community Parks, and Urban Green space designs to meet the diverse needs of the population. 

 

VI. RESULTS AND DISCUSSIONS 

 

 

 

 

 

 

 

 

 

 

     Fig. 9: Crowd Analysis Examples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Experimental results on ShanghaiTech A , B & UCF CC 50 Datasets 

A. Discussion 

The proposed model is examined on four crowd-counting datasets namely ShanghaiTech A, B, UCF CC 50, and DataC. In 

Fig. 10, the experimental results of Shanghaitech A, B, and UCF CC 50 datasets, displaying the original image, density map, 

and corresponding ground truth are shown. In Table V, the results of CCSA without CNN in Shanghaitech A with MAE 2.57, 

and MSE 11.57 and Shanghaitech B with MAE 4.73, MSE 24.87 and UCF CC 50 with MAE 9.3, and MSE 106.97 are 

illustrated. The results of the UCF CC 50 dataset present significant challenges in accurate crowd counting due to its dense 

nature. One potential solution is to generate more synthetic data, which can be used to enhance the training of the model. In 

Table VI, the results of CCSA with CNN for random images in Shanghaitech B with a predicted count of 171, ground truth of 

179, and the classification as very high (above 100), Shanghai tech A with a predicted count of 334, ground truth of 336, and 

the classification asvery high, and UCF CC 50 with a predicted count of 73, ground truth of 69, and the classification as 

moderate is illustrated. 
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TABLE V: Comparison performance of Proposed with CNN model CCSA without CNN with MSGAN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE VI: Comparison performance of Proposed model CCSA 

 

 

 

 

 

 

 

 

 

 

 

 

The model is evaluated by using two metrics MAE and MSE. The MSE is more appropriate to avoid large errors, whereas 

MAE is used to avoid bias towards errors. Compared with MS-GAN et al., [1] the experimental results presented in Tables V 

and VI demonstrate that the proposed model effectively estimates the crowd density in ShanghaiTech- A, B, and UCF CC 50 

datasets. The model achieves greater accuracy, as UGAN, captures intricate details and maintains spatial information, which 

potentially enhances the generation of images. 

 

The DataC dataset is built of 48 images from the internet consisting of 12 different categories such as Games, Street, 

Pedestrian, Protest, Cafeteria, School, Transport, Urban Design, Worship Places, Market Place, Playground, and Malls. Table 

VII shows the result of 48 images of DataC with the image number, type of crowd, predicted count, ground truth count, the 

difference between the both, loss in %, MAE, MSE, and finally the crowd category. Fig. 11 shows the density map of 48 

images in DataC. 

 

In Fig. 12 shows that the CCSA (MAE of 4.73 and MSE of 24.87) achieved lower errors compared to MS-GAN (MAE of 

18.7 and MSE of 30.5) on the ShanghaiTech-B dataset. Fig. 13 compares MAE and MSE between CCSA without CNN and 

MS-GAN on UCF CC 50. CCSA demonstrates superior performance with MAE 9.3, and MSE 106.97, while MS-GAN shows 

higher errors with MAE 345.7, and MSE 418.3, highlighting CCSA’s accuracy. 

 

In Fig. 14 graph compares the predicted and ground truth counts for crowd data across different datasets using CCSA and 

MS-GAN methods. CCSA generally predicts counts ranging from 73 to 334 closer to the ground truth compared to MS-GAN, 

(only for UCF CC 50 dataset, ranging from 0 to 483, with ground truth counts ranging from 69 to 336). In Fig. 15 chart depicts 

the distribution of density maps across various types of crowds. It visually represents the percentage of total density contributed 

by each type of crowd, with the transport displaying a major distribution of 40%. In Fig. 16 chart displays the distribution of 

categories based on the type of crowd. It visually represents the proportion of each category (High, Moderate, Low, and Very 

High) within the dataset. Fig. 17 compares predicted and ground truth density values for various crowd types. Predicted 

densities range from 44 to 103, while ground truth densities range from 38 to 92, showing accuracy between predicted and 

actual values across different crowd types. The model accuracy graph as illustrated in Fig. 18 shows the performance of the 

crowd counting model on a set of 48 random images of DataC. To draw the model accuracy graph, the density map count and 

ground truth crowd count of 48 images are obtained. The matplotlib is utilized to draw the graph among the 48 images of DataC 

which shows the difference between the prediction count (green color) and ground truth count (black color) which are less than 

5 % in 9 images, between 5-10 % in 31 images and above 10% in 8 images of the crowd. 
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Fig. 11: Density Map of DataC 48 Images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: MAE & MSE (between MSGAN           Fig. 13: MAE & MSE between (MSGAN & 

 CCSA without CNN on UCF CC 50)   & CCSA without CNN on ShanghaiTech-B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig. 14: Comparision of Predicted and GroundTruth Counts (CCSA vs MS-GAN) 
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Fig. 15: Density Map Distribution with Crowd Type    Fig. 16: Distribution of Categories 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Predicted vs Ground Truth Values for Crowd Type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: Model Accuracy Graph for DataC 
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VII. CONCLUSION 

The architecture crowd stability analyzer is composed of two models (i) UGAN (crowd counting) and (ii) CNN (crowd 

stability). The UGAN is composed of three phases namely (i) Uskip Connection, (ii) Unet Generator, (iii) Discriminator, and 

CNN are used in Crowd Stability (CS). The Unet Generator designed with Uskip GAN constructs the density maps while the 

discriminator refines using loss functions such as binary cross entropy. In crowd stability, the analyzer counts the sum of the 

density map and classifies them as very low, low, moderate, high, and very high. The experimental results prove that the 

proposed model CCSA compared to MSGAN et al.,[1] effectively generates the crowd density map of varied scenes in 

ShanghaiTech- A, B, UCF CC 50, and DataC datasets. It evaluates more precisely on MAE and MSE metrics due to the UGAN 

and CNN which derive finer details of the image with minimal loss. It also exhibits the best performance on varied screen image 

datasets. In addition to the above result, the 12 distinct crowd categories along with its crowd count details are explicitly shown 

with our newly built dataset DataC, a feature not explored in other datasets. For future enhancements, analyzing unstable crowd 

behavior and alerting security personnel for necessary actions could be considered. 
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